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Abstract. We present for odd N a construction of the N"~!-state generalization
of the chiral Potts model proposed recently by Bazhanov et al. The Yang-Baxter
equation is proved.

1. Introduction

The discovery of the chiral Potts model [1-4] opened a new phase in the theory
of Yang-Baxter equations (YBE). It gave the first example of an R matrix
(=solution to YBE) whose spectral parameters live on an algebraic variety other
than P! or an elliptic curve. Through the latest developments [5-8] it has become
apparent that quantum groups at roots of 1 should lead to this type of R matrices.
Because of the technical complexity, this program has been worked out so far only
in a few simple examples. Besides the chiral Potts model, which is related to
U, (51(2 C)), these are the cases corresponding to (51(3 Q) ([7] for ¢®> =1, [9]
for g*=1) or U(4¥) [8]. In a recent paper [10] Bazhanov et al. proposed a
generalization of the chiral Potts model related to N"~! dimensional irreducible
representations of U, (sl(n, C)) at g¥ = 1. The aim of this paper is to give a proof
to their conjecture.

Let us formulate the problem more precisely. Throughout the paper we fix a
primitive N'* root of unity g, with N an odd integer >3. We shall deal with a
Hopf algebra U (essentially the quantum double of a “Borel” subalgebra of

q(gl(n Q) [8] As an algebra U is a trivial extension of Uq(gl(n C)) by
central elements, with the comultlpllcatlon being twisted by them. In this paper
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we shall focus on a family of N"~ !-dimensional irreducible representations (W?, m;)
of U, parametrized by ée(C*)*" ™1, Set

e = (n; @ 7g)° 4,
where A denotes the comultiplication. Consider now an intertwiner between the

two tensor representations n,; and ng,, namely a linear isomorphism R(¢, H:wOR
WO S w0 @ WO such that

R E)m pg) = mz(g)R(EE)  (9eU).

It is a common feature of g being a root of 1 [5] that, for the existence of R(¢, 13}
the parameters &, & are forced to lie on a common algebraic variety S. As it turns
out, in our case S is a finite cover of €, x €, where €, denotes the algebraic curve,

€, ={r=uv)eCu} +A,=v) + p;0<i,j<n},
parametrized by y = (4;, y,)0<,<,, Following the general scheme [8] it can be shown
that if R(¢, &) exists, then it is unique up to a scalar multiple, and that it satisfies
YBE. For n=2 this construction reproduces the chiral Potts model [5,8].

Let now £, &eS and let (r,r), (~ ~’) be the corresponding points on €, x €,. In
the present case the intertwiner is given as a product of four matrices

R E=S;'T,T,S, (1.1)

rE S i

and each factor can be described explicitly. However the matrix elements of R(Z, &)
itself are rather cumbersome (if we use the standard comultiplication of Uq, see
below). At this stage we received a paper by Bazhanov et al. [10] in which they
proposed a simple factorized form of the matrix elements. In our notations they
read as follows:

_ Purs Dz (1, m)p,(m, k)
r'¥ Fr 7 12
prr’(.]7k) ’ ( )

where j, k,I,meZ"mod Z(1,..., 1), and the coefficients are given by

pk, 1) = qp(k’l)o'ﬁ(k =1, Pkl= Z Kili s 1 —kis 1 1),

R(é é)lm ik =

o (m+v;) 6 1(q™ V10— —q ™0 y)

o m &M lud— g T M)
i N 1
V,-=(0,...,1,...,0), m,«j=m,~—mj, ‘Si = T

Ai— 1

Guided by this formula we then noticed that a modification of the comultiplication
leads directly to the R matrix (1.1) which differs from the old one by similarity
and has factorized matrix elements (1.2) in a natural basis of W©,

The text is organized as follows. In Sect. 2 we describe the minimal cyclic
representation, thereby fixing the notations. We introduce the “spectral variety”
S arising from necessary conditions for the existence of the intertwiner. In Sect. 3
we solve the intertwining relation for the R(&,&). In Appendix A we prove the
indecomposability of tensor product representations and that the intertwiner
satisfies YBE. Appendix B is devoted to some details of the proof given in Sect. 3.
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2. Spectral Varieties for Minimal Cyclic Representations

2.1. Uq(ﬁl(n, C)). Let b, be a free Z module of rank n spanned by ¢ (0<i<n)
We introduce h=h,®,C and a symmetric bilinear form (, ) on b such that
(¢i,€;) = 0;;. We extend the definition of ¢; in such a way that ¢, =¢;. We set
;=8 — Eivy.

