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Abstract. We study the behavior of the Arakelov-Green's function and Faltings'
delta invariant on degenerating Riemann surfaces.

1. Introduction

The analysis of the behavior of metrics, Green's functions, eigenvalues, and de-
terminants of Laplace operators on spaces of degenerating Riemann surfaces has
been carried out in many different contexts. Given a compact Riemann surface,
one makes a particular choice from the conformal class of metrics compatible
with the complex structure associated to the surface, and a fundamental problem
is to relate the geometrical data arising from the metric to the complex analytic
structure of the underlying surface. The metrics chosen, however, have nearly al-
ways been those with constant curvature. In this paper, we consider degeneration
phenomena with respect to a different choice; namely, the Arakelov metric [2,
14, 21, 23].

One way to describe this metric is as follows: the Riemann surface M is
embedded into its Jacobian variety J(M) via the Abel map /. The canonical
metric on M is the pullback by / of the flat metric on J(M) induced by the
polarization of J{M) as an abelian variety, and the Arakelov metric can be
defined by prescribing that its curvature be proportional to the Kahler form of
the canonical metric. This only determines the metric up to a constant, but there
is a second quantity associated to the canonical metric - the Green's function.
We can fix the scaling of the Arakelov metric by requiring the logarithm of the
distance in this metric to be exactly the singularity of the Green's function along
the diagonal.

Spaces of degenerating surfaces correspond to paths in moduli space leading
to the boundary points. These are obtained from compact surfaces by shrinking
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finitely many closed loops to points, called nodes. Conversely, the boundary
points may be opened up by cutting out disks surrounding the nodes and
attaching annuli. There is a distinction between separating and non-separating
nodes, and we shall constantly refer to these two possibilities as Case I and Case
II, respectively.

The behavior of the hyperbolic metric, which for genus > 2 has constant
curvature —1, has been extensively studied under this type of degeneration
(see [24, 36] and the references therein). Lengths of closed geodesies serve as
parameters for moduli space, and Selberg Trace Formula techniques can be used
to study, for example, the asymptotics of regularized determinants [10, 18, 20, 22,
31, 34, 35].

In our case, the starting point for the analysis of the Arakelov-Green's func-
tion is an expression in terms of a theta function and theta divisor (see Proposi-
tion 5.2):

= ̂  J
Θ+x-y

This formula is due to Bost [6], and in Sect. 5 we give a proof based on the
bosonization formula [1, 13, 14, 17, 35]. With the Green's function in this form,
the problem is essentially transferred to the Jacobian variety, where explicit
formulae for the degeneration are available.

We now outline the organization of this paper and our main results. In Sect. 2,
we recall some well-known facts about Riemann surfaces and their Jacobian
varieties. We introduce the canonical metric on the surface and the prime form,
which is the fundamental tool for calculation. Finally, we define the Arakelov
metric and the Arakelov-Green's function.

In Sects. 3 and 4, we discuss the degeneration of Riemann surfaces to singular
surfaces with nodes. There are two cases, depending upon whether the node
separates the surface. Our main goal is to establish formulae for the asymptotics
of the theta function which will be used in analysing the Green's function. For
this, we use certain properties of theta functions on Riemann surfaces, such as
Fay's trisecant identity.

We then introduce the Faltings invariant [14] and proceed to determine its
asymptotic behavior under the degeneration model described in Sects. 3 and 4.
The analysis hinges on the formula for the Green's function above. In Sects. 6 and
7, we use this formula to derive pointwise asymptotics for the Green's function;
the results are contained in Theorems 6.10 and 7.2. With these estimates and the
bosonization formula, the asymptotics of Falting's invariant δ(M) are obtained
(see Sect. 8):

Main Theorem. For Mτ a family of compact Riemann surfaces of genus h, degen-
erating as τ —> 0 to surfaces Mi, M 2 of genus, h\, hi > 0 joined at a node,

a) lim \δ(Mτ) + 4 ^ log |τ|l = δ(M{) + δ(M2).

For Mτ of genus h + 1 degenerating to a surface M of genus h with two punctures
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a and b identified at a node,

b) lim \δ(Mτ) + 3

4 ^ log |τ| + 61og(-log |

= δ(M) — — — log G(a, b) — 2log2π,

where log G(a, b) is the Arakelov-Green's function of M.

Finally, in Appendix B we use these results to exhibit the factorization of the
bosonic string integrand for genus two.

2. Theta Functions and Jacobian Varieties

In this section, we gather definitions, notations, and certain elementary results
which will facilitate the computations later on. Let M be a compact Riemann
surface of genus h (we will assume all genera to be positive). A symplectic
homology basis is a basis {Aj, Bj}, 1 < j < h, for H\(M,Έ) satisfying the
intersection pairings

#[AU Aj] = 0, #[Bi9 Bj] = 0, #[Ai9 Bj] = δtJ. (2.1)

The dimension of the space of holomorphic 1-forms, or abelian differentials of
the first kind, is given by the Riemann-Roch formula and is simply the genus
h. The normalized basis of abelian differentials associated to the given symplectic
homology basis {Aj, Bj} is a basis ωi, ..., ω/J satisfying / a>k = δjk The B-

periods are then determined, and they define the period matrix: Ωtj = / ω7. The

period matrix is symmetric, has positive definite imaginary part, and satisfies [15]

2
M

/ ω, Λ cθj. (2.2)

The Jacobian variety associated to M is defined by J(M) = (£h/Γ, where Γ is
the rank 2A lattice Γ = Zh+ΩΈh. The Jacobian is a principally polarized abelian
variety, and the Hodge metric of the polarization has the Kahler form

h/

v = ϊy- X (Im Ω)JϊdZj A dZk. (2.3)
j,k=i

z

The Abel map embeds M into its Jacobian, / : z —• / ώ, where zo is a base

point which will remain fixed throughout, and ώ is the vector in (£h whose z'th

component is ω, . We shall often abbreviate the notation and denote, for example,
I(x) — I(y) by x — y. The pullback of v by / is /* v = hμ, where μ is the canonical
metric:

/—j- h

μ = ^
j,k=\
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Notice that by (2.2), / μ = 1.
M

The theta function associated to Ω is defined by

?9 Ω) = 2_\ e χPπiCnΩn + 2 ί nZ). (2.5)

It is holomorphic in both variables (we will often omit the matrix argument) and
quasi-periodic with respect to Γ. For example, if m, n e Zh, then

+m + Ωn, Ω) = Gxpi-πΐnΩn - 2πίίnZ)5(Z, Ω).

The above implies that the theta divisor Θ, the zero set of 5, is a well-defined
sub variety of J(M). It also follows that the norm of theta,

| |S| |2(Z) = e x p ( - 2 π ί I m Z ( I m Ω Γ 1 I m Z ) | 3 | 2 ( Z ) , (2.6)

is periodic with respect to Γ. d d

The image of the product Md under the map (pi, ..., pd) —• Σ I(pi) will

be denoted by Wd. The Jacobi Inversion and Riemann Vanishing theorems are
essentially the statements Wh = J(M) and Wh-i — kZo = Θ, respectively [16, 27].
Here, kz° is related to the Riemann class A,

A-(h-l)zo = kz\

and,
h z

*ψlΣjfj. (2.7)

A is a divisor, not necessarily positive, of degree h — 1. The Riemann class is
independent of the choice of base point, as may be seen by direct computation.

