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Abstract. Realizations of the quantum superalgebras corresponding to the A(m, n\
B(m,n\ C(n + 1), and D(m,ή) series are given in terms of the creation and
annihilation operators of g-deformed Bose and Fermi oscillators.

1. Introduction

Let ^ be a (simple) Lie algebra. The quantum Lie algebra [1-5] &q is a deformation
of the universal envelopping algebra of ^ which is endowed with a Hopf algebra
structure [6]. This mathematical object is currently drawing a lot of attention, in
part because of its connections with integrable systems and conformal field
theories. The quantum algebra &q can be characterized by giving its generators
together with defining relations based on the Cartan matrix of c§.

The Weyl and Clifford algebras also admit quantum deformations [7] with
g-analogues of the Bose, and respectively, Fermi oscillator operators as generators
[7-10]. These quantized algebras have been used to construct oscillator realiza-
tions of the quantum algebras that correspond to all classical Lie algebras [7].
Here, we provide similar representations of the quantum Lie superalgebras
associated to the unitary and the orthosymplectic series. Algebra homomorphisms
from the quantized envelopping algebras of type A(m,ή), B(m,ή), C(n+1), and
D(m, n) into the quantum Weyl superalgebra will be presented by expressing the
generators of the quantum superalgebras as linears and bilinears in the creation
and annihilation operators of g-bosons and g-fermions.

In Sect. 2 we review some results on the classification of contragredient Lie
superalgebras. A general description of the quantum Lie superalgebras is given in
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Sect. 3. We introduce in Sect. 4 the ^-analogue of the Bose and Fermi oscillators
and present the quantized Weyl superalgebra. Section 5 comprises our main
results, that is the g-oscillator realization of the quantum Lie superalgebras
slq(m, n) and ospq(m, n). Unless stated otherwise, we shall stick to the conventions of
Kac regarding superalgebras [11-13], this means in particular, that we shall use
non-symmetric Cartan matrices. We discuss in the Appendix the modifications
that arise if one adopts instead, symmetric Cartan matrices.

2. Unitary and Orthosymplectic Lie Superalgebras

The Lie superalgebras sl(m, ή) and osp(m, ή) that respectively form the unitary and
orthosymplectic series are in many ways similar to the classical Lie algebras. A
superalgebra ^ of rankr belonging to either series can be characterized [11-13] by
a Cartan matrix (αί7) and a subset τd = {l,...,r} that identifies the odd generators.
Unless ^ is an ordinary Lie algebra, in which case τ = 0, the set τ can actually be
taken to consist of only one element [11,12]. Let [, ] stand for the graded product
defined by

ίx,yl=-(-)d*gxd&syίy,xl and [x?[};,z]] = [[x, } ;],z]+(-) d e ^ d ^[ } ; ,[z,x]],

and denote as usual by adx the adjoint operation {?iάx)y = [x,y]. The algebra ^
can be constructed from the 3r generators eb fb and nb iel, which satisfy the
relations [13]

Ih έj] = aifj > IK fj] = ~ aijfj >

and

(ad^-^-O, (adj^-^O, ΪΦΛ (2.2)

with

^ ^ 0, iφτ; deg^ = degi) = l , ίeτ,

and (άij) the matrix which is obtained from the non-symmetric Cartan matrix (αί7)
by substituting — 1 for the strictly positive elements in the rows with 0 on the
diagonal entry. In the case of Lie algebras the matrices (αl7) and (αι7) coincide and
Eq. (2.2) reduce to the standard Serre relations [14].

Following the established notation [11,12], we put

A(m,ή) = sl(m + l,w +1), m,n^0, mφn,

m+2}9 m>0, λeC,

^O, n>0,

) = osp(2,2n), n>0,

D(m, ή) = osp(2m, 2ή), m ̂  2, n > 0.

We give below the Cartan matrix (a^), the set τ and the rankr, which are associated
to the superalgebras belonging to these series [12,13]. In each case, we also specify
a set of rational numbers db i = 1,..., r, such that: dμ^ = dfln. These numbers dt will
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enter in the defining relations of the quantum superalgebras (see next section). In
what follows

- 1 2

\

2 - 1

- 1 2

(2.3)

stands for the n x n Cartan matrix of the rankn ordinary Lie algebra An

• A{m,n)

h \
- 1

- 1 0 1

- 1

si

r=m+n+l

j f = ( l , . . . , l , - l , . . . , - l ) .
m+1 n

(2.4)

(2.5)

(2.6)

When m = n, the algebra generated by the elements έb ?„ and fii,i=\,...,2m+\, has
a one-dimensional center [12] which consists of the element

The identification with y4(m,m) is achieved once this center has been factored out.
This is the only case where such a situation occurs [11].

