Generalized Chiral Potts Models and Minimal Cyclic Representations of $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$

Etsuro Date¹, Michio Jimbo², Kei Miki,³* and Tetsuji Miwa⁴

- ¹ Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
- ² Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan
- ³ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan
- ⁴ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received September 11, 1990; in revised form October 15, 1990

Abstract. We present for odd N a construction of the N^{n-1} -state generalization of the chiral Potts model proposed recently by Bazhanov et al. The Yang-Baxter equation is proved.

1. Introduction

The discovery of the chiral Potts model [1-4] opened a new phase in the theory of Yang-Baxter equations (YBE). It gave the first example of an R matrix (= solution to YBE) whose spectral parameters live on an algebraic variety other than \mathbf{P}^1 or an elliptic curve. Through the latest developments [5-8] it has become apparent that quantum groups at roots of 1 should lead to this type of R matrices. Because of the technical complexity, this program has been worked out so far only in a few simple examples. Besides the chiral Potts model, which is related to $U_q(\widehat{\mathfrak{sl}}(3,\mathbf{C}))$, these are the cases corresponding to $U_q(\widehat{\mathfrak{sl}}(3,\mathbf{C}))$ ([7] for $q^3=1$, [9] for $q^4=1$) or $U_q(A_2^{(2)})$ [8]. In a recent paper [10] Bazhanov et al. proposed a generalization of the chiral Potts model related to N^{n-1} dimensional irreducible representations of $U_q(\widehat{\mathfrak{sl}}(n,\mathbf{C}))$ at $q^N=1$. The aim of this paper is to give a proof to their conjecture.

Let us formulate the problem more precisely. Throughout the paper we fix a primitive N^{th} root of unity q, with N an odd integer ≥ 3 . We shall deal with a Hopf algebra \tilde{U}_q (essentially the quantum double of a "Borel" subalgebra of $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$ [8]. As an algebra \tilde{U}_q is a trivial extension of $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$ by central elements, with the comultiplication being twisted by them. In this paper

^{*} Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists

we shall focus on a family of N^{n-1} -dimensional irreducible representations $(W^{(0)}, \pi_{\xi})$ of \tilde{U}_q parametrized by $\xi \in (\mathbf{C}^{\times})^{3n-1}$. Set

$$\pi_{\xi\,\tilde{\xi}} = (\pi_{\xi} \otimes \pi_{\tilde{\xi}}) \circ \Delta,$$

where Δ denotes the comultiplication. Consider now an intertwiner between the two tensor representations $\pi_{\xi\bar{\xi}}$ and $\pi_{\bar{\xi}\xi}$, namely a linear isomorphism $R(\xi, \tilde{\xi})$: $W^{(0)} \otimes W^{(0)} \xrightarrow{\sim} W^{(0)} \otimes W^{(0)}$ such that

$$R(\xi, \tilde{\xi})\pi_{\xi\tilde{\xi}}(g) = \pi_{\tilde{\xi}\xi}(g)R(\xi, \tilde{\xi}) \quad (g \in \tilde{U}_q).$$

It is a common feature of q being a root of 1 [5] that, for the existence of $R(\xi, \tilde{\xi})$ the parameters $\xi, \tilde{\xi}$ are forced to lie on a common algebraic variety S. As it turns out, in our case S is a finite cover of $\mathscr{C}_{\gamma} \times \mathscr{C}_{\gamma}$, where \mathscr{C}_{γ} denotes the algebraic curve,

$$\mathscr{C}_{\gamma} = \{ r = (u, v) \in \mathbb{C}^{2n} | u_i^N + \lambda_i = v_j^N + \mu_j \ 0 \le i, j < n \},$$

parametrized by $\gamma = (\lambda_i, \mu_i)_{0 \le i < n}$. Following the general scheme [8] it can be shown that if $R(\xi, \tilde{\xi})$ exists, then it is unique up to a scalar multiple, and that it satisfies YBE. For n=2 this construction reproduces the chiral Potts model [5,8].

YBE. For n=2 this construction reproduces the chiral Potts model [5,8]. Let now $\xi, \tilde{\xi} \in S$ and let $(r, r'), (\tilde{r}, \tilde{r}')$ be the corresponding points on $\mathscr{C}_{\gamma} \times \mathscr{C}_{\gamma}$. In the present case the intertwiner is given as a product of four matrices

$$R(\xi, \tilde{\xi}) = S_{\tilde{r}r'}^{-1} T_{r'\tilde{r}'} \bar{T}_{r\tilde{r}} S_{r\tilde{r}'}, \tag{1.1}$$

and each factor can be described explicitly. However the matrix elements of $R(\xi, \tilde{\xi})$ itself are rather cumbersome (if we use the standard comultiplication of \tilde{U}_q , see below). At this stage we received a paper by Bazhanov et al. [10] in which they proposed a simple factorized form of the matrix elements. In our notations they read as follows:

$$R(\xi,\widetilde{\xi})_{lm,jk} = \frac{\rho_{r'\bar{r}'}(j,l)\rho_{\bar{r}r'}(l,m)\rho_{r\bar{r}}(m,k)}{\rho_{r\bar{r}'}(j,k)},$$
(1.2)

where $j, k, l, m \in \mathbb{Z}^n \mod \mathbb{Z}(1, ..., 1)$, and the coefficients are given by

$$\begin{split} \rho_{r\bar{r}}(k,l) &= q^{P(k,l)} \sigma_{r\bar{r}}(k-l), \quad P(k,l) = \sum_{i} (k_i l_{i+1} - k_{i+1} l_i), \\ \frac{\sigma_{r\bar{r}}(m+v_i)}{\sigma_{r\bar{r}}(m)} &= \frac{\delta_{i-1} (q^{m_{i-1}i} u_{i-1} \tilde{v}_{i-1} - q^{-m_{i-1}i} \tilde{u}_{i-1} v_{i-1})}{\delta_i (q^{m_{ii+1}+1} u_i \tilde{v}_i - q^{-m_{ii+1}-1} \tilde{u}_i v_i)}, \\ v_i &= (0,\ldots,\overset{i}{1},\ldots,0), \quad m_{ij} = m_i - m_j, \quad \delta_i^N = \frac{1}{\lambda_i - u_i}. \end{split}$$

Guided by this formula we then noticed that a modification of the comultiplication leads directly to the R matrix (1.1) which differs from the old one by similarity and has factorized matrix elements (1.2) in a natural basis of $W^{(0)}$.

The text is organized as follows. In Sect. 2 we describe the minimal cyclic representation, thereby fixing the notations. We introduce the "spectral variety" S arising from necessary conditions for the existence of the intertwiner. In Sect. 3 we solve the intertwining relation for the $R(\xi, \tilde{\xi})$. In Appendix A we prove the indecomposability of tensor product representations and that the intertwiner satisfies YBE. Appendix B is devoted to some details of the proof given in Sect. 3.

2. Spectral Varieties for Minimal Cyclic Representations

2.1. $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$. Let $\mathfrak{h}_{\mathbf{Z}}$ be a free \mathbf{Z} module of rank n spanned by ε_i $(0 \le i < n)$. We introduce $\mathfrak{h} = \mathfrak{h}_{\mathbf{Z}} \otimes_{\mathbf{Z}} \mathbf{C}$ and a symmetric bilinear form $(\ ,\)$ on \mathfrak{h} such that $(\varepsilon_i, \varepsilon_j) = \delta_{ij}$. We extend the definition of ε_i in such a way that $\varepsilon_{i+n} = \varepsilon_i$. We set $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$.

The quantized universal enveloping algebra $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$ is a C-algebra generated by the symbols e_i , f_i $(0 \le i < n)$ and q^h $(h \in \mathfrak{h}_{\mathbf{Z}})$ with the following relations:

$$\begin{split} q^{h+h'} &= q^h q^{h'}, \quad q^0 = 1, \\ q^h e_i q^{-h} &= q^{(h,\alpha_i)} e_i, \quad q^h f_i q^{-h} = q^{-(h,\alpha_i)} f_i, \quad [e_i, f_j] = \delta_{ij} \{q^{\alpha_i}\}, \\ \sum_{k=0}^{1-a_{ij}} (-1)^k e_i^{(k)} e_j e_i^{(1-a_{ij}-k)} = 0, \quad \sum_{k=0}^{1-a_{ij}} (-1)^k f_i^{(k)} f_j f_i^{(1-a_{ij}-k)} = 0 \quad i \neq j. \end{split}$$

Here $a_{ii}=2$, and $a_{01}=a_{10}=-2$ for $n=2, a_{ij}=-1$ $(i\equiv j\pm 1 \bmod n)$ or =0 (otherwise, for n>2. We also use the notations

$$\{a\} = \frac{a - a^{-1}}{q - q^{-1}}, \quad [k] = \{q^k\}, \quad [k]! = [k] \cdots [1], \quad a^{(k)} = \frac{a^k}{[k]!}.$$

In the following the indices related to simple roots, e.g., i for e_i , should be understood as modulo n.

