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Abstract. We present for odd JV a construction of the Nn Estate generalization
of the chiral Potts model proposed recently by Bazhanov et al. The Yang-Baxter
equation is proved.

1. Introduction

The discovery of the chiral Potts model [1-4] opened a new phase in the theory
of Yang-Baxter equations (YBE). It gave the first example of an R matrix
( = solution to YBE) whose spectral parameters live on an algebraic variety other
than P 1 or an elliptic curve. Through the latest developments [5-8] it has become
apparent that quantum groups at roots of 1 should lead to this type of R matrices.
Because of the technical complexity, this program has been worked out so far only
in a few simple examples. Besides the chiral Potts model, which is related to
l^(sl(2,C)), these are the cases corresponding to ^(d(3,C)) ([7] for q3 = 1, [9]
for g4 = 1) or Uq{Aψ) [8]. In a recent paper [10] Bazhanov et al. proposed a
generalization of the chiral Potts model related to Nn~ι dimensional irreducible
representations of L^(sl(n,C)) at qN = 1. The aim of this paper is to give a proof
to their conjecture.

Let us formulate the problem more precisely. Throughout the paper we fix a
primitive JVth root of unity q, with N an odd integer ^ 3. We shall deal with a
Hopf algebra Uq (essentially the quantum double of a "BoreΓ subalgebra of
Uq($l(n,C))) [8]. As an algebra Uq is a trivial extension of Uq(Ql(n,C)) by
central elements, with the comultiplication being twisted by them. In this paper
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we shall focus on a family of Nn~ ^dimensional irreducible representations (W{0\ πξ)
of Uq parametrized by ί e ( C x ) 3 " " 1 . Set

where Δ denotes the comultiplication. Consider now an intertwiner between the
two tensor representations π^and π%ξ9 namely a linear isomorphism R(ξ, ξ): W(0) (x)

W(0) s u c h t h a t

R{ξ, ξ)na{g) = πu{g)R(ξ9 ξ) (ge Uq).

It is a common feature of q being a root of 1 [5] that, for the existence of R(ξ, ξ)
the parameters ξ9 ξ are forced to lie on a common algebraic variety S. As it turns
out, in our case S is a finite cover of # y x

 (€v where %>y denotes the algebraic curve,

<€Ί = {r = (u, t;)eC2"|tif + λt = v? + μ, 0 ^ i, 7 < n},

parametrized by y = (λi9 to)Ozi<n. Following the general scheme [8] it can be shown
that if R(ξ, ξ) exists, then it is unique up to a scalar multiple, and that it satisfies
YBE. For n = 2 this construction reproduces the chiral Potts model [5,8].

Let now ξ,ξeS and let (r,r'\(r,r') be the corresponding points on ^y x # r In
the present case the intertwiner is given as a product of four matrices

R{a) = S^Tr,r,TrfSr>l, (1.1)

and each factor can be described explicitly. However the matrix elements of R(ξ, ξ)
itself are rather cumbersome (if we use the standard comultiplication of Uq9 see
below). At this stage we received a paper by Bazhanov et al. [10] in which they
proposed a simple factorized form of the matrix elements. In our notations they
read as follows:

where j9 k, l,meZn mod Z(l,. . . , 1), and the coefficients are given by

i

i = (0,..., 1,... ,0), m0 = mx - mp δ? =

Guided by this formula we then noticed that a modification of the comultiplication
leads directly to the R matrix (1.1) which differs from the old one by similarity
and has factorized matrix elements (1.2) in a natural basis of Wi0\

The text is organized as follows. In Sect. 2 we describe the minimal cyclic
representation, thereby fixing the notations. We introduce the "spectral variety"
S arising from necessary conditions for the existence of the intertwiner. In Sect. 3
we solve the intertwining relation for the R(ξ, ξ). In Appendix A we prove the
indecomposability of tensor product representations and that the intertwiner
satisfies YBE. Appendix B is devoted to some details of the proof given in Sect. 3.
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2. Spectral Varieties for Minimal Cyclic Representations

2.1. Uq(§l(n, C)). Let ί)z be a free Z module of rank n spanned by εf (0 g i < n).
We introduce I) = ί ) z ® z C and a symmetric bilinear form ( , ) on f) such that
(εi5 ε ; ) = δij. We extend the definition of εf in such a way that ε ί + π = εί. We set
αί = ε ί - ε ί + 1 .