• B(m,ri)

\

- 1
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1

1},

- 1 ,

- 1

r=n + l,

. . . , - 1 , - 2 ) .

\

- 2 ,

2 /

(2.13)

(2-14)

(2.15)

D(m,ή)

(%)= (2.16)

(2.17)

(2.18)

3. Quantum Lie Superalgebras

Let ^ be a rankr superalgebra belonging to the unitary or the orthosymplectic
series, described in the previous section. Let geC\{0} be the deformation
parameter which we shall sometimes write q = eη/2. We shall also use q{ = qd\ with d{

the numbers, given in the previous section, that symmetrize the Cartan matrix
(αί7 ), and shall assume qf φ l . The quantum superalgebras &q of the universal
envelopping algebra of ^ is again generated by 3r elements eb fb and hh i e /, which
satisfy [10]

(3.1)

with

deg/ιt = ieτ,

and further obey certain generalized Serre relations which will be specified. It is
convenient to introduce the quantities ki = q^ in terms of which the defining
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relations (3.1) become:

/Cfk>ι = kf kι = 1 , kfij = kjkf,

jjkr1 = qr ^f., (3.2)

The quantum superalgebra <&q is endowed with a Hopf algebra structure [6]. The
action of the coproduct Δ : ^q-^^q®^φ antipode S:^q-^^q and counit ε: &q-+C
on the generators is as follows [10]:

S(hd=-hi9 Sik^kΓ1, (3.3)

One can define the ̂ -analogue adq of the adjoint operation by [15,10]

ad, = (μL®μR) (id®S)Δ , (3.4)

with id the identity operator and μL, μΛ the left and right (graded) multiplications:
μάx)y = χy> μR{χ)y=\—)degxdeeyyx. The quantum Serre relations are most simply
expressed in terms of the following rescaled generators [15],

^ = etkΓx

9 ^i=fiK1. (3.5)

They then take a form similar to (2.2) and read

(ad,^.)1 " a % = 0, (ad,^) 1 - a ^ = 0, i +j. (3.6)

The defining system for the generators of &q is thus completed by adding these
generalized Serre relations to Eq. (3.1) or Eq. (3.2).

Let us record for reference, the explicit forms that conditions (3.6) take for
slq(m,ή) and ospq(m,2ή). One has, always with i+j9

flo.=0:

epj-i- l ^ ' ^ ^ j β — O ; (3.7)

αo.= - l :
for d

d j ) ^ ^ + e^f = 0, (3.8a)

for dege—1,

efej - (coshilηdi) - sinh(2^dI))β/ι

2 = 0 (3.8b)

y = - 2 :
for dege;=0,

efej - (1 + 2 cosh(2//ίii)) (efβjβ, - efitf) - e/sf = 0, (3.9a)

for dege, = l,

efβj+(1 - 2 cosh(2^di)) ( (- Xf^^e^ + efijβf)+(- Yp-'etf = 0. (3.9b)
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In deriving these equations one should recall that (fiiJ = qajji. Substituting ek-+fk and
η-> — η in the above relations, one obtains the corresponding conditions on the
generators fk.

4. #-Analogues of the Bose and Fermi Oscillators

Let s and t be two positive integers. The Weyl superalgebra, here denoted by
W(s, t), is generated by the annihilation and creation operators of 5 Bose and t
Fermi oscillators. The g-deformation of W(s, t) is obtained by introducing the
quantum analogues of these oscillators [7].

The annihilation, creation, and number operators bh bj, and Nh i = 1, ...,s, of
bosonic g-oscillators are taken to satisfy,

btf-q'bib^q-™', bM-q-2b1bt = q™>, (4.1)

\N>ba=-δφt, ίN^ = δ,jbU (4-2)

and for i+j

ίbt, bj] = [bl 6}] = lh 6J] = 0 , \_Nh Nj]=0, (4.3)

with degbf = degb} = degΛΓf = 0.
Similarly, the annihilation, creation and number operators, ψh ψj, and Mb

f = l, ...,ί, of fermionic ^-oscillators are defined through,

ψίψί+q2ψiΨi=q2Mί, Ψiψί+q~ 2ψjψi=q~2M\ (4.4)

[M, ψj] = - δijΨj, [Mf, V J] = δijΨ], (4.5)

{^,^ = 0, {ψlψ}} = 0, (4.6a)

and for iΦj,

{V*VJ}=O, [Mί?M7.] = 0, (4.6b)

with degφf = degφj = 1, degM^ = 0, and {x, y} = xy + j x. It is further assumed that
bosonic and fermionic operators commute,

[^Vj] = [ ^ v J ] = I#> Vj = W,vJ]=0, (4.7a)