We add n central elements z_i $(0 \le i < n)$ and their inverses z_i^{-1} to $U_q(\widehat{\mathfrak{gl}}(n, \mathbb{C}))$ and denote the extended algebra simply by \tilde{U}_q . We use the comultiplication Δ of the form

$$\Delta(e_i) = e_i \otimes q^{-\varepsilon_i} + z_i q^{\varepsilon_i} \otimes e_i,
\Delta(f_i) = f_i \otimes q^{\varepsilon_{i+1}} + z_i^{-1} q^{-\varepsilon_{i+1}} \otimes f_i,
\Delta(q^h) = q^h \otimes q^h, \quad \Delta(z_i) = z_i \otimes z_i.$$
(2.1)

Remark. This differs from the standard comultiplication $\tilde{\Delta}$ for which we have

$$\widetilde{\Delta}(e_i) = e_i \otimes 1 + z_i q^{\alpha_i} \otimes e_i,$$

$$\widetilde{\Delta}(f_i) = f_i \otimes q^{-\alpha_i} + z_i^{-1} \otimes f_i.$$

Denote by σ the automorphism of \widetilde{U}_q such that $\sigma(e_i) = e_{i+1}$, $\sigma(f_i) = f_{i+1}$, $\sigma(q^{e_i}) = q^{e_{i+1}}$ and $\sigma(z_i) = z_{i+1}$. We define the root vectors e_{ij} and f_{ij} inductively by

$$\begin{split} e_{ii+1} &= e_i, \quad f_{i+1i} = f_i & (0 \le i \le n-1), \\ e_{ij} &= e_{ik} e_{kj} - q e_{kj} e_{ik} & (0 \le i < k < j \le n-1), \\ f_{ij} &= f_{ik} f_{kj} - q^{-1} f_{kj} f_{ik} & (0 \le j < k < i \le n-1), \\ \sigma(e_{ij}) &= e_{i+1j+1}, \quad \sigma(f_{ij}) = f_{i+1j+1}. \end{split}$$

Then we have

$$\begin{split} \Delta(e_{ij}) &= e_{ij} \otimes q^{-\varepsilon_i - \dots - \varepsilon_{j-1}} \\ &+ (1 - q^2) \sum_{i < k < j} z_i \cdots z_{k-1} q^{\varepsilon_i + \dots + \varepsilon_{k-1}} e_{kj} \otimes e_{ik} q^{-\varepsilon_k - \dots - \varepsilon_{j-1}} \\ &+ z_i \cdots z_{j-1} q^{\varepsilon_i + \dots + \varepsilon_{j-1}} \otimes e_{ij}, \quad (0 \le i < j \le n-1), \end{split}$$

$$\begin{split} \Delta(f_{ij}) &= f_{ij} \otimes q^{\varepsilon_i + \dots + \varepsilon_{j+1}} \\ &+ (1 - q^{-2}) \sum_{i > k > j} (z_{i-1} \cdots z_k)^{-1} q^{-\varepsilon_i - \dots - \varepsilon_{k+1}} f_{kj} \otimes f_{ik} q^{\varepsilon_k + \dots + \varepsilon_{j+1}} \\ &+ (z_{i-1} \cdots z_j)^{-1} q^{-\varepsilon_i - \dots - \varepsilon_{j+1}} \otimes f_{ij}, \quad (0 \le j < i \le n-1). \end{split}$$

2.2 Invariants. In this paper we consider the case $q=e^{2\pi i/N}$ with $N\geq 3$ odd. In this case \tilde{U}_q has a large center [11]. We define the following central elements:

$$\begin{split} \alpha_{ij} &= ((1-q^2)e_{ij}q^{\varepsilon_i+\cdots+\varepsilon_{j-1}})^N & (0 \leq i < j \leq n-1), \\ \phi_{ij} &= (z_i\cdots z_{j-1}q^{2(\varepsilon_i+\cdots+\varepsilon_{j-1})})^N & (0 \leq i < j \leq n-1), \\ \beta_{ij} &= ((1-q^{-2})f_{ij}q^{-\varepsilon_i-\cdots-\varepsilon_{j+1}})^N & (0 \leq j < i \leq n-1), \\ \psi_{ij} &= (z_{i-1}\cdots z_jq^{2(\varepsilon_i+\cdots+\varepsilon_{j+1})})^{-N} & (0 \leq j < i \leq n-1), \\ \alpha_{i+1\,j+1} &= \sigma(\alpha_{ij}), \quad \phi_{i+1\,j+1} &= \sigma(\phi_{ij}), \\ \beta_{i+1\,j+1} &= \sigma(\beta_{ij}), \quad \psi_{i+1\,j+1} &= \sigma(\psi_{ij}). \end{split}$$

Then we have

$$\Delta(\alpha_{ij}) = \alpha_{ij} \otimes 1 + \sum_{i < k < j} \phi_{ik} \alpha_{kj} \otimes \alpha_{ik} + \phi_{ij} \otimes \alpha_{ij} \quad (0 \le i < j \le n - 1),$$

$$\Delta(\beta_{ij}) = \beta_{ij} \otimes 1 + \sum_{i > k > j} \psi_{ik} \beta_{kj} \otimes \beta_{ik} + \psi_{ij} \otimes \beta_{ij} \quad (0 \le j < i \le n - 1).$$

