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Abstract. We define non-local conserved currents in massive current algebras in
two dimensions. Our approach is algebraic and non-perturbative. The non-local
currents give a quantum field realization of the Yangians. We show how the non-
cocommutativity of the Yangians is related to the non-locality of the currents. We
discuss the implications of the existence of non-local conserved charges on the
S-matrices.

1. Introduction

Conformal field theories describe two dimensional critical systems but (if there is
no cross-over) scaling limits near criticality are described by massive theories.
The ultraviolet fixed points of the massive theories are the critical CFT’s we
started with. Recently part of the algebraic CFT framework [1, 2] has been
pushed to the massive theories. This has mainly consisted in the identification of
integrable perturbations of conformal field theories and of their S-matrices [3], in
the comparison of these perturbations with known integrable models and their
restrictions [4-7], in the lift of CFT moduli diagrams to the moduli space of
integrable models [8], etc.....

Moreover non-local conserved currents have been recognized as being hidden
in massive integrable perturbations of CFT’s [8-10]. On-shell they lead to
algebraic equations which determine the factorizable S-matrices. There are two
kinds of non-local conserved currents: i) Either the associated conserved charges
have fractional Lorentz spins like in the (fractional supersymmetric) sine-Gordon
models [8]. In these cases the factorizable S-matrices are trigonometric solutions
of the quantum Yang-Baxter equations. ii) Or the non-local conserved charges
have zero spin. In these cases the factorizable S-matrices are rational solutions of
the Yang-Baxter equations.
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In this paper we describe the simplest cases: namely the cases of non-local
conserved charges of zero spin. To be precise we will show that in massive current
algebras there are hidden quantum non-local conserved currents which are off-
shell realizations of the Yangians [11]. In order to have an exact and non-
perturbative approach we define the theories algebraically by imposing con-
straints on the operator algebras. This approach parallels what has been done in
conformal field theories. The operator algebras we will be interested in are the
massive current algebras. They describe perturbations of affine Kac-Moody
algebras [12,13]. The non-local conserved currents are defined non-
perturbatively in terms of the generators of the massive current algebras. They
generate quantum non-commutative and non-cocommutative algebras. We show
how the non-cocommutativity and the comultiplications are related to the non-
locality through the braiding relations satisfied by the non-local conserved
currents. We illustrate how to deduce algebraic equations for the S-matrices using
the non-local conserved charges. The successive steps involved in the construction
are described in Sects. 2a—2h.

We stress that the main point of this paper is not that we found the Yangians
but that non-local conserved currents can be non-perturbatively defined. This
promotes them to a central position in the algebraic games, alternative to the
quantum inverse scattering methods, which are involved in the two-dimensional
integrable models. This paper is mainly dedicated to illustrate how to deal with
non-local currents.

2. Non-Local Conserved Currents in 2D Massive Current Algebras

We show how an algebraic approach to the 2D massive current algebras allows us
to deduce non-perturbative results. This statement is illustrated with the exact and
non-perturbative construction of non-local conserved currents in massive current
algebras. In order to clarify the logic of the approach we formulate the
construction in eight successive steps labeled from (2a) to (2h).

2a) The Classical Cases

Before plunging into the quantum cases let us first describe the classical models we
have in mind. These are two-dimensional geometrical models. They are dealing
with a one-form, denoted by J(x), valued in a semi-simple Lic algebra ¥:
J(x)= Y Ji(x)t"dx*, where t*,a=1, ...,dim%, form a basis of 4. By definition of

a
the classical models we assume that the equations of motion impose to J(x) to be a
curl-free conserved current:
d+*J=0 and dJ+][J,J]=0,

1
0,J%x)=0 and 0,J%x)—0,Jux)+ fJT(x)J(x)=0. @

! We suppose the t* orthonormalized. We use the convention: [#%, t*] = f**t*, where f* denote
the structure constants of ¥
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The equations of motion (1) admit a Lax representation. Namely they are
equivalent to the zero curvature condition, [2 ,(4), 2,(A)] =0, for the connection
2,4,

2

2,A)=0,+ lzl J(x)+ /1 (%) 2

The hamiltonian structures for these models have been discussed in [14].

The geometrical character of Eq. (1) leads to the definition of an infinite set of
conserved charges. We stress that these conserved charges are non-local. They can
be defined in two different but equivalent ways: i) either one uses the transfer
matrix defined from the connection Z,(4) as a generating function for the non-local
conserved charges as in [15], i) or one uses a recursive definition of the conserved
currents as explained in [16]. In the following we only need the two first conserved
currents. The first one is the local one-form J®4(x)=J4(x). The second one,
denoted by JM(x)= Y JVi(x)t"dx*, is defined by:

JO=xJ+3[,6] with dp=xJ,

JUx) =8, JYx)+ 3 fPTux)$(x)  with  8,¢x)=¢,,J3(x). ©

The currents J4(x) are non-local because ¢(x) is non-local: ¢(x)= j * JC,

where % is a curve ending at the point x. Using Eq. (1) it is easy to check that the
currents J (D4(x) are conserved: 0,JV4(x) =0. The currents JV4(x) are the currents
we want to quantize.