The quantized universal enveloping algebra l^(gl(n,C)) is a C-algebra
generated by the symbols eh f( (0 g ί < n) and qh (he\)τ) with the following relations:

q° =

= q~^% ieί9 fj] = (50 {^},

Σ
fc=O

Here αfί = 2, and α o l = α l o = - 2 for n = 2,α l V= —1 (ί = ; ± l m o d n ) or = 0
(otherwise, for n > 2. We also use the notations

In the following the indices related to simple roots, e.g., ί for eh should be under-
stood as modulo n.

We add n central elements zt (0 ^ i < n) and their inverses zf1 to Uq{$l(n, C))
and denote the extended algebra simply by Uq. We use the comultiplication A of
the form

(2.1)

Remark. This differs from the standard comultiplication 4 for which we have

Denote by σ the automorphism of Uq such that σ{ei) = ei + l9σ(fi) = fi + l9

σ(qεi)=qεi+ι and a(z,) = z i + 1 . We define the root vectors eu and / 0 inductively by

(0 ^ i < k < j ύ n - 1),

Then we have
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i > k > j

2.2 Invariants. In this paper we consider the case q = e2πi/N with N 2ϊ 3 odd. In
this case Uq has a large center [11]. We define the following central elements:

•• +1 j +1

Then we have

Σ
k

Consider representations π and π'. Suppose that any central element is
represented by a scalar in these representations. We use the comultiplication (2.1)
to form the tensor products. In general, two representations (π®π r)°zl and
(π'®π)°Δ are not equivalent. The reason is as follows. Take an element of the
center of ϋq, say α ί i + 1 . Then we have

Therefore, if two representations (π®π')°Δ and (π!®π)°A are equivalent, the
following identity follows.

Φii+ί)

Introduce the following element in the field of quotients of the center of ϋq9

Hi + 1

Then Γ" i i + 1 is invariant in the sense that its images under π and π' coincide. In
general, if we define Γ{j and Γ^ inductively by

σ(ΓyX (2.2)

they are invariant: π(.Γi;) = π'(Γy), 7t(.f,v) = π'(Γ l7).
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Remark. From

we have another necessary condition for the equivalence of two representations

(π®π')°Δ and (π'®π)°Δ;

This condition is satisfied if the central element zo z l l _ 1 ^ 2 ( β o + "" + β n " l ) is
represented by 1 in both representations π and π'.

2.3 Minimal Representations. We call a representation of Όq cyclic if ef, / f are
represented by non-zero scalars. Recently cyclic representations of the quantized
universal enveloping algebras have been investigated by several authors [11-13].
In this paper we consider the following family of N"'1 dimensional cyclic
representations with the parameters ξ = ((xi,ai)ogi<n9(ci/ci+ί)Ozi<n-ί)e(Cx)3n-1

w - l

[14,7]. Consider W= (X) Vi9 where Vt ^ CN. Let Zh X{ be invertible linear operators
on W such that ί = 0

i-th

Zi=l(8) (8)Z(8) (8)l,

i-th

where X,ZeEnd(CN),ZX = qXZ,ZN=l,XN=l. Set

Note that dim W{0) = N"- 1 .We fix the canonical bases {uj c= CN, {wm} c l^ ( 0 ) as
follows.