Consider representations π and π' . Suppose that any central element is represented by a scalar in these representations. We use the comultiplication (2.1) to form the tensor products. In general, two representations $(\pi \otimes \pi') \circ \Delta$ and $(\pi' \otimes \pi) \circ \Delta$ are not equivalent. The reason is as follows. Take an element of the center of \tilde{U}_q , say α_{ii+1} . Then we have

$$\Delta(\alpha_{ii+1}) = \alpha_{ii+1} \otimes 1 + \phi_{ii+1} \otimes \alpha_{ii+1}.$$

Therefore, if two representations $(\pi \otimes \pi') \circ \Delta$ and $(\pi' \otimes \pi) \circ \Delta$ are equivalent, the following identity follows.

$$\frac{\pi(\alpha_{i\,i+1})}{\pi(1-\phi_{i\,i+1})} = \frac{\pi'(\alpha_{i\,i+1})}{\pi'(1-\phi_{i\,i+1})}.$$

Introduce the following element in the field of quotients of the center of \tilde{U}_q ,

$$\Gamma_{ii+1} = \frac{\alpha_{ii+1}}{1 - \phi_{ii+1}}.$$

Then Γ_{ii+1} is invariant in the sense that its images under π and π' coincide. In general, if we define Γ_{ij} and $\bar{\Gamma}_{ij}$ inductively by

$$\alpha_{ij} = \sum_{\substack{s \geq 0 \\ i < k_s < \dots < k_1 < k_0 = j}} \Gamma_{ik_s} \dots \Gamma_{k_1 j} (1 - \phi_{ik_s}) \quad (0 \leq i < j \leq n - 1),$$

$$\beta_{ij} = \sum_{\substack{s \geq 0 \\ i > k_s > \dots > k_1 > k_0 = j}} \overline{\Gamma}_{ik_s} \dots \overline{\Gamma}_{k_1 j} (1 - \psi_{ik_s}) \quad (0 \leq j < i \leq n - 1),$$

$$\Gamma_{i+1 j+1} = \sigma(\Gamma_{ij}), \quad \overline{\Gamma}_{i+1 j+1} = \sigma(\overline{\Gamma}_{ij}), \qquad (2.2)$$

they are invariant: $\pi(\Gamma_{ij}) = \pi'(\Gamma_{ij})$, $\pi(\overline{\Gamma}_{ij}) = \pi'(\overline{\Gamma}_{ij})$.

Remark. From

$$\operatorname{tr}(\pi \otimes \pi') \circ \Delta(e_0 \cdots e_{n-1}) = \operatorname{tr}(\pi' \otimes \pi) \circ \Delta(e_0 \cdots e_{n-1})$$

we have another necessary condition for the equivalence of two representations $(\pi \otimes \pi') \circ \Delta$ and $(\pi' \otimes \pi) \circ \Delta$;

$$(\pi'(z_0 \cdots z_{n-1} q^{\varepsilon_0 + \cdots + \varepsilon_{n-1}}) - \pi'(q^{-\varepsilon_0 - \cdots - \varepsilon_{n-1}})) \operatorname{tr} \pi(e_0 \cdots e_{n-1})$$

$$= (\pi(z_0 \cdots z_{n-1} q^{\varepsilon_0 + \cdots + \varepsilon_{n-1}}) - \pi(q^{-\varepsilon_0 - \cdots - \varepsilon_{n-1}})) \operatorname{tr} \pi'(e_0 \cdots e_{n-1}).$$

This condition is satisfied if the central element $z_0 \cdots z_{n-1} q^{2(\epsilon_0 + \cdots + \epsilon_{n-1})}$ is represented by 1 in both representations π and π' .

2.3 Minimal Representations. We call a representation of \tilde{U}_q cyclic if e_i^N , f_i^N are represented by non-zero scalars. Recently cyclic representations of the quantized universal enveloping algebras have been investigated by several authors [11-13]. In this paper we consider the following family of N^{n-1} dimensional cyclic representations with the parameters $\xi = ((x_i, a_i)_{0 \le i < n}, (c_i/c_{i+1})_{0 \le i < n-1}) \in (\mathbb{C}^\times)^{3n-1}$