2b) The Massive Current Algebras

First let us make few comments about the general framework in which the massive
current algebras fit. A massive QFT is characterized by its set of operators 0,(x)
which close by OPE: 0,(x)04(0) ~ Z C4(x)0.(0). The operators ¢,(x) are defined

by their sets of correlation functlons The ultraviolet limit of a massive QFT is a
conformal field theory. The two basic hypotheses that we are going to make are the
following:

o) All the operators @,(x) have a smooth ultraviolet limit which we denote by
0z(x);
e o) the correspondence between the operators ¢ (x) and 0¥(x) is one-to-one.
These hypothesis are implicit in the approach to massive QFT from perturbed
CFT as advocated by Zamolodchikov [3]. In practice these hypotheses allow us to
label the fields of the massive theory by the fields of the ultraviolet CFT. Moreover
the fields 0,(x) of the massive theory have the same scaling dimensions and the
same spins as the fields 0¥(x) of the ultraviolet CFT. Note that not all the massive
theories fulfilled these two properties. Standard counter-examples are free massive
bosons or O(n) models. In these cases the two properties are spoiled by infrared
divergences and the perturbing fields are not fields of the ultraviolet CFT’s.

Having these preliminary remarks in mind we can now attempt to define the

massive current algebras.

2 Because we do not gain more information by adding derivatives of the correlation functions we
understand the data of the operators 0),(x) as equivalent to the data of all their multi-derivatives

0,,04(x)
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Definition. A massive current algebra is an operator algebra (in a Lorentz and PT
covariant quantum field theory) generated by an operator one-form
J(x)= Y Ju(x)t°dx* valued in a semi-simple Lie algebra ¢ which satisfy the

following properties:

(i) The currents Jj(x) are local and conserved: 0,J5(x)=0.

(i) The ultraviolet limit is a smooth limit. Moreover the ultraviolet limit of the
currents Ji(x) are ¥V Kac-Moody currents.
(iii) The OPE’s of the currents J3(x) J5(x) close only on the ¥* current-module.
Le. the OPE’s of the currents only involve fields 0 (x) (and their multi-derivatives)
whose ultraviolet limit are fields in the ¢ [1]®[1]-module.

We believe that these conditions are enough to characterize a massive current
algebra. But obviously this statement needs further studies. However in the
following we will use hypotheses weaker than these three conditions. This implies
that part of our results will remain valid in more general contexts.

A hidden consequence of this definition is that the massive current algebras
actually describe perturbations of %V affine Kac-Moody algebras by the
perturbing fields

Ppert ()= X Ju(X) Ju(x).

In any %-invariant perturbations of affine Kac-Moody algebras, an operator
algebra generated by a ¥-valued conserved current will exist. However we prefer to
keep the name “massive current algebra” for the definition we gave above because
in the other cases the OPE’s of the currents will mix the ") current-module with
the other ¥¥ modules.

2c¢) Liischer’s Theorem and Its Applications

In this subsection we show that the quantum currents Jj(x) generating a massive
current algebra are curl-free:

0, JYX) =8, J(x)+ £ Tu(x) J(x): =0, )

where the double dots denote an appropriate normal order. The proof of Eq.(4)
relies on a slight extension of theorem due to Liischer [17].

Liischer’s theorem describes the OPE’s between currents in a massive current
algebra. Liischer found it while studying the O(n) models which do not satisfy the
conditions exposed in Sect.2b. However, as we will explain, part of its results
remains valid in our approach. Liischer’s theorem can be stated in the following
way?:

Theorem 1 (Liischer). Let Jj(x) be the conserved currents generating a massive
current algebra. Suppose that the conditions (i) and (iii) of Sect. 2b are fulfilled. Then
we have the following OPE’s for x*<0:

STux)J3(0)
=(C 1x211,”x9 +C 2x2(x”5€ +x,08) + C3x,x,x%) (Jo(0) +3x°0,J5(0)  (5)
+ (D x4(x,07 — x,05) + D, x°(x,08 — x,02)) (0, J5(0))
+ O()x|*0).