[Nί5 V j ] = [iV, V J] = [M, bj] = [M, 6]] = [N,, MJ = 0. (4.7b)

The algebra P (̂5, ί) generated by the operators bh b}, Ni9i=ί9...9s9 and ψp ψ]9 Mp

7 = 1,..., ί, subjected to Eqs. (4.1)-(4.7), will be referred to as ̂ -analogue of the Weyl
superalgebra W(s,ή. The second conditions in (4.1) and (4.4) are sometimes
omitted [8-10], their presence amounts to requiring the invariance [16] of the
defining system under q^>q~ι. Note that Eqs. (4.1) are equivalent to

2(Ni+ί)_ -2(Ni+ί) 2Ni_ -2Nt

b ί b =

and (4.4) to

2 ( 1 - M i ) - 2 ( 1 - M f ) 2Mf - 2 M i

q2-q~2 ' ψ i ψ i ~ q2-q'2
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When q = ί, Eqs. (4.1)-(4.7) reduce to the canonical commutation and anti-
commutation relations of ordinary bosonic and fermionic annihilation and
creation operators. We shall denote by Si9 S\, ψb and y}} the classical relatives of bb

bj, ψi, and ψ}; note that JVi- î̂ i = ίTίί, and M^M^ψJψi as q-+ί.
The defining relations of the g-Weyl superalgebra can be realized by expressing

the g-oscillator operators in terms of their classical analogues. For the bosonic
operators take [9]

with

q —q sinh?/

[Notice that q has to be real or a pure phase, i.e. η has to be real or purely
imaginary, for bt and b\ in (4.10) to be hermitian conjugates.] For the fermionic
operators set

It is easy to check that Eqs. (4.1)-(4.7) are verified under such identifications. For
instance, since lίϊf = Mi9 one has q2Mi = (l—Mi)-\-q2AΪi = ψiψJ-\-{

5. ^-Oscillator Representations of Quantum Superalgebras

We shall now construct g-oscillator representations of the quantum superalgebras
slq(m, n) and ospq(m, 2n). We shall provide explicit expressions for the correspond-
ing generators as linears and bilinears in ^-deformed bosonic and fermionic
oscillator operators. We shall successively consider the quantum superalgebras
Aq(m, ri), Bq(m, n\ Cq(n + 1), and Dq(m, n) associated to the A(m, n\ B(m, n\ C(n + 1),
and D(m, ri) Lie superalgebra series described in Sect. 2.

Let us observe first that the quantum algebra corresponding to the classical Lie
algebra An admits the following four representations [7,17] :

(5.1)

en-n-2k+l — ίbn-

K-2k+l « 2 / c + i + n 2 k + 2 + »

*L. L *

n-2k — l':)n-2kί)n-
:)n-2kί)n-2k+l
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k=ί,...,n. (5.3)

en-2k+l —lΨn-2k+lΨn-2k + 2>

fn-2k+l=ίψn-2k+lΨn-2k + 2, fc = 1, ..., [tt/2] ,

The symbol [x] stands for the integer part of x. Equivalent representations are
obtained upon exchanging et and fi9 and letting ή f-* —ftf.

Under the standard inner product on the Hubert space of oscillator states, π^j,
π^J, and π£| are unitary, while π^J is antiunitary. Upon suitably combining these
representations, realizations of the quantum superalgebras slq(m,n) and
ospq(m, 2n) will be obtained.

• Aq(m,ή)

In this case we can form four algebra homomorphisms of Aq(m9 ή) into

For instance, we can take the first m generators (ei9 fi9 ht) to be realized as in π ^ and
the last n ones given as in π{}\ Explicitly, this provides the following unitary
representation of Aq(m, n),

hk = Mk-Mk + i , fc=l,...,m,

» fm+l=Ψm+lbl, *m+1 = M M + x + N 2 , (5.5)

This construction has been sketched in [10].
One can also join the representation πψm with the representation πψn (or its

equivalent under et<^fb h^—h^ using for em+19 fm+19 and hm+1 the expressions
given in (5.5). One has then,

5 fm+i=Ψm+ib\,

h m + 3 = -(N2 + N3 + l ) , (5.6)

and so until the index w + m + 1 is reached. The representation of Aq(m,ή) thus
obtained is not unitary anymore. However, it becomes unitary when the
symmetric Cartan matrix (aty = {diaij) is adopted (see Appendix).

The representation π ^ can similarly be attached to either representation π(jl
or representation πψn to form two additional representations of Aq(m, ή). The first
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one is unitary, while the second one becomes unitary once the rescalings associated
to the use of the symmetric Cartan matrix have been performed. When m = n, the
center

should be factored out.
From the four representations that we have just described one can obtain four

additional homomorphisms of Aq(m,n) in Wq(m + l,n + l) by exchanging in an
obvious fashion the bosonic and fermionic operators.