[14, 7]. Consider $W = \bigotimes_{i=0}^{n-1} V_i$, where $V_i \cong \mathbb{C}^N$. Let Z_i, X_i be invertible linear operators on W such that

$$Z_i = 1 \otimes \cdots \otimes \overset{i\text{-th}}{Z} \otimes \cdots \otimes 1,$$

$$X_i = 1 \otimes \cdots \otimes \overset{i\text{-th}}{X} \otimes \cdots \otimes 1,$$

where $X, Z \in \text{End}(\mathbb{C}^N), ZX = qXZ, Z^N = 1, X^N = 1$. Set

$$W^{(0)} = \{ w \in W | Z_0 \cdots Z_{n-1} w = w \}.$$

Note that dim $W^{(0)} = N^{n-1}$. We fix the canonical bases $\{u_i\} \subset \mathbb{C}^N$, $\{w_m\} \subset W^{(0)}$ as follows.

$$Zu_i = u_{i-1}, \quad Xu_i = q^i u_i,$$

 $w_m = \sum_{k=0}^{N-1} u_{m_0+k} \otimes \cdots \otimes u_{m_{n-1}+k}, \quad m = (m_0, \dots, m_{n-1}).$

Consider the following representations on $W^{(0)}$ with the parameter $\xi = ((x_i, a_i)_{0 \le i < n}, (c_i/c_{i+1})_{0 \le i < n-1})$.

$$\pi_{\xi}(e_i) = x_i \{a_i Z_i\} X_i X_{i+1}^{-1},$$

$$\pi_{\xi}(f_i) = x_i^{-1} \{a_{i+1} Z_{i+1}\} X_i^{-1} X_{i+1},$$

$$\pi_{\xi}(q^{e_i}) = a_i Z_i, \quad \pi_{\xi}(z_i) = \frac{c_i}{c_{i+1} a_i a_{i+1}}.$$

This representation is irreducible for generic ξ . This choice of $\pi_{\xi}(z_i)$ satisfies the condition in the Remark at the end of Subsect. 2.2. The expressions of the root vectors e_{ij} and f_{ij} in this representation are given by

$$\pi_{\xi}(e_{ij}) = x_i \cdots x_{j-1} \{ a_i Z_i \} (a_{i+1} Z_{i+1} \cdots a_{j-1} Z_{j-1})^{-1} X_i X_j^{-1} \quad (0 \le i < j \le n-1),$$

$$\pi_{\xi}(f_{ij}) = (x_{i-1} \cdots x_i)^{-1} \{ a_i Z_i \} a_{i-1} Z_{i-1} \cdots a_{i+1} Z_{i+1} X_i X_i^{-1} \quad (0 \le j < i \le n-1).$$

The weight space

$$W_{m_0,\ldots,m_{n-1}}^{(0)} = \{ w \in W^{(0)} | Z_i w = q^{m_i} w \ (0 \le i \le n-1) \},$$

where $m_0 + \cdots + m_{n-1} \equiv 0 \mod N$, is one dimensional. For this reason we call this representation the *minimal* cyclic representation.

The quantum R matrix is an invertible linear operator on $W^{(0)} \otimes W^{(0)}$ which intertwines two representations $\pi_{\xi\xi}$ and $\pi_{\xi\xi}$:

$$R(\xi, \tilde{\xi}) \pi_{\xi \tilde{\xi}}(g) = \pi_{\tilde{\xi} \xi}(g) R(\xi, \tilde{\xi}), \quad g \in \tilde{U}_{q}. \tag{2.3}$$

As was discussed previously, for arbitrary ξ and $\tilde{\xi}$ there is no such intertwiner. The invariants Γ_{ij} , $\bar{\Gamma}_{ij}$ $(0 \le i \ne j \le n-1)$ should have the common value for π_{ξ} and $\pi_{\tilde{\xi}}$. For the minimal cyclic representation we have

$$\pi_{\xi}(\alpha_{ij}) = (1 - a_i^{2N})(x_i x_{i+1} \cdots x_{j-1})^N,$$

$$\pi_{\xi}(\phi_{ij}) = \left(\frac{c_i a_i}{c_j a_j}\right)^N,$$

$$\pi_{\xi}(\beta_{ij}) = (1 - a_i^{-2N})(x_{i-1} x_{i-2} \cdots x_j)^{-N},$$

$$\pi_{\xi}(\psi_{ij}) = \left(\frac{c_i a_j}{c_j a_i}\right)^N.$$
(2.4)

Fix $(\Gamma_{ij}^0, \bar{\Gamma}_{ij}^0)_{0 \le i \ne j \le n-1} \in (\mathbb{C}^{\times})^{2n(n-1)}$. Consider a subvariety (maybe void)

$$\mathcal{S} = \{ \xi \in (\mathbb{C}^{\times})^{3n-1} | \pi_{\xi}(\Gamma_{ij}) = \Gamma^{0}_{ij}, \quad \pi_{\xi}(\overline{\Gamma}_{ij}) = \overline{\Gamma}^{0}_{ij} \}.$$

If it is not void, we call it a spectral variety. If an intertwiner (2.3) exists, then ξ and $\tilde{\xi}$ should lie on the same spectral variety.