ZMf = Mί _ 1 , XUi^fUi,

N - l

wm= Σ wm0+*® ®Mmn-1+fc, m = (m 0 , . . . ,m n _J.
k 0

Consider the following representations on Wi0) with the parameter ξ =

This representation is irreducible for generic ξ. This choice of πξ(Zi) satisfies the
condition in the Remark at the end of Subsect. 2.2. The expressions of the root
vectors efJ and ftj in this representation are given by
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The weight space

where mo-\ h mπ_ x = 0 mod N, is one dimensional. For this reason we call this
representation the minimal cyclic representation.

The quantum R matrix is an invertible linear operator on Wi0) ® W{0) which
intertwines two representations πξ% and πξξ:

R(ξ9 ξ)πξξ(g) = πξξ(g)R(ξ, ξ\ geϋq. (2.3)

As was discussed previously, for arbitrary ξ and ξ there is no such intertwiner.
The invariants Γij9 Γ^ (0 ^ i φ j ' ^ n — 1) should have the common value for πξ and
n%. For the minimal cyclic representation we have

(2.4)

Fix (ΓhΓΰhziφj^-MC*)2*"-1*. Consider a subvariety (maybe void)

If it is not void, we call it a spectral variety. If an intertwiner (2.3) exists, then ξ
and ξ should lie on the same spectral variety.

Set

Ki = πξ(Γii+1)πξ(Γi+! f), Hi = —— ιι+ r.
πξ\1 ii+iWξy1 i+ii+i)

These are rational functions of At = a? (0 g i'^ n -1) and Cf = (CJ/CJ + x )
N (0 ̂  i ̂  n - 2).

Lemma 2.1. For generic At, Ch the Jacobian of the map

(Ao,. ..9An-ι, C o , . . . , C Π _ 2 ) ^ ( Λ . O , . . . ,XΠ_2,/i0,.. .,/iΠ_ 3 )

« — 3.

/. In the neighborhood of Cx = 0 (0 ^ / ̂  n — 2) we have

Kt = CtiAt - Ari)(Ai+1 - Ar+\) + O(C2), Ht = Ai+

At C£ = 0 the Jacobian matrix

is upper triangular with nonzero diagonal. This shows rank J = 2n - 3. •
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Define the projections

P2(((ai)θ<i<nΛCi/Ci+l)θϊi<n-l)) =

Then p1 \^,p2 are finite maps, and p 2°Pi(^0 i s contained in the variety {Kt = const.,

Ht = const.}. Lemma 2.1 shows that the latter (more precisely every irreducible

component of it passing through a point near Cx = 0) has dimension ^ (2n - 1) -

(2n —3) = 2. In fact there is a two dimensional component of px(ίf) given by

an explicit parametrization. Fix γ = (κhλhμi)0^i<ne(Cx)nxC2n. Define a two

dimensional subvariety Sy~ in (C x ) 3 π with coordinates (xf, αf, c f)0 ̂  f < n by the following

substitutions:

/π\N c _ 2 S' — U - S'— λ

Then the invariants are constant on

πξ\i ij) -\ 11 κι i Γ l~ Y'

We introduce new parameters Mt , yf, MJ, I J (0 ̂  i < n) in such a way that

wf = s - λi9 vf = s - μh

Mf — S — λh Vι — S — μh

Note that r = (u i,ι;I.)o^ i<»,r' = (wί,ι?ί)0^i<» lie on the curve

Vy = {(ut9 vX^MCΎΊ "Γ + Λ = ̂  + ̂  (0 ̂  U j < n)}9

where γ — (λhμi)0^i<n. Thus 5y~ is a finite covering of the product of curves # y x ̂ r

The κh λi9 μι (0^i< n) are the parameters of moduli and r, r' are the spectral

parameters. If we fix the moduli parameters, the R matrix (if it ever exists) depends

on two sets of spectral parameters: R = R(r, r\ f, f'). In Appendix A we show that

for a generic choice of γ, (r, r') and (r, f') the R is unique up to a scalar multiple.