The quantized universal enveloping algebra Uq(gl(n C)) is a C-algebra
generated by the symbols e;, f; (0 < i < n) and ¢* (hebh,) with the following relations:

@ =q"q", ¢°=1,
g'eq " =q% e, q'fiq"=q""f, [e, f;1=0;{q%},

1-a;; 1-aij
S apee =0, S a0 i)

Here a;=2, and ay; =a,o=—2 for n=2,4;;=—1 (i=j+1modn) or =0
(otherwise, for n>2. We also use the notations
-1 k

@=r"ren K={g) K=K =g

[k]!

In the following the indices related to simple roots, e.g., i for e;, should be under-
stood as modulo n.

We add n central elements z; (0 <i<n) and their inverses z; ! to Uq(gl(n Q)
and denote the extended algebra simply by U We use the comultlphcatlon A of
the form

Ale)=e®q9 “+2,4"®e;,
Af)=fi®¢ +2z7 ' ' Q f,
A =9"®q", Alz)=2Qz:. 21)
Remark. This differs from the standard comultiplication A for which we have
Ae)=e,®1+2,4Qe;,
Af)=fi®q“+z'®f:

Denote by o the automorphism of (7,1 such that o(e;)=¢€;41,0(f)) = fit+1,
o(q*)=q*** and o(z;) = z;, ;. We define the root vectors ¢;; and f;; inductively by

eiv1=¢s firrui=1/; 0Z£itsn-1),
€;j = €y ey ;— qey;e; O=Li<k<jgn-1),
fi=fufi—a  fiifu O=Lj<k<izn-—1),
oley)=eir1jer, 0(fiy) = fijer-

Then we have
Aley) = ey @q™H "
+(1 qz) Z z zk_1q€i+-..+ek-1ekj®eikq—gk_...__ej_l

i<k<j

+Z,~~"Zj_1q +tj-l®eij, (O§i<j§n—1)7
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A(ﬁj)=ﬁj®q81+n..+zj+1
+(1—q73%) Z .(Zi-l"'Zk)-—1q—8"_m-ek+‘fkj®fikqsk+m+ej“

i>k>j
+(Zimgz) g T N® Sy, 0L j<i<n—1).

2.2 Invariants. In this paper we consider the case g =e*™¥ with N 23 odd. In
this case U, has a large center [11]. We define the following central elements:

aij=((1—qz)eijq£i+..‘+sl_l)N 0<i<jsn-1),
d’ij = (Zi“‘zj—1qz(€i+m+ej<‘))N O=<i<jsn-1),
Bii=((1—q ) fyq 5 5 (0= j<isn-1),
‘/’ij=(zi—1 "'quz(sﬁ'“”j“))_N O=sj<isn-1),

Oit1j+1= U(aij)’ biv1je1= 0'(¢ij),

ﬂi+1j+1 = U(ﬁij), lPi+1j+1 = U('//ij)~

Then we have
Al) =0;®@1 + i<;<j¢ikakj®aik +¢,;Qu; (0=£i<jsn-—1),

ABi))=B;®1 + .>;> . VB @By +v,;®B; Oj<isn—1).

Consider representations # and n’. Suppose that any central element is
represented by a scalar in these representations. We use the comultiplication (2.1)
to form the tensor products. In general, two representations (t®n')°4 and
(v ®m)°A are not equivalent. The reason is as follows. Take an element of the
center of U, say ;. ,. Then we have

A1) = Ui 1+ Py D44

Therefore, if two representations (n®n')°A and (7' ® m)°A are equivalent, the
following identity follows.

m(%i+1) _ (%4 1)

(1 —iiv 1) - (1 — @iit)

Introduce the following element in the field of quotients of the center of (7,,,

Rii+1
T =—2
e 1=y

Then I, is invariant in the sense that its images under n and 7’ coincide. In
general, if we define I';; and I'j; inductively by

o= SZO Iy, T 1=¢u) O0=i<jsn—1),
i<ks<'-<ki<ko=]j
Bij= s;o I:ik."'fk,j(l—‘//ik,) O=gj<izn—-1),
i>ks> " >ki>ko=]
I'iyyji0=0(y), fi+1j+l = a(rij)s 2.2

they are invariant: n(I';) = n'(I'), n(I'y;) = n'(Fy).
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Remark. From
tr(n®@n')oAleg---e,— 1) =tr(n' @m)oAley---e,-1)
we have another necessary condition for the equivalence of two representations
(r®n')oA and (7' ® ) A;
(W'(2"+ 2 1@ Tt ) —m (@™ T ) tr mleg e €y )
=(ml(zo++2p—y g " ) =g T T ) (e ).