Set

$$K_i = \pi_{\xi}(\Gamma_{i\,i\,+\,1})\pi_{\xi}(\overline{\Gamma}_{i\,+\,1\,i}), \quad H_i = \frac{\pi_{\xi}(\Gamma_{i\,i\,+\,2})}{\pi_{\xi}(\Gamma_{i\,i\,+\,1})\pi_{\xi}(\Gamma_{i\,+\,1\,i\,+\,2})}.$$

These are rational functions of $A_i = a_i^N$ $(0 \le i \le n-1)$ and $C_i = (c_i/c_{i+1})^N$ $(0 \le i \le n-2)$.

Lemma 2.1. For generic A_i, C_i , the Jacobian of the map

$$(A_0,\ldots,A_{n-1},C_0,\ldots,C_{n-2})\mapsto (K_0,\ldots,K_{n-2},H_0,\ldots,H_{n-3})$$

has rank 2n-3.

Proof. In the neighborhood of $C_i = 0$ $(0 \le i \le n-2)$ we have

$$K_i = C_i(A_i - A_i^{-1})(A_{i+1} - A_{i+1}^{-1}) + O(C^2), \quad H_i = \frac{A_{i+1}^2}{1 - A_{i+1}^2} + O(C).$$

At $C_i = 0$ the Jacobian matrix

$$J = \frac{\partial(K_0, \dots, K_{n-2}, H_0, \dots, H_{n-3})}{\partial(C_0, \dots, C_{n-2}, A_1, \dots, A_{n-2})}$$

is upper triangular with nonzero diagonal. This shows rank J = 2n - 3. \square

Define the projections

$$\begin{split} p_1 : & (\mathbf{C}^{\times})^{3n-1} \to (\mathbf{C}^{\times})^{2n-1}, \quad p_2 : (\mathbf{C}^{\times})^{2n-1} \to (\mathbf{C}^{\times})^{2n-1}, \\ p_1(\xi) &= ((x_i, a_i)_{0 \le i < n}, (c_i/c_{i+1})_{0 \le i < n-1}), \\ p_2 : & ((a_i)_{0 \le i < n}, (c_i/c_{i+1})_{0 \le i < n-1})) = ((A_i)_{0 \le i < n}, (C_i)_{0 \le i < n-1}). \end{split}$$

Then $p_1|_{\mathscr{S}}$, p_2 are finite maps, and $p_2 \circ p_1(\mathscr{S})$ is contained in the variety $\{K_i = \text{const.}\}$, $H_i = \text{const.}\}$. Lemma 2.1 shows that the latter (more precisely every irreducible component of it passing through a point near $C_i = 0$) has dimension $\leq (2n-1) - (2n-3) = 2$. In fact there is a two dimensional component of $p_1(\mathscr{S})$ given by an explicit parametrization. Fix $\tilde{\gamma} = (\kappa_i, \lambda_i, \mu_i)_{0 \leq i < n} \in (\mathbb{C}^{\times})^n \times \mathbb{C}^{2n}$. Define a two dimensional subvariety $S_{\tilde{\gamma}}$ in $(\mathbb{C}^{\times})^{3n}$ with coordinates $(x_i, a_i, c_i)_{0 \leq i < n}$ by the following substitutions:

$$\left(\frac{a_i}{c_i}\right)^N = \frac{s - \lambda_i}{s' - \lambda_i}, \quad (a_i c_i)^N = \frac{s' - \mu_{i-1}}{s - \mu_{i-1}}, \quad x_i^N = \kappa_i \frac{s' - \lambda_i}{s' - \mu_i}.$$

Then the invariants are constant on S_{τ} :

$$\begin{split} \pi_{\xi}(\Gamma_{ij}) &= \left(\prod_{i \leq l \leq j-1} \kappa_{l} \frac{\lambda_{l} - \mu_{j-1}}{\mu_{l-1} - \mu_{j-1}}\right) \frac{\mu_{i-1} - \lambda_{i}}{\lambda_{i} - \mu_{j-1}}, \\ \pi_{\xi}(\bar{\Gamma}_{ij}) &= \left(\prod_{j \leq l \leq i-1} \kappa_{l}^{-1} \frac{\mu_{l} - \lambda_{j}}{\lambda_{l+1} - \lambda_{j}}\right) \frac{\lambda_{i} - \mu_{i-1}}{\mu_{i-1} - \lambda_{j}}. \end{split}$$

We introduce new parameters $u_i, v_i, u_i', v_i' \ (0 \le i < n)$ in such a way that

$$\begin{split} u_i^N &= s - \lambda_i, & v_i^N &= s - \mu_i, \\ u_i'^N &= s' - \lambda_i, & v_i'^N &= s' - \mu_i, \\ \frac{a_i}{c_i} &= \frac{u_i}{u_i'}, & a_i c_i &= \frac{v_{i-1}'}{v_{i-1}}, & x_i &= \kappa_i^{1/N} \frac{u_i'}{v_i'}. \end{split}$$