There is some redundancy in the moduli parameters. The change of κt makes

no change in R (see 3.1). Furthermore, the simultaneous projective transformation

of s, s', s, s' and λi9 μt (0^i< ή) also preserves R. Therefore the number of essential

moduli parameters is In — 3.

3. Intertwiner for Minimal Cyclic Representations

In this section we shall give an explicit solution to the intertwining relation (2.3).

3.1. The Case g = et. First we solve (2.3) with g = et for i = 0,. . . , n — 1. In terms
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Fig. 1. R matrix factorized into four operators

of Uj, v( and κt, πξj(e, ) is given by

+1i ® Z f J

where rji = (q — q ί)aiάivi_1vi-1v'iv'i/(κi)
1/N. Therefore R(ξ,ξ) can be chosen inde-

pendently of κt. Set

d = (Zf ® l^ΩiΩi-i)'1 = (ΩiΩi- x)~ ί(Zf (x) 1),

Cί = (l®Z i"
2)fl ifl i_1 =fl ίί2,_1(l®Z i"

2).

Proposition 3.1. Suppose S, T and T satisfy the following equations for all i:

(3.1a)

(3.1b)

= (««, _ t δ, _!»,_! C, (3.1c)

Then

R(ξ9 ξ) = Sry,(Ωr * Trf{C)Tr>fl{C)Srfl{Ω)

satisfies (2,3) with g = e{ for all i.

The proof is left to Appendix B.

The solutions to (3.1) are given as follows. First note that Ωh Ct act on the
base elements wmeW{0) as

β f W2Λ ® W 2 / = ^ ( f e ~ Z ) i I + 1 w
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Set

Srf{Ω)w2k ® w2 / = σrf{k -l)~ ιvt2k ® w2 /.

Then (3.1a) is reduced to the recurrence relations

which determine the σrf(m) uniquely up to an overall scalar multiple. Next let

w - l Λ - 1

T ~(C) = 'Y σ ~(m) Γf (Z? m '®l) Γf (ΩΩ_ )~m\
m i = 0 ί = 0

_ _ n - 1 n-1

m i = 0 i = 0

Substitute the above expression for T into (3.1b) and equate the coefficients of
n-l n-ί _

Π {Z]mj® 1) Π (^j^j-i)"m ' x β ? ; d o likewise for T and (3.1c). Then we find
j=o j=o

that (3.1b,c) are reduced to the same relation (3.2).

3.2. Remaining Cases. The above R(ξ,ξ) clearly satisfies (2.3) with g — (f\zi

(i = 0,..., n — 1). Finally we consider (2.3) with g = ft (i = 0,..., n — 1). Let

R'j = R(ξ, ξ)~ '(Riξ, ξ)πrξ(f.) - πξξ(fj)R(ξ, ξ)).

We can easily show that this R'j satisfies the following relations:

Then from Proposition A.2 it follows that Rj vanishes.
Therefore the obtained R(ξ, ξ) is the intertwiner of the two representations πξξ

and πξξ. We shall show in Appendix A the following

Theorem 3.2. The intertwiner R satisfies the Yang-Baxter equation,

(R(η9 C) ® 1)(1 ® R(ξ, Q)(R(ξ, η) ® 1) = (1 ® R(ξ, η))(R(ξ9 ζ) ® 1)(1 ® R(η9 ζ)). (3.3)

In the base {vvm} this R matrix has factorized matrix elements:

w 2 m ,
U Prf'UΛ)

where

Prf\K, I) — q Grf\K> l ) 9 i ( Λ , I) — 2 - ι \Kih + 1 Ki + 1 l i )

3.3. Symmetries. In this section we shall give certain symmetries which simplify
some of the computations in the previous sections.

Define Uq{ql(n,Q)) to be an associative algebra over Q(g) (q = e2πi/N) with the
generators eh fi9q

±ε\ z*λ (0 ^ i < n) and the defining relations given in 2.1. Let θ
be a Q-linear involutive automorphism of Uq(gl(ny Q)) such that
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k

Fig. 2. Boltzmann weights of the generalized chiral Potts model

m

?