3> We used the following space-time conventions x*=(x’=t, x!=x); x*=x+¢; and
ds? =, dx"dx’ =dt* — dx*
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The coefficients C; and D; only depend on x2. Furthermore they satisfy the
following differential equations:

xzd;jczC2=—%(Cl+5C2), (6a)

; x? EfC_Z(CI +Cy+C3)=—(C,+C,+2Cy), (6b)
an :

x2 E%Dl_ D, i;icl, (7a)

xzd—i7D2=—D2— %2 C,, (7b)

X2 %(DI+D2)= %2 Cs. (7c)

We just sketch the proof. By hypothesis (iii) the left-hand side of (5) decomposes
on fields which are multi-derivatives of fields whose ultraviolet limit are fields in
the ¥V [1]®[1]-module. Moreover because the currents have scaling dimension
one and because we are evaluating the OPE up to order O(|x|* ~°) we are looking
for fields having dimension zero, one or two. Global ¢-invariance imposes to these
fields to belong to the adjoint representation of 4. The only fields satisfying all
these4requirements are Jg(0) and 0,J5(0). Thus in a massive current algebra we
have*:

JTUx)T0) = 62,(x) J(0) + 234(x) (0, J5(0) + O(x|' ~°). ®

The rest of the proofis as in Liischer’s paper. The conservation law for J;, allows us
to choose Z;%(x) to be traceless: 7,,2;3x)=0. Locality, PT-invariance and
Lorentz covariance determine %%,(x) and 2;%(x) as in Eq. (5). The conservation law
for the currents implies the differential Egs. (6) and (7).

The differential Eqs. (6) and (7) do not specify uniquely the unknown
coefficients Cy(x?) and D(x?). But we have the following theorem °:

Theorem 2. Let Jy(x) be as in Theorem 1. Suppose moreover that the U.V. limit is
smooth (hypothesis (ii) of Sect.(2b)), then the leading behavior of the functions
C{x?) and D{(x?) are:

€)= — Cyx) = % L 0(x27), ©a)
Cox?) =0+ (1 ~>-0), 9b)
Dy(x%)= ~Dix) = 1 log(— M)+ (x|~ ), )

where A is an (uninteresting ) constant depending on the normalization of the currents
and M is a (meaningful) constant related to the mass scale.

4 Note that we used hypothesis weaker than hypothesis (iii) of Sect.2b
5 At this point we differ from Liischer because, as we already said, he was considering the O(n)-
models whose U.V. limits are not smooth



196 D. Bernard

The proof of the Theorem 2 goes as follows. The smoothness of the U.V. limit
implies the chiral splitting of the leading terms of the OPE’s (8). This translates into
the constraints: % _ =%, =%'_=0. In their turn they imply the following
algebraic relations among the coefficients C(x?): C, + C, = C; =0. These relations
together with the differential equations (6) completely determine the functions
C(x?). The functions D,(x?) are then unambiguously defined (up to the mass scale
parameter) by the differential equations (7).

Other current OPE’s can be deduced using the same techniques. It is
worthwhile to write explicitly the OPE’s (5) while taking the relations (9) into
account:

A
[T 0= —5 J30)+0(x7°), (10a)

LIV~ 0)
= — % log(M2x+x_)(5+J“_(0)—5_ .I'f+(0))-|-(9(|x|1 _O). (10b)

The curl-free equation (4) is an immediate consequence of Eq.(10b). The
normal order in (4) is defined in such a way to cancel the logarithmic divergence in
fabc Jb Jf,

R‘écall that, as we said above, the massive current algebras are actually
perturbations of ¥ affine Kac-Moody algebras by the perturbing fields @, (x)

=Y Ju(x)J5(x). Thus massive current algebras are also characterized by the level

K (;f the affine Kac-Moody algebras. However the OPE’s (10) and the curl-free
equation (4) are model independent in the sense that they do not depend on the
level.

2d) Quantum Definition of the Non-Local Conserved Currents

Having proved that the quantum conserved currents satisfy the quantum form (4)
of the equations of motion (1), it is now easy to define the quantum conserved
currents J)(x, t). We define them by a point splitting regularization (& > 0):

J(I)Z(x’ t)= 6]11;1+ J‘“Z(x,tl5) ,

11
JOUx, ]0)=Z(0)e,, J3(x, 1) + 3 fT(x, )p(x — 3, 1), an
where ¢(x,t), which satisfies d¢°= * J, is defined by:
(x, t)y= [ =J°. 12)
L

The contour of integration %, is a curve from — co to x with the convention drawn
in Fig. 1. ¢(x, ) depends weakly on the contour &, because * J is closed: d * J =0.

In Eq. (11) Z(d) is a renormalization constant that we now determine by
requiring that JV4(x, t) are finite and conserved.