The volumes of the subvarieties Wd with respect to the metric v are given by
the following

Proposition 2.8. For 1 <d <h, -e>
Proof This is essentially Poincare's formula relating the homology class of Wd to
an appropriate power of Θ [19, p. 350]. The proof, however, will be useful later,
so we reproduce it here. We first restrict to the case where ImΩ is the identity
matrix. This amounts to a change in the (Ch coordinates by a matrix B, Z ι—• BZ,
where B2 = (ImΩ)" 1 . In this situation, we have

/α, Λ ώj = δij, v =

M

V

The volume of Wd for 1 < d < h is —• / vd by Wirtinger's formula. We can
write d' Wd
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where J runs through the set {(/Ί, . , jd) 11 ^ h < "' < jd <h). Now we pull
back to the surface. For 1 < d < ft, the map φd has (generically) degree d!, so
we have

= Σ h I
J Mi

*tφ***j).

where π* is the projection of Md onto the fcth factor. Denote by S(d) the symmetric
group on d letters, and define <5(σ, σf) for σ, σ' e S(d), δ(σ, σr) = 1 o σ = σr.
Then the above is equal to

4 / I Λ

J\ \T~) j Σ <°MM) Λ % , ( P I ) Λ

In particular, we have Vol(J(M) = Wh) = 1, and Vol(PFh_i) = Vol(6>) = ft.
We also introduce the prime form E(z9 w) of M. It plays the role of z — w in

local coordinates, however it is multi-valued and transforms as a —1/2 form in
each variable [27]. For us, what is important is that the prime form can be used
to construct meromorphic objects on the surface. For example, one can express
the canonical differentials of the second and third kinds as [16].

ω(z, w) = dzdw logE(z, w)dzdw, ωb-a(z) = dz log ^ 4 ( 2 9 )
L(z, a)

ω(z, w) has zero A-periods in both variables and is meromorphic with a pole
of order two only along the diagonal z = w. ω&_α(z) has zero A-periods and is
meromorphic with poles only at a and b with residues —1 and 1, respectively. We
also have the Rίemann bilinear relations [16]:

ω(z, •) = a>b-a(z), (2.10)

T (2-11)

x

I
y

As in the case of the theta function we can construct a real-valued form

F(x, y) = exp(-2π ί Im(x - y) (Im Ω)" 1 Im(x - y)) \E{x, y)\2. (2.12)

F(x, y) transforms as a (—1/2, —1/2) form in each variable. The exponential
factor removes the multi-valuedness of E(x, y) at the expense of holomorphic
factorization. A simple computation gives, for z φ w,

z- log F(z, w)dz Λdz = 2π\ΓΛhμ(z). (2.13)
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The Arakelov-Green's function on a compact Riemann surface M of genus
h > 0 is characterized by the following [2]:
a) G(x, y) has a zero of order 1 along the diagonal,
b) G(x, y) = G(y, x),
c) for z φw, dzdf log G(z, w) = TUΛ/—ϊμZz>
d) /logG(x,3θMy) = 0.

M

Here, μ = μZzdz Λ dz is the (1,1) form defined in (2.4). Any metric on M
compatible with the complex structure can be expressed in conformal coordinates
ds2 = 2gZzdzdz. The Arakelov metric is defined by requiring its curvature to be
proportional to μ.

8zd-z loggz~z = 4y/^ϊ(h - l)μzz-. (2.14)

This determines gzz up to a constant, which is fixed by the condition

log gzS = lim [2 log G(z, w) - log \z - w|2]. (2.15)
W-+Z

We then have [11, 17, 33]:

2 log G(z, w) = log F(z, w) + \ log gz2 + ± log gw*, (2.16)

which will prove very useful in computations later.

3. Degeneration of Riemann Surfaces - I

We now discuss a model for the degeneration of compact Riemann surfaces to
Riemann surfaces with nodes. These singular surfaces may be regarded as the
union of finitely many compact surfaces with particular points, the punctures,
identified by the local equation zw = 0. In the case of a single node, we have
two cases' depending upon whether the node separates the (degenerate) surface
or not. Case I, the separating node model, will be discussed in this section, Case
II, the non-separating node model, will be considered in Sect. 4.

The general reference for this section is [16] (see also, [37]). We consider the
degeneration of M into two surfaces Mi, M2 with genera h\9 h2 > 0, which are
joined at a node p. A model for this degeneration is constructed as follows:
choose points pi, P2 £ Mi, M2 and coordinates z* : U\ —> D centered at p^
i = 1, 2. D is the unit disk in (C. Henceforth, we shall denote both p\ and pi by p.
Let S = {(x, y, t)\xy = t; x, y, t e D} and St be the fiber for fixed t. For t e D,
remove the disks |z,j < |ί|, and glue together the remaining surfaces by means of
the annulus St according to the prescription

Z\ - • ( Zl, — , t ) , Z 2 - > ( — , Z 2 , t ) .

The resulting surfaces then form an analytic family M -> D with fibers Mt91 φ 0,
each of genus h = h\ + /12 and Mo a "stable curve", i.e. a boundary point in the
Mumford-Deligne compactification of moduli space [26]. In a neighborhood of
the double point, it is often useful to use normalizing coordinates,

^ Γ = i ( x + y), ® = \{x-y). (3.1)

For 2£ near zero, the annuli are given by the double coverings <%/ = ±\JθC2 — ί,
ramified at ±y/i. For any point z e Mi,2 — {p} and t sufficiently small, there is a
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natural section z(ή of Jί -> D with z(0) = z given by the above identification.
In general, we shall indicate a smooth section z(ή with z(t) £ M\ — {\z\\ < \t\1^2}
for all small t by saying z e M\CλMt.

We can combine two symplectic homology bases for Mi, M2 to get a basis for
each fiber Mt. We shall assume this is ordered so that {Aj, Bj | j < h\] are closed
curves in Mi Π Mu and {X,-, Bj \ j > h\} are closed curves in M2 Π M t. We then
have the fundamental

Proposition 3.2 [16, p. 38], [37, p. 129]. For sufficiently small t, we can find a
normalized basis of abelian differentials ωi, ..., (Ohfor Mt, holomorphic in t, which
have the following expansions:

f ωί1}(x) + O(ί 2 ), for
for

for

for

X

X

X

X

e

e

e

Mi-Ui,

M2-U2,

M2-U2,

Mi-Ui,[ -ίωf (pjω^ίx, p) + O(t2),

Here, i <h\, j > h\. The ω^ form a normalized basis for the abelian differentials

on Mi, and likewise for ω® on M2. ω(1)(x, y), ω^(x, y) are the canonical

differentials of the second kind on Mi, M2 (see (2.9)). The terms lim —5— are
ί—>Ό t

meromorphic differentials with poles of at most order four at p. The evaluations
at p are carried out in the local coordinates z, .

An easy consequence of the proposition is that for the period matrix associated
to the homology basis described above,

where Ωi is the period matrix of Mi with respect to the original homology basis,
and so on. The family / —> D with fiber J(Mt), t φ 0 is an analytic family of
abelian varieties. From (3.3) we see that the fiber over zero is a product torus,
/ o = J(M{) x J(M2).

As we vary the period matrix, the theta divisors, Θu form an analytic family
of subvarieties of J(Mt). For t φ 0, Θt is irreducible, since it is a translate of
Wh-i. For t = 0, however, the theta divisor splits, Θo = Θ\ x J(M2)U J(Mi) x Θ2;
the two irreducible subvarieties in Θo intersect in Θ\ x Θ2.

We now consider the Abel map:

Corollary 3.4. Let x, y be local smooth sections of' Jί —• D for t near zero. For
part (c) below, we further assume that in local coordinates, x(0) = y(0) = 0. Then
for j > hγ,

X

a) lim / ώ( , t) = (x- y, 0) G / 0 for x,yeMγCλ Mt9
ί->0 y

X

b) lim / ώ( , ή = (x — p9p — y)€/o for x € Mi ΠMU y € M2(Ί Mt,
ί^θ y

c) lim dt j ω( , t) = -ωf (p)ω{^y{p) for x,yeM{n Mt.