Fig. 3. Matrix element of the R matrix

Then we have

Recall the definition of W{0) in 2.3. Let us denote by Wioy the Q(q) vector space
defined similarly with C replaced by Q(g).

Denote by A the rational function field over Q(q) in the variables

(λi9 μ i 9 κ}IN, δh x i 9 x i 9 ai9 ai9 ch ci9 ui9 ui9 υi9 vi9 u'h ύ'h i/i9 δj),

Let J be the ideal of A generated by the following relations.

Ό<ί<«

= C U. , jl/j = KIINU\,

M-1 = t>ί_!, Xiΰ'i = K, 1 / J V «; .
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Set B = A/J. We denote by E the B subalgebra of B®Q{q)End Wm generated by

(Zi9Xi)0£i<n. Define a Q-linear involutive automorphism * of E by

γ* =
Λ l

xf =
x • of

a?
= «»-•+1, cf

cf
~ Cn - i + 1 >

= c n _ ί + 1 ,

Note that πξ (ξ = (xhahci)0^i<n) and π f (ξ = (xi9ai9ci)0^i<n) are Q(ςf)-linear

homomorphisms

The following symmetry is valid.

(πξoθ(g))* = πξ(gl (πf θ(g))* = π~ξ(g), for geΰq(ql(n,Q)).

Suppose that ReE®E satisfies

for some geUq($l(n9Q)). Then we have

(R(πξ®πξ)°Δ(g))* = R*((πξoθ®π~ξoθ)oΔoθ(g))*

= (πξ®πξ)oΔoθ(g)R*.

It is easy to check that

Therefore, the intertwining equation (2.3) for /,- follows from that for et.

Appendix A. Proof of the Yang-Baxter Equation

The goal of this appendix is to prove that the intertwiner of Sect. 3 satisfies YBE (3.3).

A.I. Trigonometric Limit. We begin with the discussion of the minimal cyclic

representations in the trigonometric limit. This means the case where the moduli

κh λi9 μh and hence αf = a,Ci = c, xt = x, are all independent of i. In fact c does not

enter the representation. Denoting this representation by πx we have

πx(qεi) = aZh nx(z^ = a~2. (A.I)

The following Proposition will be of use later.

Proposition A.I. Let (Wi0\πx) be as above, and let (V'9π') be a finite dimensional

representation ofUq. Consider the linear equation for FeEnd(W(0)® V):
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^0 for all ύ

(πx®π')Δ(qεi)F = qmiF(πx<g)π')Δ(qεi) for all L (A.2)

Here the mf are given integers satisfying Yιmi = 0. Then, for generic x, F has the

form F = Y\ Z)* <g> F , F e E n d ( F ) , with k( - ki+ x + m, = 0 and
i

[π'(Ci)^'] = 0 for alii,

π'(qε')F' = qm<Fπ'(qε') for all i. (A.3)

Proof. Clearly F of the form (A.3) satisfies (A.2). Therefore it is sufficient to show
that the only solutions are of this form at some special value x = x0. We shall take
x0 = co.

First consider the case n > 2, and define

A±= [x~1(

B = lχ-1{

Here [α,/Γ]ς±i = aβ — q±ιβct. Clearly (A.2) imply the equations

IA±,F] = IB,F1 = O. (A.4)

Substituting (A.1) one finds after some calculation that

where φ(Z) and \j/(Z) are some invertible polynomials in the Z ;. Specializing the
Eqs. (A.2), (A.4) to x = oo one obtains

[{αZ£} Jf^fΛ ® π'(^-e<), F] = 0, (A.5a)

Z, ® π'(q£')F = qm'FZi ® π'(^), (A.5b)

[Z f + 1 ®1,F] = O, (A.5c)
2 =0, (A.5d)

ί'] = 0 if n = 3. (A.5e)

Here we have used the fact that X^^X^Xi-i and X^ίXϊ1Xj_ι are linearly
independent. Equations (A.5a) through (A.5c) imply that F has the form \\ Zf ® F'

with ki - fci+j + nii = 0 and π'(<f')ί" = ήf""F'π'(ίεi). From (A.5d) and (A.5e) one then
concludes [π'(e,XF'] = 0.