Proposition. The non-local currents JV4(x,t) are finite and conserved (0,JV%=0)
if and only if ]
Z(0)= 3 log(Mé)+ 0(16)* ~9). (13)
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cx—G
J\/\N\/\ °
-0 (x-8,t) (x,t)

Fig. 1. Position of the string €, in the definition (11) of the non-local currents

The proof is the folhowing. First it is easily seen from Eq. (10b) that J™4(x, t) is
finite whenever Z(6) = 3 log () + constant. The constant is fixed by demanding the

conservation law for J®%. [The other subleading terms in Z(5) are meaningless.]
Using Eq.(12) we deduce,

0, Vix,t10)=1%£,,[Z(8) (0I5 — 0,72 (x, )+ f T, ) Jy(x — 6, 8)] . (14)
From Eq. (10b) we learn that 0, J(x, t|6) vanishes when -0 if Z(0) = ;— log(M$).

2e) The Braiding Relations

The non-local character of the currents J%(x,t) is encoded in their braiding
relations. The latter are described by the following proposition.

Proposition. Let &(y,t) be a quantum field local with respect to the currents Jy(x, t).
Then it satisfies the following equal-time braiding relations:

JV4x, )P(y, 1) = D(y, 1) JVe(x,1);  for x<y (15a)

JDax, )B(y, t) = B(y, 1) JVa(x, 1) — % f*QUB(y, ) Jifx, 1), for x>y,
(15b)

where Q% are the global charges associated with the local conserved current Jb. (See
the more precise definition in Eq. (19) below.)

We recall that the locality of &(y,t) with respect to Jy(x,t) means that
Jux, 0@y, )= D(y, ) Ju(x,1); for xSy. (16)

The proof of the braiding relations (15) is the same as the proof of the braiding
relations for disorder fields. It only relies on the way to deform the contour €,
entering in the definition of the currents J)(x, t) . The relative positions of the
contours %, depend if J?)(x, ) acts first or second. (Remember that product of
operators are defined by time ordering.) Let us first consider the relation (15a). The
position of the contours relative to the left-hand side and to the right-hand side of
Eq.(15a) are drawn in Figs.2a and 2b. One sees that there is no topological

¢ Braiding relations are purely topological. So we don’t bother to keep the cumbersome notation
due to the point-splitting regularization. It may easily be seen that the point-splitting procedure
does not modify the braiding relations
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Fig. 2. a Position of the string %, in the product J*)(x, £)® ,(y, t) with x < y. b Position of the string
€, in the product @ ((y,:)J Y (x,t) with x<y

obstruction for moving the contour from the configuration €, (Fig.2a) to the
configuration ¥ (Fig.2b). This proves the relation (15a).

Let us now consider the relation (15b). The different configurations for the
contours ¥, are drawn in Fig. 3. One sees that there is an obstruction for moving
the contour €, Fig.3a, onto the contour %, Fig.3b. This implies non-trivial
braiding relations. All the non-locality of the currents JV%(x,t) is concentrated in
the fields ¢(x,t), Eq.(12). For x>y the exchange relation between ¢°(x,t) and

@(y, 1) is:

P°(x, )D(y, t)= EL | * @00, 0= zei(y) S0+ |+ T @000
=06(2(y, 1) + (3, )P (x, 1) - 17

In the last equation we have used the definition of the global isotopic charge Q5
[Eq.(19) below] and the fact that the fields J; and @ are local. Plugging back
Eq.(17) into the definition of the non-local current JV¢ and using once more the
locality between the currents Jj and the field @ proves the braiding relations (15b).

2f) The (Non-Local) Conserved Charges

Here we give the definition of the conserved charges. We make the distinction
between charges acting on the states and on the fields’. We show how ones are
graded (in a generalized sense) commutators of the other ones. We derive the
complication from the braiding relations.

—M '% X
O =),
-0 C;

] X

:-\-’\/\/-—\_]

[14] C;

Fig. 3. a Position of the string %, in the product J(x, t)® ,(y, t) with x > y. b Position of the string
€. in the product @ ((y,t)JMN(x, 1) with x>y

7 I thank G. Felder for his help in clarifying these points
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Yiy)

Fig. 4. Contours used in the definition (19) of the charges

Given conserved currents the associated charges are defined by integrating
their dual forms along some curves. The charges depend weakly on the contours of
integration because the dual forms are closed. The global conserved charges acting
on the states of the physical Hilbert space are defined by choosing the domain of
integration to be an equal-time slice. Namely for the currents J®4(x, 1):

Qi= | dxJ®ix,1). (18)
t=cst
The charges acting on a field @(y) located at a point y are defined by choosing the
contour of integration y(y) from — oo to — oo but surrounding the point y:
o= | o T (2)9(y). (19
zey(y
The contour y(y) is drawn in Fig. 4. There we have drawn the position of the string
&, used in the definition of J1)(z).