In the above, the superscripts indicate to which surface the differentials belong.
The form ωx-y(z) is the canonical differential of the third kind defined in (2.9)
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Proof. For the proof of part (c), we begin by noting that both sides are holo-
morphic in each variable for x, y e M\ — {p} and are multi-valued with the same
periods. Then if x, y G M\ — U\ Π Mt9 we have from Proposition 3.2,

X X

= jtj ωj(; ί)|ί=o = -ωf{p) J aP\; p)

= -ωf)(p)ωx

1ly(p),

by (2.10). Since the two sides agree on an open set, they are equal everywhere.
Parts (a) and (b) also follow easily from the expansions of the abelian differentials.
For this and estimates of the remainders in these limits, see Appendix A.

Putting this together with the result for the theta divisor, we have

Corollary 3.5. For local smooth sections x, y of the degeneration, the lim Θt

+x — y in / o is: t~^°
a) Θι+x-y x J(M2) U J(MX) x Θ2 for x,yeMλn Mu

b) Θι+x-px J(M2) U J{Mχ) x Θ2-\-p-y for x G Mi ΠMt, y G M2Γ)Mt.

The simple observation is that the translated theta divisor of part (a) of the
corollary is, in the limit, no longer translated along the second factor. We shall
see in Sect. 6 that this gives rise to a log|ί | singularity for the Arakelov-Green's
function.

We now examine the theta function θ(Z, Ω(ή); we shall write simply St(Z).
It is analytic in both arguments for t near the origin. We shall be particularly
interested in the case where Z is a translate by x — y of a point in the theta
divisor. There are essentially two possibilities:

Proposition 3.6. Let x, y be local smooth sections of the degeneration, x G Mι(ΊMt,
y G M2ΠMt. Let Z(t) be a local smooth section of Θt -+ D with Z(0) = (Zi, Z2).
Then lim St(Z + x - y ) = 5i(Zi + x -p)h{Z2 +p-y), where #i( ) = S( , Ωx).

ί—•()

Proof The proposition follows directly from the definition (2.5) and part (b) of
Corollary 3.4.

The second possibility is where x and y are on the same surface. Let Δ(t)
denote the Riemann class of Mt associated to the homology basis described
above. We first use the definition (2.7) of k to establish the following simple

Lemma 3.7. Fix positive divisors 3)\, Q)2 in M\ — {/?}, M2 — {p} with degrees, d\,
d2, respectively. Suppose d\ + d2 = h — 1. We consider local smooth extensions of
the divisors to the degeneration β —• D. Then

lim Q)\ + 3)2 - Δ(t) = (β\ - (h2 - d2)p - Δu @2 - (fti - d\)p - Δ2).
ί—>Ό

Proposition 3.8. Fix positive divisors 3)\ a M\ — {p} of degree h\ and S)2 c= M2 —
{p} of degree h2 — \ such that e = Q)\— p — Δ\ G J(M\), and f = $)2 — Δ2— G Θ2.
Now extend them as local smooth sections of the degeneration. If x, y are local
sections in M\ ΠMt, then we have the following expansion for $t(β\ +@2 — Δ(t) +
x-y):

n _ . &i(x -P + Φi(y -P- e)Ei(x, y)

Ί' k>hγ
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where E\(x, y) is the prime form for M{ introduced in Sect. 2.

Proof We must find the O(t) term, since in this case the constant term vanishes
identically. Using the above lemma,

9{®

(® +® Δ® + )l + Σ
μ=l μ,v=l μ v

where So = $i#2 ^s evaluated at the point (e+x—y, / ) . Using part (c) of Corollary
(3.4), and the fact that theta satisfies

dΩμv Aπi

we have for the first order term,

+ x - y) + ̂  X 0z,θi(x - ^ + eίω}

where R is equal to

άs» Σ < W 4
In the expression above the theta functions are evaluated at e and /. It is
clear, however, that R is identically zero, since it is the derivative of the theta
function evaluated along the theta divisor. The result is obtained by rewriting
the remaining term. For this, we refer to [16, p. 25].

The following proposition also follows from Lemma 3.7.
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Proposition 3.9. Fix positive divisors 2\t @ι of degrees h\ — 1, hi in M\ — {p},
Mi — {p}. Now extend them as local smooth sections of f —• D. If x, y, are local
sections in M\ Π Mt, then

lim 9t(Sι +@ι- Δ{t) + χ-y) = $ι(βι-Aι+x- y)$ι(@ι -p-A2),
ί-> 0

and for generic choices of 3)\ and Θι the constant term does not vanish.

For reference, we express the result of Proposition 3.8 in terms of ||S|| and
F(x, y). Using (2.6) and (2.12) we have, after some algebra,

Corollary 3.10. For the situation as in Proposition 3.8, we have the following ex-
pansion for | |θ ί | | 2 (^i + @ι - Δ(ή + x - y):

F1(x,p)F1(y,p)

Here we have defined

h

\\hf\\2(z) = exp(—2π* Im/^mΩ)" 1 Im/) V d
k=l

and, as before, the evaluation at p is in terms of the local coordinates zu zι.

4. Degeneration of Riemann Surfaces - II

In this section, we consider the degeneration of a compact Riemann surface of
genus h + 1 to singular surface of genus h with a single, non-separating node.
The construction is similar to that of Sect. 3, except that in this case we glue on
the annulus via local coordinates za and zi, centered at points α, ft on a compact
Riemann surface M of genus h. The resulting surfaces form an analytic family
M —> D with fibers Mt9 t φ 0, each compact of genus ft + 1, and Mo a stable
curve. Notice that the node, which is the identification of a with b in Mo does
not disconnect the surface when removed, as opposed to the situation analysed
previously.

We now choose a homology basis. Let {Aj, Bj}j=iim..th be a symplectic basis
for M away from the points α, b. The surfaces Mt, t φ 0, each have genus ft + 1,
so we must provide two more loops Ah+u Bh+\ to fill out the basis. Ah+i may
be taken to be the boundary of the disk Ub, and Bh+i will then run across the
handle. But now it is easy to see that as t goes once around the origin in D*9

we twist the handle, and the resulting curve Bf

h+i will differ from the original
by +Ah+\. As a consequence, the period matrix Ω(t) will be multi-valued. If we
subtract log t from the (ft + 1, ft + 1) component, however, we obtain a matrix
which is analytic near t = 0. Specifically, we have

Proposition 4.1 [16, p. 38]. The period matrix has the expansion,

( Ωij + tσtj di + tσih \

1 , )+O(t2),
aj + tσhj — log ί + c + c ί y
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O(t2) b

where Ω is the period matrix for M, lim — — is a finite matrix, and aj = / ω ; .

This proposition follows from

Proposition 4.2 [16, p. 51], [37, p. 135]. For sufficiently small t, we can find a
normalized basis of abelian differentials ω\, ..., (Oh+i for Mt, holomorphic in t,
which have the following expansions for ί < h:

cύi(x9 t) = cύi(x) - t(ωi(b)ω(x9 a) + ωi(a)ω(x, b)) + O(t2), x€ M -Ua-Ub;

{) ( ( b) + { )) + O(t2)ωh+ι{x, t) = — ωb-a{x) - t(γιω(x9 b) + yiω{x, a)) + O(t2), xe M -Ua-Ub.Ini
Here, the ω̂  form a normalized basis for the abelian differentials on M, and the

7i's are constants (see [37]). The term lim — ~ - is a meromorphic differential

with poles only at a or b. The evaluations at a and b are carried out in the local
coordinates zα, zb.

It can be shown that the associated Jacobians form an analytic family β -> D
of abelian varieties with / 0 non-compact. For each t φ 0, set Θs(ή = θt + <5(ί),
where δj(t) = \ Ωjth+i(ή. The family Θ$ becomes an analytic subvariety of β if
we require the zero fiber Θs(0) to be defined by

- ί ) ( f o - α ) )
β ( Z b + i ) ( 6 _ β ) ) , (4-3)

for Z = (Zo, Z^+i) G C / ί x C = (C Λ + 1 (henceforth, theta functions and prime forms
appearing without the t subscript denote the objects on the original surface).