This condition is satisfied if the central element z,---z,_ ;q*®* " "*en-1) g
represented by 1 in both representations 7 and «".

2.3 Minimal Representations. We call a representation of U g cyclic if ef, f¥ are
represented by non-zero scalars. Recently cyclic representations of the quantized
universal enveloping algebras have been investigated by several authors [11-13].
In this paper we consider the following family of N"~! dimensional cyclic
representations with the parameters &= ((X;, @)o<i<n (€i/Ci+1)o<i<n—1)E(C*)*" 1

[14,7]. Consider W = ® V,, where V; =~ C™. Let Z,, X, be invertible linear operators
on W such that i=0

i-th
Z=10--®ZQ® @1,
i-th

X;=1®-Q@X® - ®1,
where X,ZeEnd(CY),ZX =¢XZ,Z¥ =1,X" = 1. Set

WO ={weW|Zy--Z,_,w=w}.

Note that dim W = N"~!. We fix the canonical bases {#;} = C", {w,,} = W® as
follows.

Zuj=u;_,, Xu;=q'u,

N-1
= kZO “mo+k®"'®um,.-1+k1 m=(m03-~-,mn—1)'

Consider the following representations on W with the parameter &=
((xi, ai)0§i<m(ci/ci+ 1)0§i<n—1)’
nye) = x{a:Z} X, XY,
n{(fi) = xi_l{ai+ 1Zis I}Xi_lXi+ 1
ndq) = aZy melz) = —— .
Ci+14iGi+ 1

This representation is irreducible for generic £. This choice of 7.(z;) satisfies the
condition in the Remark at the end of Subsect. 2.2. The expressions of the root
vectors e;; and f;; in this representation are given by

nley) =i X {@GZ} @1 Ziv 10051 Z;- )T X X7 0Si<jsn—1),
ng(fij)=(xi~1"'xj)_l{aizi}ai—lzi—l"'aj+lzj+1Xin_1 O=sj<izsn-1).
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The weight space
WQ o = {WeW@|Zw=g"w(O0=Li<n—-1)},

where my + --- + m,_, =0mod N, is one dimensional. For this reason we call this
representation the minimal cyclic representation.

The quantum R matrix is an invertible linear operator on W@ ® W® which
intertwines two representations m,; and mg,:

R, Omelg) = mz(9)R(E,E), geU, 23

As was discussed previously, for arbitrary ¢ and & there is no such intertwiner.

The invariants I';;, T, ;(0<i# j<n—1)should have the common value for 7, and

nz. For the minimal cyclic representation we have

.....

me(o;) = (1 —a?M) (X% 44 B DY

N N
n§(¢ij) = (%) s

n{(ﬂij) =(1 _ai_ZN)(xi— 1Xi-2 "'xj)wN,

N
7‘¢(‘//ij) = <_> . (2.4)

ca;
Fix ('Y, T {)o<i#j<n-1€(C™)**~ 1. Consider a subvariety (maybe void)
P ={Ee(C™P" Nn ) =T, m(l)=T7).

If it is not void, we call it a spectral variety. If an intertwiner (2.3) exists, then ¢
and ¢ should lie on the same spectral variety.
Set

Te(lii+2)
(i )Tt 134 2)
These are rational functions of 4;=a (0<i<n—1)and C;=(c;/c;+ ) (0=Li<n—2).

Ki=n§(rii+1)n.§(fi+li)a H;=

Lemma 2.1. For generic A;, C;, the Jacobian of the map

(g3 A4,-1,Cos...,Cp_ ) (Kg,...,K,_5,Hg,...,H,_3)
has rank 2n—3.
Proof. In the neighborhood of C;=0 (0 <i<n—2) we have

Aty
1- Al

K;=CfA;— A7 YAir1 — AL +0(C?), H;= + O0(C).