Note that $r = (u_i, v_i)_{0 \le i < n}, r' = (u'_i, v'_i)_{0 \le i < n}$ lie on the curve

$$\mathscr{C}_{\gamma} = \big\{ (u_i, v_i)_{0 \leq i < n} \in (\mathbb{C}^{\times})^{2n} | u_i^N + \lambda_i = v_j^N + \mu_j \ (0 \leq i, j < n) \big\},$$

where $\gamma = (\lambda_i, \mu_i)_{0 \le i < n}$. Thus $S_{\tilde{\gamma}}$ is a finite covering of the product of curves $\mathscr{C}_{\gamma} \times \mathscr{C}_{\gamma}$. The $\kappa_i, \lambda_i, \mu_i$ $(0 \le i < n)$ are the parameters of moduli and r, r' are the spectral parameters. If we fix the moduli parameters, the R matrix (if it ever exists) depends on two sets of spectral parameters: $R = R(r, r', \tilde{r}, \tilde{r}')$. In Appendix A we show that for a generic choice of $\tilde{\gamma}$, (r, r') and (\tilde{r}, \tilde{r}') the R is unique up to a scalar multiple.

There is some redundancy in the moduli parameters. The change of κ_i makes no change in R (see 3.1). Furthermore, the simultaneous projective transformation of $s, s', \tilde{s}, \tilde{s}'$ and λ_i, μ_i ($0 \le i < n$) also preserves R. Therefore the number of essential moduli parameters is 2n-3.

3. Intertwiner for Minimal Cyclic Representations

In this section we shall give an explicit solution to the intertwining relation (2.3).

3.1. The Case $g = e_i$. First we solve (2.3) with $g = e_i$ for i = 0, ..., n-1. In terms

Fig. 1. R matrix factorized into four operators

of u_i, v_i and $\kappa_i, \pi_{\varepsilon \tilde{\varepsilon}}(e_i)$ is given by

$$\begin{split} \eta_{i}\pi_{\xi\tilde{\xi}}(e_{i}) &= v_{i-1}'\tilde{v}_{i-1}u_{i}\tilde{v}_{i}'Z_{i}X_{i}X_{i+1}^{-1} \otimes Z_{i}^{-1} - v_{i-1}\tilde{v}_{i-1}u_{i}'\tilde{v}_{i}'Z_{i}^{-1}X_{i}X_{i+1}^{-1} \otimes Z_{i}^{-1} \\ &+ v_{i-1}'\tilde{v}_{i-1}'v_{i}\tilde{u}_{i}Z_{i} \otimes Z_{i}X_{i}X_{i+1}^{-1} - v_{i-1}'\tilde{v}_{i-1}v_{i}\tilde{u}_{i}'Z_{i} \otimes Z_{i}^{-1}X_{i}X_{i+1}^{-1}, \end{split}$$

where $\eta_i = (q - q^{-1})a_i\tilde{a}_iv_{i-1}\tilde{v}_{i-1}v_i'\tilde{v}_i'/(\kappa_i)^{1/N}$. Therefore $R(\xi, \tilde{\xi})$ can be chosen independently of κ_i . Set

$$\begin{split} \delta_{i}^{N} &= 1/(\lambda_{i} - \mu_{i}), \quad \Omega_{i} &= (X_{i} X_{i+1}^{-1} \otimes X_{i}^{-1} X_{i+1})^{(1-N)/2}, \\ C_{i} &= (Z_{i}^{2} \otimes 1) (\Omega_{i} \Omega_{i-1})^{-1} &= (\Omega_{i} \Omega_{i-1})^{-1} (Z_{i}^{2} \otimes 1), \\ \overline{C}_{i} &= (1 \otimes Z_{i}^{-2}) \Omega_{i} \Omega_{i-1} &= \Omega_{i} \Omega_{i-1} (1 \otimes Z_{i}^{-2}). \end{split}$$