We briefly describe the origin of Eq. (4.3). Recall from the definition (2.5)
that the theta function is a sum ]Γ . From Proposition 4.1, the important

neZh+ί

contributions for small t are those from rih+i. Set n = (no, m), m = rih+i. Then
9t(Z - δ(ή) has a factor of

+ i2mlmZh+ι — i

= exp(—π(m2 — m) Im Ω/IH-I,/2+I (t) — 2πm Im Z^+i))

_ μjf (m-i) χ r e m a j n i n g terms.

It can be shown that the remaining terms are uniformly bounded for Z in
compact sets and t near the origin. The zero order term then corresponds to
m = 0, 1. Hence

lim 9t(Z - δ(ή) = 9(Z0 -\{b-a))+ e2πίZh^S(Z0 + \φ-a)). (4.4)

Equation (4.3) follows from the above.
We now give the analog of Propositions 3.6, 3.7, and 3.9.

Proposition 4.5. Fix (Zo, Zh+ι) = Z e Θδ(0), Zo ^ Θ — \ (b — a), and extend to a
local section of Θs(ή Then for x, y local smooth sections of Jί, we have

lim UZ + x-y-δ(t)) =

E(x, y)E(a, b)

E(x, a)E(y, b)



438 R.Wentworth

Proof. By the expansions (4.2) and Eq. (2.11), we see that for local sections
x, y € M — {a, b) of the degeneration, we have

r ? - i f - l i £(x,6)£(y,έi)\ „ , ,
hm / ωt = / ω , ^— log — ' , ' . (4.6)
t-+oj \J 2πi BE(x,a)E(y,b) V 'y

Then from (4.4),

9t(Z+x-y-δ(ή)

= {θ(Z0 + x - y - \ (b - α))θ(Zo + \Φ- a))E(x, a)E(y, b)

- θ(Z 0 + x - y + \ (b - α))3(Zo -\{b- a))E(x9 b)E(y, a)}

x {9(Z0 + i (ft - α))£(x, α)£0;, ft)}"1 + O(t).

The proposition now follows from Fay's trisecant identity (see [16,27]).
Finally, we note the behavior of the Riemann class:

Proposition 4.7. Fix a base point zo € M — {α, b) and extend to a local section of
the degeneration. Then for 1 < j <h,

a+b

=lήo + ̂  J ωj;
2z0

Proof. See [16], p. 57.

5. Faltings' Invariant

We now come to the main topic of this paper. The Faltings invariant δ (M) was
introduced in [14] as a proportionality constant reflecting the equivalence of
two metrics on a certain determinant line bundle; the one defined by Faltings
and the other the pullback of the natural metric on Θ{—Θ). In the following
sections, we will exhibit the behavior of this invariant under the degeneration
model described above. The main results are contained in Theorems 6.10, 7.2, and
the Main Theorem (see Introduction).

We begin by proving a formula which relates the Arakelov-Green's function
to an integral over the theta divisor. This expression is originally due to Bost [6]
- we give a proof based on the spin-1 bosonization formula [14], which may also
be taken as the definition of δ(M):

Π G(pi9 y)
(5.1)
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The left-hand side is defined by (2.6) and (2.7). On the right-hand side, we have
set ph = x, and

gz<z~< J detωj(zk) det ωj(zk),

where zu is a local coordinate around pk, and g z z = (gZz)~ι is the Arakelov metric.
As suggested by the name, (5.1) also arises in physics, where it is but one of

many identities obtained by equating the correlation functions of a certain con-
formal field theory of free fermions with a scalar theory coupled to a background
charge. In this setting, the δ -invariant can be related to the zeta regularized
determinant of the Laplace operator with respect to the Arakelov metric [1, 17,
32]:

, g)

where Ch is a constant depending only upon the genus.

Proposition 5.2 [6, Proposition 1]. There exists a constant A such that

= ̂  J
Θ+x-y

Proof. Taking the log of both sides of (5.1) we have

log ||9|| = - ^ - I logdetlmΩ + log || detω,(p*)

h-l

P y) - Σ l o s σto> P*) + l o s G(*> 30

To carry out the integral over <9, we pull back to Mh~ι as in Sect. 2. We are
primarily interested in terms like log G{pu x) and log G{pu y). From the proof of
Proposition 2.8, such an integral becomes

Σ ωMn (Pi) Λ s Mi) (Pi) Λ ' ' Λ ωΛ,/,-., (P*-i) Λ % M (P*-i)x

Integrating over pj φ pu we see that all terms vanish other than those with

σ(j) = σ'(j). We have

1 ^ 1 y/=ϊ f v

fc 2^ (fe - l)! T ~ 7 g ^' ^ 2^ ̂ σ ' σ )ωM)to) Λ ωv(0(Pi) >

= T / T, 7T / —^— / log Gίpi, x)ω/(p/) Λω 7 (pi),
h *-^ (h— 1) ^ 2 J

/

/ Λ " />

log G(/?/, x) — — ^ (Ufa) Λ ω /̂?/) = / μ(pt) log Gfe , x) = 0.M, J=1 M,
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Furthermore, note that
1

vΛ restricted to Θ +x—y is the induced volume
(ft-1)!

form, and h is its volume, so — / vh~ι = 1. After integration, the only terms
»* Θ+X y

remaining are log G(x, y) and another term which manifestly depends on the
point x

A = ~fμ(y) ί v l̂ogPII.
M Θ+x-y

However, by symmetry of the Green's function and of the theta divisor in x and
y9 it is seen that A is in fact constant.

To simplify notation in the sequel, we make the following definitions:

Θ+x

= 1 J
J ( )

J

Θ+x-y

log ||Jϊ|| = 1 J v*log||S||,
J(M)

= -J μ{y)logK(x,y).
M

6. Asymptotics of the Green's function - Case I

We now let M degenerate to the surfaces Mi, M joined at a double point p.
First, however, we would like to briefly comment on the parameterization.1 The
degeneration model described above depends on the choice of coordinates zi, Z2.
A different choice would have the effect of rescaling the dgeneration parameter
t. More precisely, suppose we consider the sets

S = {(z, w, t) I zw = t; z, w, t e D), S = {(z, w, t) \ zw = t; z, w, t e D}.

Here we are thinking of z as an analytic function of z near the origin with
z(0) = 0. For fixed w, t is a function of t alone, and dt/dt(O) = dz/dz(0). Now
suppose both z z are local coordinates for Mi centered at the point p. Define the
parameters τ = ί^g^O), and similarly for τ. We compute

^(O^ii
1

dz

- 1

= 1.

In particular, we have |τ| = |τ| + O(|τ|2). This local computation easily extends
to the family of degenerating surfaces. Thus, if for the local coordinates zu Z2 on
the surfaces M\, Mi we define the parameter

~~ (6-1)

then expansions to the first order in τ are independent of the initial choice of
coordinates.

Thanks to Scott Wolpert for clarification of this point
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Now consider the expression for the Green's function in Proposition 5.2. For
the theta divisor translated by x — y, x, y G M\ Π Mu we have by Corollary 3.5
that θt + x-y -*θγ+x-yx J(M2) U J(Mι) x θ2, and \\9t\\ vanishes on the
second sub variety, the volume of which is h2. Thus, we expect a divergence like

-^ log \t\ for logKt(x, y). This is the idea behind
n

Proposition 6.2. Let Mt of genus h = hi + h2 degenerate into two surfaces M\
and M2 of genus h\ and h2, respectively, as described in Sect. 3, and define the
parameter τ as in (6.1). Then for local smooth sections x, y G M\ Π Mt, x φ y,

a) lim ί log Kt(x, y)-j log |τ|l = log d (x, y)-j log Gt(x, p)Gι (y, p)

+ j (log \\H2II -Ai) + j (log llί/i || - A2)

For smooth sections x £ M\ ΠMt, y £ M2 Π Mt,

b) lim log Kt(x, y)=*± (logKγ(x, p) + log \\H2 II)

where the subscripts 1 and 2 indicate the functions associated to M\ and M2, re-
spectively.