At C; =0 the Jacobian matrix

_ Koy, Kyo g Hos- s Hy )
3(Cor-rCprApr-n Ar_3)

is upper triangular with nonzero diagonal. This shows rank J=2n—-3. O

J
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Define the projections
Pr(C T S (CFPY, pyi(CH) T (€Y,
p1(&) = ((x;, ai)0§i<m (ci/cis 1)0§i<n— 1)
P2(((@)o<i<n> (€i/Cit 1)ogi<n-1)) = ((Ado<i<ns (Co<i<n—1)-

Then p, |, p, are finite maps, and p,°p,(¥) is contained in the variety {K; = const.,
H,=const.}. Lemma 2.1 shows that the latter (more precisely every irreducible
component of it passing through a point near C; =0) has dimension < (2n— 1) —
(2n—3)=2. In fact there is a two dimensional component of p,(¥) given by
an explicit parametrization Fix §=(k;, &, h)oi<n€(C™)" x C*". Define a two
dimensional subvariety S in (C*)*" w1th coordinates (x;, a;, ¢;)o << by the following

substitutions:
N ’ ’
a; s—A; s — s — A
<—'> = ,—l, (aici)N = #, X =1 ,—l

C; S =4 S— Uiy S —H;
Then the invariants are constant on Sy

)’l_”j—l \ﬂi—l -4
T = |I K s
¢( J) (§l$j—1 lﬂt—1‘#j—1//1'-.“j—1

1 M \)» Hi- 1
ng( 1) <§1;I IKI '11+1—)~/ﬂ. 17—

We introduce new parameters u;, v;, u;,v; (0 <i<n)in such a way that

N N
u=s—4, v =s—W,

N ’ N
uN=s—4, v¥N=5—pu,

a u Uiy u;
L aci=—r x;=xlN—.
u; Vi1 Ui

Note that r = (u;, ;)0 <i<n» ¥’ = (Ui, Vi)o <i<n lic On the curve
€, = {(“ia vi)0§i<n€(cx)2"'“£v + 4= U}v + Uj 0=ij< ")},

where y = (4;, Ui)o <i<n- Thus S; is a finite covering of the product of curves €, x €,.

The «;, 4;, 4; (0 < i <n) are the parameters of moduli and 7, are the spectral
parameters. If we fix the moduli parameters, the R matrix (if it ever exists) depends
on two sets of spectral parameters: R = R(r,#,7,7'). In Appendix A we show that
for a generic choice of 7, (r,#’) and (7,7') the R is unique up to a scalar multiple.

There is some redundancy in the moduli parameters. The change of x; makes
no change in R (see 3.1). Furthermore, the simultaneous projective transformation
of s,5',8,8" and 4, y; (0 =i < n) also preserves R. Therefore the number of essential
moduli parameters is 2n—3.

3. Intertwiner for Minimal Cyclic Representations

In this section we shall give an explicit solution to the intertwining relation (2.3).

3.1. The Case g =e;. First we solve (2.3) with g=e¢; for i=0,...,n— 1. In terms
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Fig. 1. R matrix factorized into four operators

of u;,v; and «;, m.z(e;) is given by
_ ~ ~ -1 -1 ~ ~ p—1 -1 -1
'lingf(ei)_v;—lvi—luiv;ZiXiXi+l®Zi — 0 O D ZT T X X R Z;
~ ~ -1 ~ ~ -1 -1
+ 0 T 02 Q@ Z, X Xy — Vi b0t Z, R Z T X X,

where 1, = (q—q~ V)a;dv;_ 5 ,v}5:/(xc;)'N. Therefore R(¢, &) can be chosen inde-
pendently of x;. Set

N =1hi—mw), 2=XXLH®X X, )™V
Ci=(Z}@1)(2:82-1) ' =(22-,) ' (ZI®1),
Ci =(1 ®Zi_2)gigi—1 =00, ®Zi-2)~

Proposition 3.1. Suppose S, T and T satisfy the following equations for all i:
S,:(2)C;6,(u;5,92; — 30,92, ")

=01 (1B 12 — 0,1 2;74)CS,(R), (3.1a)
TAC)g™ 01— 1v; - C; + Ou;5,) 2}

=(q7'0;_ 41 B;_ 1 C; + 0,8,0,) 2} T(C), (3.1b)
TAC)(@d;— ;- 15— C; + 8,11,0,) Q27

= (98- 18— 10; -, C; + 6:u;5) 2 > T,,(C). (3.1¢)