When the field &(y) is local with respect to the conserved currents, the contour
y(y) can be closed and deformed into a small contour surrounding the point y. In
this case the integral (19) picks up the residue of the OPE between the currents and
the field. This applies to the currents Jj(x) and to the charges Qf. Moreover
deforming the contour y(y) proves that

o(2() = Q6 2(y) — P(1)Q5 - (20)

When the currents and the field @(y) are not respectively local the situation is
more subtle. The contour y(y) can no more be closed and the action of the charges
on the field is no more a pure commutator. For the non-local conserved currents
J1(x) the relation between the global charges (18) acting on the states and the
charges (19) acting on the fields is the following:

Q1(P0) = Q1 P()— P()Q] +1 [ QYLD - 21)

The proof of Eq. (21) consists in decomposing the contour of integration y(y) into
the difference of two contours y, and y_ as shown in Fig.5, and in using the
braiding relation (15b) when the current J%(x) is on y_.

Let us now describe the comultiplications. We denote them by 4. The
comultiplications just encode how the charges act on a product of fields, say
D,(y)@,(y,). ... In the case of the charges Qf and for fields &,(y,) which are local
with respect to the currents Jj(x) all the contours can be deformed without trouble
and we have:

o(D1(y1)P,(y2) = Qo(P1(y 1)) P,(y2) + P1(y1)Q0(D2(y2)) (22a)
or equivalently,
405=05®1+1®05. (22b)

It is the standard Lie algebra comultiplication as it should be.
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Fig. 5. Decomposition of the contours used in relating the actions of the charges to graded
commutators

In the case of the non-local charges Qf the standard comultiplication is
deformed due to the non-trivial braiding relations between the non-local currents
and the fields.

Proposition. Let ®,(y,) be quantum fields local with respect to the currents J;(x).
Then we have the following comultiplication for the non-local conserved charges Q% :

U1 (1) P(y2) = Q1(P1(y1))P2(y2) + D1(¥1)Q1(P,(y,)
—3 104D, (y1))26(P(y2)) (23a)

or equivalently,
401=01®1+1®Q7 -1 /0t ® Q5. (23b)

Equation (23a) can be proved by decomposing the contour y, , used in defining
the action of Q¢ on the product @,(y,)®,(y,). The contour y,, is surrounding the
two points y, and y,. It decomposes into the sum of two contours y; and y,
surrounding y; and y, respectively. But on the contour y, we have to use the
braiding relations (15) in order to pass the string ¢, through the point y,, see Fig. 6.
Equation (23) can also be proved starting from the graded commutators (21).

2g) The Algebra of the Conserved Charges

Here we show that the (non-local) conserved charges generate a non-abelian
extension of the two-dimensional Lorentz algebra. This is possible since the
Coleman-Mandula theorem [18] breaks down in two dimensions because the
comultiplication of the symmetry algebra could be non-trivial. In two dimensions
the Poincaré algebra which is generated by the momentum operators P, and the
Lorentz boost L is abelian. The momentum operators P, are the global charges
associated with the conserved stress-tensor T,,(x):0,T,,(x)=08 The Lorentz
boost L is the global charge associated with the conserved boost current:

L,(x)=38%(x, T, 0(%) — %, T, (X)) . (24)

8 In massive current algebras the stress-tensor can be expressed in terms of the currents but we
will not need such a relation
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Fig. 6. Decomposition of the contours used in the proof of the comultiplication (21)

On the local fields L acts as a commutator:

L(®(y)) = Lo(y)— (y)L. (25)

The currents J%x), which are one-forms, transform covariantly under Lorentz
boost:

L(JT3(x)) = 3 €,5(x%0° — x70°) J3(X) + &, Jo(x) - (26)

Hence J%(x) have Lorentz spin +1.
The (non-local) conserved charges satisfy the following algebraic relations:

[Q6, Q?)] =fach‘6 s (27a)
[Q5, Q1= 105, (27b)
[L,Q06]1=0, (27¢)
[L0f1=— 4 g3, (27d)

where C 4; is the Casimir of ¢ in the adjoint representation in the normalization
defined by Eq.(27a). This normalization corresponds to A= Cz""’ Eq. (10).
The relations (27) are part of the defining relations of the semi-direct product of
the Yangians Y(%) by the Poincaré algebra. Only the Serre relations are missing.
(They are more difficult to prove because they involve commutation relations
between the non-local charges.) Moreover the comultiplications (22b) and (23b)
are the comultiplications in Y(%). [See the appendix for more details on Y(9).]
The normalization coefficient in Eq. (27d) is not arbitrary. It is the normali-
zation which ensures the crossing symmetry of the S-matrices.
. The two first relations are easily proved because, as usual, the commutation
relations follow from the OPE’s. The only delicate point is to check that the

relation (27a) effectively corresponds to the normalization A= %"7’;’ This follows

from the OPE’s of the currents using hm L 3 l_igz =ind(x). The relation (27¢)
follows from Eq.(26). =0