Proof Consider first part (a), so we have local sections x, y e M\ Π Mt. For each

t φ. 0, we define an open set in J(Mt) whose limiting value at zero is essentially

J(Mi) x Θ2. Let

Σ I(Pi) + Σ I(qj)-Δ{t)\Pi e Af! Π Afί, qj eM2nMt\.

ί=i 7=1 J

Lemma 6.3. lim -!- (Vol(*t) - Λ2) = 0, /or all r < 1.

Proof We refer to our calculation of the volumes in Proposition 2.8: the map

(Mi Π Mt)
hι x (M2 Π Mi)**2"1 ^-> <ff has degree (generically) hχ\{h2 - 1)!. As

before, we calculate the volume of &t by pulling back by ψ. The result is

ΣΣ {

X Σ

Now we claim that

/ ~γ- ωjσ{k)

 Λ«>jΛk) = <5i(σ> σ'; Λ fc) + O(\t\ log | ί | ) ,

where
, , / F M / 1, if σ(/c) = σ/(fe) and jσ{k)<h;
ό\{σ, σ J, /cj = <

[ 0 otherwise.
, σ J, /cj = <

[ 0 , o
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There is a similar expression for the integral over Mi Π Mu with the condition
for δi{σ, σ'\ J, k) = 1 being that σ(k) = σ'(k) and yσ(fc) > k. The claim follows
from the expansions of the abelian differentials which we defer to Appendix A.
From the claim, we have for the volume of Su

. h h-\

Σ u Uh - n ι

Now,

Π δ2(σ,σ';J9t) + O(\t\log\t\).

h-\

and σ e S(fci) x S ( f e - l ) .

This also forces h\ of the jVs to be < hu so J must have the form

J = (1, 2, ..., /zi, 7Λ l + 1, ...,;V-i), Λi + 1 < Λi+i < < Λ-i ^ Λ

There are exactly hi distinct J's of this form, and so we have the lemma.
We now estimate

jθ-^iog|t| = ~

h J v""1{log m t + χ - y ) - l o g !^ (6 4)

h

By Lemma 6.3, the last term vanishes as t —• 0. The other terms will also be
continuous, the point being that the integrands are now well behaved as t —• 0.

Take, for example — / v ^ ^ l o g | |5 t | | ( + x — y) — log |ί|}. Fix a fundamental

domain for / 0 <=: <£h = C^1 x <Chl. Let

Let Fε be an ε-neighborhood of £"0 U X, where K is some compact set containing
the fundamental domain. Now we divide up the integral:

= ± J {-} + tiJ J /
VεC\$t

Using the compactness of J(Mt) for all small ί, and reducing ε still further if
necessary, we can contain {Vε Π St I ί small} in the union of finitely many balls
D\, . . ., Dm. We choose ε and the D/s small enough so that log \\9t\\ ( + x — y) —
log |ί| < 0 on Dj for small t and all j . Therefore,

\ C m 1 C

~M J ^(logPIK + x - ^ - i o g l ί D ^ Σ - ^ T J {•••
Kβn<ft

 / c = 1 DfcΓκrf
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and the expression on the right is bounded as t —• 0. This follows from the
following lemma, which is easily proved by using the Weierstrass Preparation
Theorem:

Lemma 6.6. Suppose f(z9 t) ψ 0 is analytic for z in the ball Dn and t near zero.
Let dv denote the Euclidean volume form. Then f dv(z) log |/(z, t)\ is continuous
att = O, and lim / dυ(z) log |/(z, 0)| = 0. A,

For the first term in (6.5), the integrand as t —• 0 is bounded on the entire
domain, so we may apply the dominated convergence theorem and Corollary 3.10

lim — / v* ^log | |5 t | | i' + x — y) — log |ί|}
ί^o ft! J

1 f 1 1

ft J h\! 1 (/i2 — 1)! 2

J(M!)xβ2-Fε

r πflij || (JC — p H- β) P i \\(y — p — e)
x < log

Since ε is arbitrary, we may deduce the continuity of the left-hand side of (6.5).
Letting ε —• 0, the second term in (6.5) vanishes, and we are left with the above,
integrated over all of J(M\) x Θ2,

.. 1
h I vϊiι°z llθ<II ( + x ~ v) ~
n\

Fι(x, y)
+

The last term above is given by

1 ^ ) l o g Hfc/11 (z) = i loggzz- - 4 (6.7)

which follows from (2.15) and Proposition 5.2. A similar argument holds for the
other term in (6.4). We just state the result:

ί™ ft! y Vί

Substituting for the F's via (2.16), we obtain part (a) of the proposition. Part (b)
is a consequence of Proposition 3.6 and part (b) of Corollary 3.5.

Corollary 6.8. For the situation in Proposition 6.2 and A as in 5.3,

lim [ A + ̂  log |τ|] = j (A, - log ||H2||) + ̂  (A2 - log H^ | |).

Proof Roughly speaking, we should simply integrate the asymptotics of μt with
those of Kt. Some consideration of the higher order terms is necessary:



444 R. Wentworth

Lemma 6.9. For μ as defined by 2.4, we have for z G Mf O M(, i = 1, 2,

Moreover, in the local coordinates z\ about the node, there is a constant C such
that\O(\t\)\<C\t\\dz\2/\z\2.

Proof. This follows directly from Proposition 3.2, Eq. (3.3) and the bounds ob-
tained from expanding the abelian differentials as in Appendix A.

The lemma assures that integration of the O(\t\) part of the measure in the
annulus against terms of the type log |z| arising from the Green's functions in
the limits of Proposition 6.2 will contribute only to order

\dz\2

I log | z | ~ const. \t\ (log \t\)\

and so in the limit we may ignore them. We shall see in the next section that this
is not the case for degeneration to a non-separating node.

To prove Corollary 6.8, we may therefore simply integrate the zero order terms
in Proposition 6.2 and Lemma 6.9. Choose x G M\ΠMt. Then

At = - μt(y) log Kt(x, y)-I
M,

J ^μy(y)\ogKt{x, y) - J ^μ2{y)\ogKt{x, y)
M2nMt

log |τ| + ^ log Gi(x, p) - § (log | |H 2 | | - A,)

(log \\Hi || - A2) - ^ (log id(x, p) + log | |H2 | |)

( I ^ (y) logX2(3;? p) + log ||ifχ |

2nMt

Note that we have used the normalization of the Green's function, property (d)
of Sect. 2. The corollary now follows by applying the definition (5.3).

We now have the main result of this section:

Theorem 6.10. Let Mt of genus h = h\ + hi degenerate into two surfaces M\ and
Mi of genus h\ and hi, respectively, as described in Sect. 3, and define the parameter
τ as in (6.1). Then for local smooth sections x, y G Mi Π Mt, x φ y,

a) lim I log Gt(x, y) - (j J log |τ

= logGi(x, y)~-^ logGi(x, p)GiCv, p);

For smooth sections x €. M\ Π Mt, y G Mi Π Mt,

b) lim ίlog Gt(x, y) + η^ log |τ|l = j log Gx(x, p) + ^ log G2(y, p).

Proof. Combine Proposition 6.2 with Corollary 6.8 and (5.3).
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7. Asymptotics of the Green's Function - Case II

In this section, we study the behavior of the Arakelov-Green's function under
the degeneration of surfaces described in Sect. 4. The situation is quite different
from that of degeneration to a separating node, since we no longer have a nice
geometric argument, i.e. the reducibility of the theta divisor over the zero fiber,
to indicate how log \t\ singularities might arise.