Then
R(£,8) =S,.(2) ' T,(O)T,,(C)S,-(2)
satisfies (2.3) with g = e; for all i

The proof is left to Appendix B.
The solutions to (3.1) are given as follows. First note that 2;, C; act on the
base elements w,,e W® as

_ k=Da
Qw5 @wy =q* Vi twy, @ wy,
— 4 k—=Di-
Ciwy @wy =4 THIW -y @ Wy,
1

vi=0,...,1,...,0), k;=k —k;.
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Set
S QW @ Wy = 0,:(k — 1) "' wy @ wy.
Then (3.1a) is reduced to the recurrence relations

om+v;) 6 (g™ U101 —q ™10 4)

= s 32
0,:(m) Oi(gme+  F luy — gt ;) 32)

which determine the a,,(m) uniquely up to an overall scalar multiple. Next let

n—1 n—1
T(C)= ;Gﬁ(m) ,-Uo @™o ,Do (R2.02,_)™™,

_ n—1 n—1

T,(C)=To,m) [] 1@Z;*™) [T (2:82:-1)".
Substltute the above expression for T into (3.1b) and equate the coefficients of
n (Z™®1) ]_[ (2;92;-,)"™ x Q% do likewise for T and (3.1c). Then we find
that (3.1b,¢) are reduced to the same relation (3.2).

3.2. Remaining Cases. The above R(¢,E) clearly satisfies (2.3) with g =gq%,z
(i=0,...,n—1). Finally we consider (2.3) with g= f; (i=0,...,n—1). Let

= R(&8) T RE Emea(f;) — mze(f)R(E ).
We can easily show that this R satisfies the following relations:
[mez(e:), Rj1 =0,
(@R = g™+ " Rimg(q™).

Then from Proposition A.2 it follows that R; vanishes.
Therefore the obtained R(¢, & ) is the intertwiner of the two representations Tz
and 7z,. We shall show in Appendix A the following

Theorem 3.2. The intertwiner R satisfies the Yang—Baxter equation,
(R, )@ DI @REDREN®1) =1 REMIRE D@ NI QR(#, (). (3.3)
In the base {w,} this R matrix has factorized matrix elements:

z pr’?’(j’ l)pir’(l’ m)prr’(m’ k)
ILm pri’(j: k)

R(¢, E)W2j®W2k = W2 Q@ Wy,
where
n—1

pik, 1) = qp(k'l)arf(k =), PkI)= Z kil 1 — ki1 1)
i=0

3.3. Symmetries. In this section we shall give certain symmetries which simplify
some of the computations in the previous sections.

Define U, (g[(n Q)) to be an associative algebra over Q(q) (¢ = ez"'/”) with the
generators e;, f;,q*®, zt! (0 <i<n) and the c defining relations given in 2.1. Let 6
be a Q-linear involutlve automorphism of U, (gI(n Q)) such that

o(ei)=fn—i’ 0(q£i)=q*8n—i+x’ o(zi)=zn—i9 0(‘1)=q_1
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Fig. 2. Boltzmann weights of the generalized chiral Potts model
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Fig. 3. Matrix element of the R matrix

Then we have
B®0)oA= A-0.

Recall the definition of W'® in 2.3. Let us denote by W' the Q(q) vector space
defined similarly with C replaced by Q(g).
Denote by A4 the rational function field over Q(qg) in the variables

(Ais s 167N, 04, x4, Xi, @i, Gy, Ciy Ciy Uy, By, 0;, By, U, 18, 07, 7)o <i<n:
Let J be the ideal of A generated by the following relations.
oA —p) =1,
ul + A =v) +pj, uN+ A =0 +p,
B+ =0 +u, aN+4=0"+u,

- —_ 1y ! _ . 1/N,/
au;=ci;,  aiCv;_y =Vi_y, X;=x}"Nuj,
' o ~ o 1N

~) ~ ~ o~ ~/
Up=Cilly; GiCi0;—y = Vi1, X0 =K U;.
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Set B= A/J. We denote by E the B subalgebra of B®q,, End W'® generated by
(Zi, X:)o <i<n- Define a Q-linear involutive automorphism * of E by

* — -1 * % __ ,—1
Z¥=Z, 15 X¥=X,_i+1,» 9*=9 ",

Methy K=Y, o=,
x?‘:xn__li, a;k=a,,—-li+l: c?‘=cn—i+l’
X=x71 a¥=ad,"v1, G =Ciiv1s
uf=v,_, W=t B =P =0