202 D. Bernard
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(x—6,fw T e (x-ﬁ,fW

Fig. 7. Rotation of 27 of the non-local currents

The relation (27d) is more interesting. A way to prove it could be to use the
commutation relations and the OPE’s described above, but there is a more
geometrical way of doing it. It consists in imposing a Lorentz boost £, of angle
(i2m) to the non-local currents J4(x,?). It is a rotation of (2r) in the Euclidean
plane. Because the currents J™4(x, r) are non-local this transformation does not
act trivially on them: the string ¢, winds around the point x as in Fig.7. By
decomposing, as it is shown in Fig. 7, this windy contour into the sum of a
contour from — oo to x plus a small contour surrounding x we obtain:

Rond Vi, ) Ryt = T Vi(x,8) =3 f QI 1) (28)
Integrating the time-component of Eq. (28) over an equal-time slice gives
ganligz‘nl =01 _’}CAdeg . (29)

in agreement with the relation (27d) because £,,=exp(i2nL).

We now illustrate these commutation relations by checking them on the
primary fields. A primary field @ ,(y,t), which we suppose to be valued in the
representation 4 of %, is defined by its OPE with the currents Jj(x, t): a field @ 4(y, t)
is said to be primary if it is local with respect to Jj(x,t) and if it satisfies the
following OPE’s:

i x —
Tx)@,0)= 75 (T°0,) (0)+0(x| ™). (30)
The equal-time commutation relations between the currents Jj, and the field &
can be deduced from the OPE’s (30):
[Jo(x, 1), @ 4(y, )] =0(x — y)(T*® ) (¥, 1),
0(Pa(y; ) =(T P 4(y, 1)).

Here T° denote the matrices representing 4. Equation (30) also implies that @ ,(y, t)
commutes with J{(x, t).
The action of Q4 o1t @ ,(y,t) is deduced from Egs. (21) and (31):

1P, 0)=[01, P40, O]+ 3 fUT°P 43, ) Q% (322)

(1)

with
0~ +
(032,001 = 5 /™ ( 3 dee dx) By—%0(TP)(y,1).  (32b)
If we act with the Lorentz boost L we have:
L(Q1(D 4(y, 1) = QI (LLP 4(, 1))
bore (l - | dx) [LJA—x%01(T0)(3:0).  (33)
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Using Eq. (26) and integrating by part gives:
L(Q1(D 4y, 1)) = Q1A (v, 1))
o™l OR—8,0-BO+LONTR) 00 (4

Finally using the defining OPE’s (30) for the primary fields we find:

C...
L(QU(D 4, 1)) = QULAD (> 1) — iﬁ (T® 4y, 1) (335)

Equation (35) proves the commutation relation (27d) on the primary fields.

2h) Action on the Asymptotic States

We now describe how we get non-perturbative results on the S-matrices by
looking at the action of the non-local charges on the asymptotic states. The
constraints on the S-matrices we obtain arise by writing the commutation of
the S-matrices with the non-local conserved charges. In the cases we are dealing
with, these commutation relations will simply be the exchange algebras for the
Yangians Y(9).

The constructions explained in Sects. (2a) through (2g) are model-independent.
Different models are distinguished by their field content and spectrum of massive
particles. According to our hypothesis, the fields are in one-to-one correspondence
with fields in the conformal WZW theory. Thus the allowed representations of the
massive current algebras are in correspondence with the integrable highest weight
representations of ¢! at level K. This also implies that the possible Lorentz spin of
the particles corresponds to the conformal dimensions of these conformal fields.
However not all the fields in the massive theory create asymptotic particles and not
all the fields which create particles are affine primaries. Which fields do create
particles is a question that cannot be answered by the formalism presented here.
However from results of the representation theory of the Yangians Y(%) [11], we
know that the fields which create asymptotic particles in the fundamental
representations 4; of ¢ are primaries only if the Kac label [12] of 4; is one. For the
level K=1, based on known results of the Gross-Neveu models, we expect the
massive particles to be associated to the fundamental representations. For higher
K the SU(2) models have been solved [8] and the conjectured spectrum of massive
particles suggests that the particles are still associated with the fundamental
representations, however with the distinction that they are now associated with
fields that intertwine the fundamental representations with the other integrable
highest weight representations.