Nevertheless, the main tool is again the expression from Proposition 5.2. Re-
ferring to the degeneration model of Sect. 4, we define, by analogy with (6.1), the
parameter

(7.1)

Theorem 7.2. For the family Mt of compact Riemann surfaces of genus h + 1
degenerating to a surface M of genus h with a non-separating node as described in
Sect. 4, τ as defined in (7.1), and local smooth sections x ψ y, x, y G M — {a, b],
we have,

= log G(x, y) + 5 log G(a, b)
Ό\n + l j z

- logG(x, a)G(x, b)G(y, a)G(y, b).
2{h

Proof The basic idea behind the proof is as follows: for fixed Z £ C Λ + 1 , we
saw in Sect.4 that Ω(t)9 and therefore #ί(Z) were multi-valued for t € D*, the
punctured disk. Let δ(ή be the vector defined by δj = \ Ώ/,/t+i Then from (4.4)
we know that St(Z — δ(ή) is single-valued and analytic for t near the origin. The
integral of the translate of log|θί| may be evaluated using Proposition 4.5, and
the divergence arising from the norm || || may be treated separately.

To separate the norm from theta requires that the calculations take place in
the universal cover of J(M). To make things precise, we will fix a particular choice
of fundamental domain. Denote by ej the vector in (C^+1 with all components
zero except the / h which is 1. Then for a lattice Γ = Zh+1 +ΩZh+\ a fundamental
domain for (Ch+1/Γ may taken as

h+\

Σ aJe(

7=1

h+1

j) + y βΩ. βw
7=1

For any set U c £h+\ we shall denote [U] = U Π # \
In addition, we will have to integrate terms such as Im(x — y) over Mt with

respect to y. This, of course, requires that we specify the path of integration. To
do this, we cut the surface along the cycles {Aj9 Bj}\<j<h9 Bh+w+u and the waist
of the annulus {\zab\ = N1//2} This specifies the path, and we denote this choice
b y [ M ί ]

We begin by recalling Proposition 4.1:
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Lemma 7.3. Define the constant c = lim Imβ/,+i,j,+i(ί) + — log |τ| . Then,^ log in].
ί->0

(ImΩ)^1 (*)

a) (lmΩΓ1(t)= I (*) — I +O(l/log|τ|),
- — log |τ| + c

In
where lim log |τ | 0 ( 1 / log |ζ\) is a finite matrix, and

h

Σ 1 / J-

J \ /IT

*=1

b) (Im Ω)fc+1> ft+1 (ί) = — j +
- - l o g | τ | + c

Proo/ Both parts (a) and (b) are easily obtained from Proposition 4.1.

Lemma 7.4. Up to 0(1/log |τ|) terms, we have

a) vf (Z) - vh(Z) + ^— ( I m Ω ) ^ M(ή /iv*1"1 Λ dZh+1 A dZh+1

b) μf(z) ~ ——- μ(z) H — — — (Im Ω)j;lιh+ι(t)ωh+ι A ω/,+i(z, t).

Moreover, in part (b) there exist constants C\, Cι, C3 such that for z the local
coordinate around the punctures a or b,

:i + V\+C3Yz
and for part (a), limlog |τ| 0(1/log |τ|) contains no dZh+ι A dZh+\ factor.

τ—» 0

Proof The lemma follows from Proposition 4.1 and the bounds obtained by
expanding the abelian differentials (see Appendix A).

We also need an expression for the constant term in the expansion of the
period matrix2 :

Lemma 7.5. Let c be defined as in Lemma 7.3. Then

π(c - \m{b - a) (Im Ω)~ι lm{b - a)) = log G(a, b).

Proof Consider f ω/,+i( , t) = f ω/,+i( , t) for x near b and y near α with local
Bh+\ y

coordinates z = t1^2. By the estimates in Appendix A, we need only look at the

2 The author thanks John Fay for suggesting this lemma
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zero order term. From (4.6),

447

I - •»„(•, 0 ~ L. ±. log

~ - ^- log |ί| + - log |£(α, b)\
In n

(see also [37]). The lemma now follows from (2.12) and (2.16).
We now continue with the proof of Theorem 7.2. We separate the terms into

log || Sf || (Z + x - y - δ(ή) = {norm} + {theta},

where,

{norm} = -πι Im(Z +χ-y- δ(ή)
{theta} = log |θ t | (Z + x-y- δ(ή).

We must integrate the above with respect to

1^) Im(Z +x-y- δ(ή)

<*
Θδ(t) Mt

Expanding {norm}, we see that for terms not involving y9 the μt(y) integral is
unity, and such terms will simply cancel out. Now the second terms in parts (a)
and (b) of Lemma 7.4 vanish pointwise, but we keep them for the reason stated
after the proof of Lemma 6.9; namely, the integrands will have log singularities
as the points near the punctures, and when integrated against the second terms
they will contribute to order log |ί|.

Lemma 7.6. Fix the base point zofor the Abel map away from the punctures. Then
for 1 < j < h, we have the following expansions (up to o(l) terms, unless otherwise
specified) :

a) ί h 1 ί
j vt m Λ+1 ~ 2π J
hit)] [J(M)]

vMog

[Θδ(t)]

θ(Z + \ (b - a))

f / v"-1 log
[Θ]

E(zo,a)9(Z-$(b-a))

b)
/

[M,]

μ,(y) Im(x - y)h+ι ~ — log
E(x, a)

E(x, b) 2π(h + 1)

( / μ(y)log

[M]

E{y, a)

E(y, b)



448 R.Wentworth

c) / μt(y)lm(x-y)2

h+{

[Mt]

1 1
α, b)\ + 0(1),

d) / v^ImZy- / v'ΊmZ + ft / v^ImZ ,

[βί(tj] t^W)] [6>]

e) / μt{y) Im(x - y)j ~ J^-J I μ{y) Im(x - y);

[Mf] [M]

Consider, for example, part (a). By Lemma 7.4, we have,

1

(/Γ
[Θδit)]

/ vh~ι

By (4.3), the first term on the right-hand side is continuous, and

1 L ' J M

2π(ft+l) ft!
vΛlog

HZ-Ub-a))

For the second term, we realize Θs(t) as a translate of W^. As in Sect. 2, we define
a map

0* : (pi, . . ., pΛ) G M* ^ pi + +ph - A(t) - δ(t) e

φh has degree /z! (generically), so

/ vh 1 Λ dZh+1 A dZh+1 Im Zh+1

I Jl^ r
» ̂ I m Z / ' + i
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If 7 φ k, we will have an 0(1) term which will be annihilated by
so the above is equal (up to a finite term) to

~^ J (φh-1)*vh-1 J ωA+
M*"1 [Mt]

>/ι~1)*v/I-1 J

ί h~ι Pr
x I Im]Γ / ωΛ+i( , ί) -

ωh+1

z0

h~ι r
]Γ /
^ = 1 /o

The outside integral in the first line is just h\ (see Sect. 2). In the second line, we
have from (2.2),

/

Mt

(7.7)

so we are left with

-«/

x Im

p, ί)

p

, ί) Im / , ί) - 2V^ / v^"1

- i W

Σ /
;=i ί

~ (kzo(kzo(t) (7.8)

In order to evaluate the second line, define

h-\

Then Z(ί) = Pi H + PΛ-I + ô - (^(0 + <5(ί)), so Z(ί) G Θ5(f). Now by Proposi-
tion 4.7, we have for 1 < j < h,

lim Z 7 (ί) =/?! + •••+ ph_γ + ZQ - \ {a + b) - zl.