Note that m, (&=(x;a;C)o<i<n) and m; (€=(%;,d;8)o<i<n) are Q(g)-linear
homomorphisms
Tg, Mg ﬁq@(n, Q))—-E.
The following symmetry is valid.
(mo0(g)* =nlg), (n°0(9))* =mx(g), for geUy(gl(n, Q)).
Suppose that ReE® E satisfies
R(n; ®mz)° Alg) = (m; @ )° A(9)R,
for some ge U,(gl(n, Q)). Then we have
(R(m; ® mz)° A(g))* = R*((mg°0 @ mzo0)°A°6(g))*

= R¥(n; @ mz)°A°6(g)

= (1;® ;) A°0(g)R*.
It is easy to check that

R E* = RE D).

Therefore, the intertwining equation (2.3) for f; follows from that for e;.

Appendix A. Proof of the Yang—Baxter Equation

The goal of this appendix is to prove that the intertwiner of Sect. 3 satisfies YBE (3.3).

A.l. Trigonometric Limit. We begin with the discussion of the minimal cyclic
representations in the trigonometric limit. This means the case where the moduli
K;, A, Wi, and hence a; = a, ¢; = ¢, x; = x, are all independent of i. In fact ¢ does not
enter the representation. Denoting this representation by =, we have

mle) =x{aZ;} X, X},
n(f)=x"HaZ;\ 3 X7 ' Xirys
n{q¥)=aZ;, mfz)=a > (A.1)
The following Proposition will be of use later.

Proposition A.1. Let (W'?,,) be as above, and let (V',) be a finite dimensional
representation of U,. Consider the linear equation for FEEnd(W @ ® V')
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[(n,®@n)A(e), F1=0 forall i
(. @) AG")F = q™F(n. @) A(q™) forall i (A2
Here the m; are given integers satisfying Zmi = 0. Then, for generic x, F has the

form F=]]Z¥®F', F'eEnd(V'), with k,-ik,-J,1 +m;=0 and

[7'(e;), FF1=0 for alli,
(q*)F' = q™Fn'(q%) for all i. (A.3)

Proof. Clearly F of the form (A.3) satisfies (A.2). Therefore it is sufficient to show
that the only solutions are of this form at some special value x = x,. We shall take
Xo = 0.

First consider the case n > 2, and define

A =[x (7, @n)Ae), x (n, @ 7)A€+ 1)],21,
B=[x"'(n,®@n)A(e;-1), A+ A= )x 11 ~¢7).
Here [a, ],+1 = af —q* ' fo. Clearly (A.2) imply the equations
[A.,F1=[B,F]1=0. (A4)
Substituting (A.1) one finds after some calculation that
A AT =(aZ;y )2 @1+ 0(x7Y),
B=0(Z)X; X 2X;_  ®@7(e;g" %)
+ 0,3V D)X A X X ®n (e 147 )+ 0(x7Y),

where ¢(Z) and y/(Z) are some invertible polynomials in the Z;. Specializing the
Egs. (A.2), (A4) to x = 0o one obtains

[{aZ}X X\, ®7'(g™*),F]1=0, (A.5a)
Z;@n(q")F =q™FZ,®@n'(q"), (A.5b)
[Z,,;®1,F]=0, (A.5¢)
[P(D)X; 41 X7 2X; 1 ®T(e,q" %), F1=0, (A.5d)
WX XTI X @ (e 197 ™% "), F]=0 if n=3. (A.5e)

Here we have used the fact that X, X; %X, ; and X} X7 'X?_, are linearly
independent. Equations (A.5a) through (A.Sc) imply that F has the form [[ Z¥ ® F/

with k; — k;, ; + m; =0 and 7'(¢*)F’' = ¢™F'n'(q¢*). From (A.5d) and (A.SeS one then
concludes [7'(e;), F']=0.
Next consider the case n= 2. Set

D;=x"'(n,®@n')Ale;), E=[DyD,,D,D,].
Noting that g*** is central, one has
D.D;,,(1®n' (g ") = {aZ;}{agZ;,,} ® 1+ O(x 1),
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EQ®n(g°™™)/(x 'a" (g +q™ ")
={aZ,}Z, X, X' ®7'(e;q™ %)
- {aZ1}21X1X0_1 ®n'(egq ™)+ O(x ).