The way to deduce the action of Q% on the asymptotic states is clear. It is
enough to compute the action on the one-particle states because we already know
the comultiplication. First we identify the (asymptotic) fields, called @ ,, which
create the asymptotic particles. Because of the global #-invariance the fields @,
belong to some representation A of the Lie algebra 4 °. The antiparticles belong to
the conjugated representation A* and they are asymptotically created by the fields
& ,.. Secondly because the local conserved currents Jj(x) appear in the OPE’s

® The fields &, may carry other quantum numbers as they do in the FSSG models [8]
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between @, and & 4. they can be written as (generalized) normal ordered products
of the two conjugated fields @ , and @ ,.. Finally once we have the expression of the
currents in terms of @, we can plug it in the definition (11) of J*)(x) and use it to
compute the action of Q.

We illustrate this general strategy by discussing simple examples. We will
consider the cases in which the asymptotic fields are fermions. The SO(N) Gross-
Neveu models are concrete examples corresponding to this hypothesis: they are
equivalent to the SO(N) massive current algebras at level K=1. In the SO(N)
Gross-Neveu models the asymptotic fermions are Majorana fermions taking
values in the vector representation of SO(N). We choose these examples mainly in
order to simplify the exposition.

Let us now do the fermionic computation '°. We denote by ¥¥(x), k=1, ..., N,
the asymptotic Majorana fermions and by y*(x) and y*(x) their components:
Pk=(y*, ip*)t 1. Asymptotically when t— — oo the in-fermions are free and the
fields ¥¥(x) can be decomposed as follows:

P =)/m ] 2 2 g0 1 b0 0],

- (36a)
do e~%2 ; .
Px)=)/m| e [b*(0)e ~i®» — pK(@)e + it 0]
with
{60), b™(6)} =4m6""5(6—0), (36b)

where (p, x) = &t — px and (e =mch0, p=msh0) are the energy and the momentum of
the fermions of mass m and rapidity 6. The asymptotic in-fermions satisfy the Dirac
equation (ig —m)P*=0. A similar decomposition holds for the out-fermions (when
t— + o0). In order to avoid cumbersome notations we will deal only with the in-
fermions and will suppress the “in” indices.

The currents J%x) are bilinear in the fermions:

Jox)=4%: P(x)y, T*¥(x):. (37

Here the double dots denote the fermionic normal order. The T*s form the N
dimensional representation of SO(N): T° = T* with (T*) = 5™ — 5'"™5*". We have
normalized the currents such that the fermions are primaries in the sense of
Eq.(30). In particular we have:

Q5(P(x)=(T"¥(x)). (38)
This normalization corresponds to A= %—‘7';_"—" in Eq. (10). In our normalization for

the T*"s, which is not the standard one, C,,;=4h* with h* the dual Coxeter
number of SO(N). Also the mass scale M in Eq.(10) is related to the mass m of the
fermions by M =1me€ with C the Euler’s constant.

Because the vacuum is annihilated by all the charges the value of the
commutator (32b) on the vacuum is the value of Q¢ on the one-particle states.

10 1 thank A. Leclair for suggesting to me this simple way of doing the computation
01
11 We use the following conventions for the Dirac matrices: {y*,y"} =25*" with y°= and

10
0 -1
1_
(i)
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Using the Wick theorem we find:

(05 010> = 44 " dxe) el + 70, (T¥r—~ )0 (9

with g(x)=sign(x)and 4(x)= 21—15 K o(m|x|), where K , is the 0'® Bessel function [19].

Using the Fourier decomposition (36a) we obtain the formula for the action on
one-fermion states'?:

(61(0)10)=— A (T(0)]0)). (40)

The action on many-fermion states follows from the comultiplication (23b) and
Eq.(38).

In the SO(N) Gross-Neveu models all the previous computations are
summarized as follows:

Q5 =T", (412)
O(N —2)
ki J\UY T4 ok
1= P (), (41b)
407 =0Y®1+100Y - X (T"RT" - T"®T™), (41c)

where the T*s form the vector representation [] of SO(N): (T*)™" = kmg'n — §'mokn,
The charges Q% and Qf defined in Eq. (41) satisfy the algebra (27) because on-shell

0 . . .
the boost operator L acts as %0 They define an irreducible representation of the

SO(N)-Yangians in the vector representation of SO(N). Equation (41c) is the
comultiplication in Y((SO(N)). (See the appendix for more details.)