Using (4.3),

l imImZ Λ + i(ί) = - — log
ί-> 0 2π

9{Z + z0 -

where Z = p\ -\ \-pn-i —Δ. Therefore, the second line in (7.8) is asymptotic to

[0]
θ(Z + zo - a)
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Now we use (4.6) and the estimates from Appendix A to show that, up to a finite
term, the top line of (7.8)

_LΛ? J ^ ( _ 2 Λ / ^ ) - L
E(zθ9 b)

£(z 0, a)

, b)

In

E(z0, a)

E(zo, b)

E(zo, a)

Part (a) of the proposition now follows by multiplying by (Im Ω)h^ h+i and using
the expansion of Lemma 7.3. The proofs of the other parts of the lemma are
similar.

We now notice that the only terms in the norm which survive as t —• 0 are

h

{norm} ~ - 2π ]Γ (Im Ω)Jt{(t) ImZj Im(x - y)k

(lmΩ)jl(t)lm(x -y)jlm{x -y)k

7=1

- π(Im Ω

- y ) j I m ( x - y)h+ι

- y)2

h+1 + π Im(x - y)h+1.

The contributions from these terms may be readily evaluated by applying
Lemma 7.6. We omit the computations.

We now turn to the theta terms. Referring to the proof of Lemma 7.6 and
Proposition 4.5, we have

— ί v"
+ 1)! 7 '

:t\(Z+x-y-δ(t))

lθm]

1 1
— 1 /
Λ + 1 Λ ! 7
Λ +

1

-y+Ua + b))

Ub-a))

h+ί
log

E(x, y)E(a, b)

E(x, a)E(y, b)

- 1 A

1~(A + 1)!

h Σ / (Φ1"1)*"1"1 J °>h+l(p, t)Λωh+ι(p, t)
i=1 [M]*-1 [M,]

- log \9\ (Zo + i (b - a)) + log \E(p, y)\ - log |£(p, a)\

+ \og\E{a,b)\-\og\E{y,b)\}.
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Here, we have expressed the expansion in Proposition 4.5 in terms of (p y) instead
of (x, y). We therefore have set Zo = pi + + Ph-i + x — Δ(t) — δ(ή, and from
Proposition4.7, it is seen that Z o -> Z + x — \ (a + b) as t -• 0, where Z e Θ.

We have to evaluate the above expression for the integral of theta and
subtract from it its integral with respect to μt{y) As before, the terms inde-
pendent of y will cancel, so we may ignore them. By (7.7), the terms dependent
on y are

^ J vhlog\9\(Z-y
U(M)\

~Ύ~ 'hTJ^lmΩ^kh+ j

Λωh+ι(p, t)log\E(p, y)\

+ hTίh J v""1 l oS 1̂1 (̂ o - y H-1(« + 6)) - (7.10)
[

A s t -»• 0,

/
ίJ(M)]

^ j log\E(x,y)\-log\E(y,b)\

vh~lι°m{z+x~y)- {7Λί)

[Θ]

To (7.11), we have to add

1
v

[θHή]

[M]

I T -J

j
[MA

Λ<Bfc+i(y,t){7.10}, (7.12)
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by Lemma 7.4. The second term may be written

~2(hTT))hhh I vA log |θ| (Z + i (ft-α))|S|(Z-!(ί>-α))

log\E(x, a)E(x, b)\
h + ί

h 1
h + ί hi

[Θ]

h + ί 2π

i ,2 f \dz\l f \dw\

J |2|2 J H2

x{21og|z-w|+21og|£(α, b)\}.

At this point, we need

Lemma 7.13 For real ε > 0,

Proof. The proof follows by dividing the w-integral into domains \w\ < \z\ and
|w| > \z\ and expanding the logarithm. We omit the details.

By the lemma above and Lemma 7.3, we have

[M]

έ « I Ω ^ . " + 1 ) 2 (log12(/j + I)2 (2π)

27^ l θ g | £ ( Ω ' f c ) | -2(ΛTTF l θ g | £ ( x '
1 1

U(M)]

[Θ]

Theorem (7.2) now follows by adding the contributions from (7.9) to (7.11) and
the above expression: all of the prime forms are replaced via (2.2) by F's, which
are in turn related to the Green's function by (2.16). Through (2.6) and the
expression (5.2) (and Lemma 7.5), we obtain Green's functions from log |5|'s. The
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procedure requires an enormous amount of tedious and uninteresting algebra
which we shall omit.

8. Asymptotics of the Faltings Invariant

As mentioned previously, the Faltings invariant, δ(M), was introduced in [14],
and there it was indicated that the singularity of δ at the stable curves with
separating nodes should be ~ y/—log\t\, but this is erroneous. In fact, δ should
be regarded as a Weil function on moduli up to a loglog term coming from the
period matrix ([23], p. 144), and hence the singularity should be ~ log |ί|. Using
the results of Sects. 6 and 7, we show that this is indeed the case and that the
next order term is simply related to the δ's associated to the stable curves.

Proof (of Main Theorem, see Introduction). Consider first part (a). We shall
use the defining equation (2.15) for the Arakelov metric to find its asymptotics.
Interchanging the limits and using the result of Proposition 6.10, we have

loggj, = 2 {^j log |τ| + \og£ - 4 ̂  log d(z, p) + o(l), (8.1)

for z e Mi Π Mt.
For δ (M^, we use the bosonization formula (5.1), and the asymptotics for the

Green's function and the metric. We have to evaluate

Choose hi of the p, 's and y to be in Mi Π Mt, and hi of the p;'s in M2 n Mt. Then
\detω,(pj)\ -> \detωlι)(pj)\\detωl2){pj)l and | | θ t | |

2 -> H ^ f ||ί>2 | |
2. By counting

the number of Green's functions and metrics, we find

h h

so δ(Mt) = —4 -η— log |τ| + 0(1), as in the proposition. If one carefully manip-

ulates the 0(1) terms from Sect. 6, the splitting of δ is easily obtained.
The proof of part (b) is slightly more involved. The asymptotics of the metric

are obtained from (2.15) and Proposition 7.2. For z away from the punctures,

l 0 8 ώ ~ 6(/ΓΠp l o g τ + l o g g z z " + WΪWlogG(α'h)

2 logG(z,a)G(z,b). (8.3)
h+ί
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Next, from Proposition (4.2), we have up to 0(|ί |),

j9 t)\ det

. . . ωh(pi) —

coι(ph) ... ωh(ph) — (

1

\
ωi(x) ... a>h(x) —.(Ob-a{x)J

The zero order term can be evaluated ([16], p. 24); again to 0(|ί |),

9(b - x - e)S(x -a- e)E(a, b)
I detcθi(pj9 t)\ = (2π) * | d e t ω ^ )!

3(b-a-e)&{e)E(x,a)E{x,b)

where e = p\Λ +ph — a — Δ. For the theta function, we write the argument
as Z(ί) + x — y — δ(t), where Z(ί) is the local section of Θδ(t) defined by

Splitting away the norm, we have

= -πιIm(Z(ί) + x-y) (Im

π Im(Z(ί) + x -

Im(Z(ί) + x -

- - Im βΛ+i,Λ +i (t) - πι Im(Z0 + x - y) (Im 1 Im(Zo + x - .

:, «)£(y, *)

3(Zp + x - \ (a +

, α)£(x, b)

-y+ι

Ί(a + b)) E(x,y)E(a,b)
+ log

Here, we have used (4.3), Proposition 4.5, and Lemma 7.3. Now, by Proposition 4.7,

Zo = pι + + Ph-{(a + b)-Δ = e-\(b-a).

Using this expression, we may simplify the above. Combined with the result for
the determinant, we have, in terms of the parameter τ (note also Lemma 7.5).

log |det ω,(p, , ί) - log | |0 t II ~ - j log |τ| - log 2π + \ log G(a, b)

— ^ l o g | | d | | (pi H h p f c — fc — 2l)

+ log |det a>i(pj)\ - log \x-y\ + O(\x - y\). (8.4)

We now use Proposition 4.1, (8.3), and Proposition 7.2 to determine the asymp-
totics of the remaining factors. Combining these with (8.4), we see that those
involving a and b each combine to contribute \ δ(M). Since the choice of points
was arbitrary, we may let x -> y and note that the remaining terms vanish by
(2.15). This completes the proof of the theorem.
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Appendix A

In this appendix, we collect some elementary estimates for integrals of abelian
differentials.