Using D,, E in place of 4., B and arguing similarly as above, one arrives at the
same conclusion. []

A.2. Indecomposability of Tensor Products. Let (V,n) be a finite dimensional

representation of U It is said to be indecomposable if, for FEEnd(V), [F,n(g)]1=0
for any geU 1mp11es FeCid.

p-times

Forp=1weset S, = U §; X Sﬂ, where S, denotes the variety defined in Sect. 2

and 7 = (k;, 4;, u,-)0§i<,,. Since S; is irreducible if § is generic, &, is also irreducible.
Let AP =(A® .- ®1)cAP~ 1 AV = A, The following shows that the tensor
products of the 7, are generically indecomposable.

p-times

Proposition A.2. For generic § and (§;);<;<p€S; X --- X §;, the only solution of the
equation

(e, ® - ®@7y,)° AP e;), F]1=0,
(7‘:1 ®--- ®n§p)°A("_ 1)(q5i)F
=q"F(n;, ® ...®n§p)oA(P—l)(qs.~)
is
F=scalar if m=0,
=0 otherwise.

Proof. 1tisenough to show the assertion in the case where 7,, are all trigonometric.
Thanks to Lemma A.1 the proof is reduced to the case p =1 by induction. But
the case p =1 can be shown easily. [J

Remark. By decomposing F into joint eigenvectors of the Ad(g®), it is clear from
the proof that the indecomposability holds with respect to the subalgebra of U,
generated by ¢,(0 <i<n).

Corollary A.3. For generic 5 and (£,E) the intertwiner (2.3) is unique up to scalar
multiple.

A.3. Yang—Baxter Equation. From the above results YBE follows by a general
argument [15]. Let Q, (respectively Q) denote the left-(respectively right-) hand
side of (3.3). Since the R(&,n) are intertwiners, F=Q;'Qr commutes with

T, = (M @ T, @ )0 A
[F,Te(g)]1=0 for any geU,.
Proposition A.2 then shows for generic (&,7,() that F is a scalar, namely

pQrL=0r

with some scalar p. Comparing the determinant one finds that p is a root of unity,
and hence is independent of the parameters (¢, #, (). From the formula (3.1) it can
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be checked that R(¢, &) is a scalar. Hence setting £ =# = { one obtains p = 1. This
proves YBE.

Appendix B. Proof of Proposition 3.1.

Let
Q; =(XiXi_+ll®Xi—1Xi+ 1)(1_N)/2a
Ci= (ZIZ ®NR2:0Q2;-,)" '= (£2:82;-1)” 1(Zi2 ®1),
C.=(19Z79)02.02,_ =022, ,(1®Z 3,
Y,=XX7A®1l, Y=19X.X\, Ki=ZQ®Z,.
Then C;,C,,Q,,Y,;, Y, and K; satisfy the following relations:
(Y, Y1=[Y,Y,]=[Y,Y,1=[C,,C;]=[C: Y;]=[C;, Y;1=0,
[Q,,.Q,] [K,2,1=[K;,C;1=[K;C;]1=0,
=Y(Y) !, CQ2,=K}CQ2?
CiCiyv1 =9 %Ci11C;, [C,C[1=0 (j#it 1modn),
CCiv1=4*Civ,C, [C,C;1=0 (j#it lmodn),
C0,=q0.C;, C2,_,=q'Q,_,C, [C,R2;1=0 (j#i,i—1modn),
C02,=902C, C0Q,_,=q9"'9,_,C, [C,21=0 (j#ii—1modn).
In terms of these opefators, we have
ﬂi”gf(ei) =v;_ ;- K{ YCiu 7192, - v, 07 1)-0;'— 1Y
+ v 0K Y — v D UK Y
Using (3.1a), we have
8:S,(Q)nm,5(e,)S, () = vj_ - Ki(qd;— yui— 1 B;— 1 C; + 6,10 Y,
— 0,0 K7 Ng 0=yl Ui Ci + ST Y
Using (3.1b, c), we have
8T, (O)T(C)S,+(Dnim (e)S,#(2) ' T, AC) ™' T, (O) !
=010 K0y (- g0 1 Q5 — - 5 Q7H)C L Y,
+ 0,0, _ 10— u;p, K, Y, — v, ;0K 1Y)
Finally using (3.1a) again, we get (2.3) for g =e;.
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