• Bq(m,n%m>0
Four algebra homomorphisms of Bq(m,ή) into Wq(n,m) are obtained by

combining n{j\ι or π^ ) _ 1 with π ^ _ x or T Γ ^ ^ . A unitary representation follows
from using n(j^_ t and π ^ _ x. This is the only one that we shall describe explicitly;
the others are similarly constructed. Set

ι = Ψι

(5.7)
m

where M = ^ Mt. It is not difficult to check that the defining relations oϊBq(m, ή)
i= 1

are then satisfied. Note that a Klein operator enters in the expression of em+n and
Jrn + n-

Let us point out that different homomorphisms oϊBq(m, ή) into W(n, m) can be
obtained by exchanging the fc's and the ψ9s. However, one then needs to use a set τ
with more than one element. For τ = {n,m + n} in particular, a representation of
Bq(m,ή) is obtained through combining π ^ j and π ^ _ 1 as follows:

e«+ι=b}bι+l9 /„+/ = &/+Λ, hn + ι = Nt-Nι + l9 / = l , . . . , m - l ,

, fm+n = bm(-l)\ hn+m = 2Nm + l.
(5.8)

where N=

4

The representations of Bq(0, ή) only require g-bosons. Homomorphisms of
Bq(0, n) into Wq(n, 0) can be constructed from either π^J,, or π^n'_ Γ In the first case
one has

ek = bih+i, fk = H+A, h = Nk-Nk+1, for k = ί,...,n-l,

en = bl fn = bn, hn = 2Nn + ί.

This representation is unitary. The other one has {ek,fk,hk\ k = l, ...,n — 1, as in
πA}_ !> with (̂ «> /»> ̂ /i) a s i n (5-9). These bosonic realizations of ospq(l, In) were given
in [17].
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q

We have two homomorphisms of Cq(n +1) in Wq(n, 1). There is one which is
constructed out of the representation πψn_ x given in (5.2) when n is odd, or, when n
is even, out of the equivalent representation obtained from the substitution e^f.
and hi-t — hi. It is explicitly defined by

+ ί9 (5.10)

e3 = ib2b3i f^iblbl, h3=-(N2 + N3 + l)9

and so on, till:

0 forκeven'

This representation becomes unitary when referred to the symmetric Cartan
matrix (αy = (ί//αl7) (see Appendix).

The other representation of Cq(n + ί) in Wq{n91), uses π * ^ and is defined as
follows:

(5.11)

• Dq(m,ή)
Two homomorphisms of Dq(m, ή) into Wq(m, n) are obtained upon combining

π(An-i O Γ π S - i w ^ ^ π S , - r T h e first produces the following unitary realization:

(5.12)

For D€(m, 1), the form of this g-oscillator representation had been conjectured
in [16]. A second realization is formed by taking the first n — ί generators (ek, fk, hk)
as in representation π^2

n

)_1 keeping the remaining generators as in (5.12). Finally,
two new homomorphisms of Dq(m, ή) into Wq(m, ή) can be obtained from the
representations just described by letting bi<r^ψi, b}<->ψ}9 iV,—•Mί — 1 , and
M, -•iV, + 1 in all the generators, except for em+n and fm+H9 which are realized as

Appendix. Conversion to Symmetric Cartan Matrices

Two Cartan matrices A = (a^ and Af = (a[^ are equivalent [13] if there exists a
matrix D such that detD + 0 and A = DA. Using this freedom, we can symmetrize
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the Cartan matrices of the basic Lie superalgebras. In fact, let D; = d^- with d{ the
components of the vector given in Sect. 2; the symmetric Cartan matrices As = (aϊj)
of [18] are related to those listed in Sect. 2 by AS = DA.

We here indicate how various formulas translate when one chooses to describe
quantum superalgebras with (aty instead of (a^. Let Eb Fb and Hb i = 1,..., r, be the
elements that generate the quantum superalgebra characterized by (α j) and τ.
They satisfy the defining relations [10]

ΓF F l - ^ s i n h W VH tn-n

( A - 1 )

iφτ; d e g E — d e g F ^ l , ieτ,

together with the Serre relations (3.6), still involving the Cartan matrix (α^) and the
rescaled generators

This set of generators is straightforwardly related to the set eb fb and hh

i = l,...,r, that satisfy (3.1) and (3.6). One has

e F f i ' Hi=dihi- ( A 2 )

When dι is negative, E( and Ft will no longer be hermitian conjugate, if et and ft

were. Conversely, as indicated in Sect. 5, there might be cases where one needs to
use (alj) and the generators Eh Fb and Ht for certain representations to be unitary.
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