Estimates outside the annulus are trivial, since poles in the expansions for the
differentials develop only at the node. We therefore concentrate on the region
[z I | ί | 1 / 2 < \z\ < ε}, for a local coordinate z (= z\ or Z2 in Case I - za or z& in
Case II) and ε sufficiently small.

Proposition A.I. Let ω(z, t) be a linear combination of the abelian differentials
(ύj(z, t) for small \t\. Then there is a positive constant C such that for all smooth
sections x, y of the degeneration,

X X

I ω(;ή- I ω( ,0) <-C|t | 1 / 2 log | ί | .

Proof Following reference [16], we expand the differential in terms of the nor-
malizing coordinate 9C for \ΘC\ small:

OO

ojίχ A = \ ^ Q (t)3£nd3£ -f- b (i)dCnd(^J
n=0

where an9 bn are holomorphic near the origin. Choose ε sufficiently small such that
oo oo

]Γ an(t)εn and ]Γ bn(t)εn converge for |ί| < ε2. In terms of the local coordinate

z9 we have (see (3.1))

0 0 A

ω(z, t) = Σ 2~("+l)an(t) (z + t/z)"(l - t/z2)dz + 2-"bn(t) (z + ί/z)" -j, (A.2)

the ± indicating on which half of the annulus z lies (note also that we have
shifted the bn index). Consider the second term in (A.2), the analogous estimate
for the first term being similar. We estimate

\z"-\(ί + t/z2)" - 1)1 < Σ (n) \zΓlp-l\t\v (A.3)
p=l \ P '

for n > 1 (the case n = 0 can be treated separately). Assume for the moment that
n is odd. Then

T n ί
J \dz\ \zn~ι{{\ + ί/z2)" - 1)1 £ Σ \p

-l(|ί|l/2) P = 1

< const. |ί|1/22"ε"-1,
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since we are assuming |ί| < ε2. If n is even, we have to consider the case where
p = n/2:

J \dz\ iz"-1^!+t/z2r - i)i < ( n " 2 ) J

- K n / 2 ) | ί | 1 / 2 l 0 g | ί | ε " " + Σ -
<- const | ί | 1 / 2 log \t\2nεn'x.

The proposition follows from these bounds and the convergence of £ an(t)εn and

Proposition A.4. Let ω\, ωι be differentials as in Proposition A.I, and D a domain
in M{, M2, or M. Then there is a positive constant C such that for all small \t\,

/ ωi Λ a>2(z, t) — / ω\ Λ ωi(z, 0) < <
-C| ί | log | ί | , for Case I,

-C|ί | 1 / 2 log | ί | , for Case II.
MtΠD MtΓ\D

Proof We split the form as follows:

o>i Λ 0)2(2, ί) — 0)i Λ 0)2(2, 0) = [θ)i(z, t) — 0)1 (z, 0)] Λ 0)2(z, ί)

+ o)i (z, 0) Λ [ω2 (z, ί) - ω 2 (z, ή].

Concentrating on the second term of (A.2) combined with (A.3), we must estimate

\dz\2 Iz^Hl + t/z2fzm-\(l + ί/z2)m - 1)|

^ 2 π Σ Σ (n) (m) J
< -const. \t\n-? log \t\2m+nεm-1 + const. \t\2m+nεm+n-2.

If n > 1 we have the desired estimate by the convergence of ^ an(ήεn and
Σ bn(t)εn. One can also show that the first term in (A.2) combined with (A.3)
gives the desired estimate (essentially the case n = 1 above). We therefore have a
bound

/
O)i Λ 0)2 (Z, t) — O)i Λ 0)2 (Z, 0)

MtnD

for some positive constants C", C". Now from the expansions of the differentials
(3.2) and (4.2), it follows that bo(O) = 0 for Case I and φ 0 for the expansion of
o)/j+i in Case II. The proposition follows immediately.

Appendix B

We would like to present an application of the previous results in the special case
of a surface of genus two. The boundary of the moduli space consists of singular
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curves, the components of which are elliptic. For elliptic curves, explicit formulae
for the Arakelov-Green's function and δ(M) are known (for genus two, see
references [6,8]). Set h\ = h2 = 1 then for a torus of modulus, τ M = C/Z + τZ
(see [14]; note the difference in the definition of || ||),
a) log G(z, w) = log G(z - w, 0) = log ||d|| (z-w + Δ)- log \η\ (τ),
b) gzz- = 4π 2 |^(τ) | 4 , (B.I)
c) δ(M) = -241og \\η\\ (τ) - 81og2π,

where A = — — , η is the Dedekind eta function, and \\η\\ (τ) = (Imτ)ι^4\η(τ)\.

We would like to consider the bosonic (d = 26) string integrand (for a review,
see [12]). In terms of δ(M), this can be expressed (h > 1) [32],

Π ^ U ^ yj) / 3h-3

(Σ'w-'J
Here, the 0, 's are the quadratic differentials, and the p/s are 3h — 3 arbitrarily
chosen points. In the genus two case, we may take

Then one can show that for the measure,

|0i Λ φ2 Λ φi\2 = const. \dΩn Λ dΩ12 Λ dΩ22\2.

We fix the constant of proportionality equal to one. Suppose we choose pi,
P3 € Mi, p2 € M2. Then by (B.I) and Propositions 3.2, 6.10, and 8.1,

G(pu Pj) - | ίΓ 1 / 2(2π)- 1Gi(pi, p 3) 2G 2(p 2, 0)2 ^ (τOΓ 1 \η(τ2)Γι

exp I 5 ~ It

and the remaining factors are continuous and split as ί -* 0. Thus, we have

?δ) f k φ m ( d e t I m Ω ) 1 / 2 W]2

| ίΓ 4 (2π)- 2 8 (Imτ 1 )- 1 3 (Imτ 2 )- 1 3 |^(τ 1 )Γ 4 2 \η(x2)\-χ

Gi(pi,p 3) 2 i|gill2( 2

P3, 0)4 |ωi(pi, 0) — α>i(p3, 0)|2 G2(p2, 0)2

Now we specialize to the case where pi = 1/2, p 3 = τi/2. We also use (B.I) to
rewrite Gu G2, and the fact that [27]

P 1 | | 4 ( τ 1 / 2 ) | | θ 1 | | 4 ( l / 2 ) = 2 4 | f ? ( τ 1 ) | 1 2 | θ 1 ( 0 ) Γ 4 ,
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to obtain for the above expression

9-41 Q /γγu8
-13 \»u M-48ι^/^ \ι-48 Δ I^IWI

, 0)P "
Now for the canonical differentials of the second kind on a torus, we have ([16],
p. 35),

0) - ωi(τi/2, 0) =

where p is the Weierstrass function. Furthermore, at these particular points, we
have ([30], p. 286),

2 ^ 8

Putting these results together, we see that the two-loop string integrand factorizes
as Ωn ~ 2πίt -> 0,

string integrand -> (2π)~28 -τ^r (Imτi) (Imτ2)

x lower order terms.

We see that the middle line is the product of the two one-loop integrands [29],
and the top line may be interpreted as the insertion of a tachyon. This result has
previously been obtained by realizing the genus two integrand as [5,25] (see also
[3,7,9]),

\dΩn A dΩn Λ dΩ22\
2 |χioΓ2(det Im Ω)~13,

where χio is a modular form of weight 10 defined in terms of theta characteristics.
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Note. We would like to point out that the coefficient Mfi\hιjh appearing in part (a) of the Main
Theorem has been previously announced by Bost in lectures as the IAS and by Jorgenson in [21].
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