Next consider the case n = 2. Set

Noting that ή[εo+£' is central, one has
ε')) = {aZi\{aqZι+ι}®\
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= {aZo}ZoXoXϊί®π'(eίq-ε«)

Using Di9 E in place of A +, B and arguing similarly as above, one arrives at the
same conclusion. •

A.2. Indecomposabilίty of Tensor Products. Let (V9π) be a finite dimensional
representation of Uq. It is said to be indecomposable if, for FeEnd(K), [F, π(#)] = 0
for any geΰq implies FeCid.

p-times
( * - -s

For p ^ 1 we set ίfv = (J S~ x x S^ where S~ denotes the variety defined in Sect. 2
y

and y = (κi9λi9μi)0^i<n Since Sy- is irreducible if γ is generic, Sfp is also irreducible.
Let Δip) = (Δ®. ~®l)oΔip~ι\ Δ{1) = Δ. The following shows that the tensor
products of the πξ are generically indecomposable.

p-times

Proposition A.2. For generic y and (ζi)ι^i^p^S^ x ••• x Sf, the only solution of the
equation

is

F 3s scalar if m =» 0,

=» 0 otherwise.

Proof It is enough to show the assertion in the case where πξi are all trigonometric.
Thanks to Lemma A.I the proof is reduced to the case p = 1 by induction. But
the case p = 1 can be shown easily. •

Remark. By decomposing F into joint eigenvectors of the Ad(#ε i)? it is clear from
the proof that the indecomposability holds with respect to the subalgebra of Uq

generated by et(0 g i < ή).

Corollary A.3. For generic y and (ξ, ξ) the intertwiner (2.3) is unique up to scalar
multiple.

A3. Yang-Baxter Equation. From the above results YBE follows by a general
argument [15]. Let QL (respectively QR) denote the left-(respectively right-) hand
side of (3.3). Since the R{ξ,η) are intertwiners, F = Q£1QR commutes with

2

= O for any geUq.

Proposition A.2 then shows for generic (ξ9 η9 ζ) that F is a scalar, namely

with some scalar p. Comparing the determinant one finds that p is a root of unity,
and hence is independent of the parameters (ξ9η9 ζ). From the formula (3.1) it can
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be checked that R(ξ, ξ) is a scalar. Hence setting ξ = η = ζ one obtains p = 1. This
proves YBE.

Appendix B. Proof of Proposition 3.1.

Let

c, = (Z? ® i)(fl A-1)~' = (flA-t)' \zf ® l),

Then Cj, C. .βj, Yf, ?( and Kf satisfy the following relations:

ίYi, Yj] = ίΫb Ϋj] = [y(, ΫjΊ = CCf, c j = [Q, F j = [c (, y j = o,

[β,,β;] = [Xf,flJ = iKt,Cj ] = [K,, C7] = 0,

CtCt+ι = q-2Ct+ιC,, [Ci,C,]=0 (jφi±lmodn),

CtCi+1 = ̂ 2 C ί + ! C i ; [C;, CJ = 0 (j # i ± 1 mod n),

A-^^'^i-iC. , [^^^ = 0 (;#i, j-lmodn),

, = qΩ,Ch CtΩ^^q^Ω^C,, [C,,βj] = 0 0 # i,i- lmodπ).

In terms of these operators, we have

Using (3.1a), we have

Using (3.1b,c), we have

δJMQTAQS

= ίff_ i e < _ ̂ f ^ i(δι- i» ί- i « i - 1 - u'ι-

+ δM-Λ-WiKji -»,_!»,_ ̂ K

Finally using (3.1a) again, we get (2.3) for g = e,.
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