Let us now discuss the implications on the scattering of two fermions of
rapidities 8, and 8,. Denote by S(6,,), ,, =0, —0,, the S-matrix of this process.
S(0) acts from [(J®[] into itself. As an SO(N) representation the tensor product
J® [ decomposes into (H +5K+ @). We denote by P_, P, and P,, the respective
projectors. By SO(N)-invariance, S(f) decomposes on these projectors:

S(0)=0 (0P, +c_(0)P_+a4(0)P,, 42)

where ¢,(0) are scattering amplitudes.
The non-local charges Q% are conserved. Therefore they commute with the S-
matrix. For the two-fermion scattering it implies:

(4 2;1Q§1)§(61 )= §(912) (4 1;2Q’i1) > (43)

where S(0) = PS(6) with P the flip operator: P(x®y) = y®x. The comultiplication
is defined in Eq. (41c). The indices 1 and 2 refer to the rapidities 6, and 0,. Equation
(43) is the exchange relations for Y(SO(N)) in the vector representation. Equation
(43) leads to algebraic relations between the scattering amplitudes:

o_(0) ON-2)+i2n o0 O+in
0.(0) ON-2—i2n" o6_(0) O—in’

(44)

- + o
12 We used the following integral: [ dxK(x)sin(xsh(9))=6/ch(6)
o
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Equations (44) determine S(6) up to an overall function which could be fixed by
closing the bootstrap program [20]. Note that the S-matrix (42) is (up to an overall
scalar function) a rational solution of the Yang-Baxter equations. This could have
been guessed from the beginning since the non-local conserved charges have spin
zero.

Hence we have been able to deduce non-perturbative results for the S-matrix
by using the exact non-local conserved charges.

3. Conclusion

For the readers who have been courageous enough to go all through the eight steps
of Sect. 2 it is now clear that non-local conserved currents can be exactly defined.
They give non-perturbative results in massive two dimensional quantum field
theories. Surely they will play a master role in the algebraic framework for massive
QFT which will parallel the algebraic approach to CFT set up these last few years.

To find non-perturbative results for the S-matrices it is enough to have at our
disposal only finite dimensional representations of the algebra of the non-local
conserved charges. This point was illustrated in Sect.2h. For the correlation
functions the existence of the conversed charges Qf implies Ward identities. These
can be written as in [21]:

A(N)(QZ) (D1(y1)---Pn(yn)> =0, (45)

where AN is the N'* comultiplication. In order for the Ward identities to determine
the correlation functions the algebra of the conserved charges should (presumably)
possess only infinite dimensional representations. Thus in order to formulate an
algebraic approach to massive QFT’s, alternative to the quantum inverse
scattering methods, we should (presumably) look for extensions of the algebra of
the non-local charges (extensions of the Yangians in our cases) which admit only
infinite dimensional representations.

Appendix A. Yangians Y(¥%)

In this appendix we present a very short review of the basic definitions and
theorems of the theory of the Yangians. We follow Drinfel’d [11]. We denote by
Y(%) the Yangian over the semi-simple Lie algebra 4. It is defined as follows.

Definition. The Yangian Y (%) is the associative algebra with unity generated by
the elements J§ and J{ with the defining relations:

[J6 Jol=f"Jo, (Ala)
[J6, Ji1= 15, (A.1b)
[J%, 5, 601 = [J6, [J3, Ji 1] = AR {J8, J6. I5} (A1)
[[J4, 731, 6, 111+ [[J5. J4D, [J“ Ji1]
= (AfonS "+ A f ) {J06, I3, T} 5 (A.1d)
where [ are the structure constants of ¥, AgS= — 54 f adk gbel pefm ¢ and

{xl,xz,x3}—- Z xxxk

We have the followmg property.
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Proposition. Y(%) is a Hopf algebra with comultiplication A:
AJY=JR1+1®J5, (A.2a)
AUD=J{®1+1QJ; 1 f*I®J5. (A.2b)

Moreover Y(%) admits the following automorphism: T,: Y(¥%)— Y(%) such that
T(J%)=J§ and T,(J)=J] +vJ§. This automorphism is called the “evaluation”
automorphism. The interest of this automorphism resides in the following
theorem.

Theorem. There is a unique formal series R(v)=1+ Y B~ * in Y(9)® Y(¥) such
k

that:
(1R 4)R(v)=R12(1)%23(v), (A.32)

Z0)(T,®1D)A4(x) =(T,®)PAX)A(v); for xeY(¥). (A.3b)

Equation (A.3a) implies the Yang-Baxter equation for %(v). Equation (A.3b)
defines the exchange algebra for Y(%). It gives rise to algebraic equations which can
be used to determine Z(v).

Acknowledgements. It is a pleasure to thank G.Felder and A. Leclair without whom this work
would not have been done. I thank D. Altschuler, A. Belavin, N. Reshetikhin, and J.-B. Zuber for
discussions.

Note Added in Proof. After having submitted the paper we learned that non-local charges in
integrable two-dimensional quantum field theories have also been studied by the authors of [22].
They also noted, as we did in Eq. (43), the relation between the conservation law of the non-local
conserved charges and the exchange relations of the algebraic Bethe ansatz. But their approach
was different from ours because in order to define (on-shell) the non-local charges they supposed
that the S-matrix and the co-multiplication of the non-local charges are known.
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