Proposition 3.1. Suppose S, T and \overline{T} satisfy the following equations for all i:

$$S_{r\bar{r}}(\Omega)C_i\delta_i(u_i\tilde{v}_i\Omega_i - \tilde{u}_iv_i\Omega_i^{-1})$$

$$= \delta_{i-1}(u_{i-1}\tilde{v}_{i-1}\Omega_{i-1} - \tilde{u}_{i-1}v_{i-1}\Omega_{i-1}^{-1})C_iS_{r\bar{r}}(\Omega), \tag{3.1a}$$

$$T_{r\bar{r}}(C)(q^{-1}\delta_{i-1}\tilde{u}_{i-1}v_{i-1}C_i + \delta_i u_i \tilde{v}_i)\Omega_i^2$$

$$= (q^{-1}\delta_{i-1}u_{i-1}\tilde{v}_{i-1}C_i + \delta_i \tilde{u}_i v_i)\Omega_i^2 T_{r\bar{r}}(C),$$
(3.1b)

$$\overline{T}_{rr}(\overline{C})(q\delta_{i-1}u_{i-1}\widetilde{v}_{i-1}\overline{C}_i + \delta_i\widetilde{u}_iv_i)\Omega_i^{-2}
= (q\delta_{i-1}\widetilde{u}_{i-1}v_{i-1}\overline{C}_i + \delta_iu_i\widetilde{v}_i)\Omega_i^{-2}\overline{T}_{rr}(\overline{C}).$$
(3.1c)

Then

$$R(\xi, \widetilde{\xi}) = S_{\tilde{r}r'}(\Omega)^{-1} \, \overline{T}_{r\tilde{r}}(\overline{C}) T_{r'\tilde{r}'}(C) S_{r\tilde{r}'}(\Omega)$$

satisfies (2.3) with $g = e_i$ for all i.

The proof is left to Appendix B.

The solutions to (3.1) are given as follows. First note that Ω_i , C_i act on the base elements $w_m \in W^{(0)}$ as

$$\Omega_{i}w_{2k} \otimes w_{2l} = q^{(k-l)_{ii+1}}w_{2k} \otimes w_{2l},$$

$$C_{i}w_{2k} \otimes w_{2l} = q^{-(k-l)_{i-1}}w_{2(k-\nu_{i})} \otimes w_{2l},$$

$$v_{i} = (0, \dots, 1, \dots, 0), \quad k_{ij} = k_{i} - k_{j}.$$

Set

$$S_{r\tilde{r}}(\Omega)w_{2k}\otimes w_{2l}=\sigma_{r\tilde{r}}(k-l)^{-1}w_{2k}\otimes w_{2l}.$$

Then (3.1a) is reduced to the recurrence relations

$$\frac{\sigma_{r\bar{r}}(m+v_i)}{\sigma_{r\bar{r}}(m)} = \frac{\delta_{i-1}(q^{m_{i-1}i}u_{i-1}\tilde{v}_{i-1} - q^{-m_{i-1}i}\tilde{u}_{i-1}v_{i-1})}{\delta_i(q^{m_{i+1}+1}u_i\tilde{v}_i - q^{-m_{i+1}-1}\tilde{u}_iv_i)},$$
(3.2)

which determine the $\sigma_{r\bar{r}}(m)$ uniquely up to an overall scalar multiple. Next let

$$T_{r\bar{r}}(C) = \sum_{m} \sigma_{r\bar{r}}(m) \prod_{i=0}^{n-1} (Z_i^{2m_i} \otimes 1) \prod_{i=0}^{n-1} (\Omega_i \Omega_{i-1})^{-m_i},$$

$$\bar{T}_{r\bar{r}}(\bar{C}) = \sum_{m} \sigma_{r\bar{r}}(m) \prod_{i=0}^{n-1} (1 \otimes Z_i^{-2m_i}) \prod_{i=0}^{n-1} (\Omega_i \Omega_{i-1})^{m_i}.$$

Substitute the above expression for T into (3.1b) and equate the coefficients of $\prod_{j=0}^{n-1} (Z_j^{2m_j} \otimes 1) \prod_{i=0}^{n-1} (\Omega_j \Omega_{j-1})^{-m_j} \times \Omega_i^2;$ do likewise for \overline{T} and (3.1c). Then we find that (3.1b, c) are reduced to the same relation (3.2).

3.2. Remaining Cases. The above $R(\xi, \tilde{\xi})$ clearly satisfies (2.3) with $g = q^{\epsilon_i}, z_i$ (i = 0, ..., n-1). Finally we consider (2.3) with $g = f_i$ (i = 0, ..., n-1). Let

$$R'_{j} = R(\xi, \widetilde{\xi})^{-1} (R(\xi, \widetilde{\xi}) \pi_{\xi \widetilde{\xi}}(f_{j}) - \pi_{\widetilde{\xi} \xi}(f_{j}) R(\xi, \widetilde{\xi})).$$

We can easily show that this R'_i satisfies the following relations:

$$\left[\pi_{\xi\xi}(e_i), R_j'\right] = 0,
 \pi_{\xi\xi}(q^{\varepsilon_i}) R_i' = q^{\delta_{ij+1} - \delta_{ij}} R_i' \pi_{\xi\xi}(q^{\varepsilon_i}).$$

Then from Proposition A.2 it follows that R'_j vanishes. Therefore the obtained $R(\xi, \tilde{\xi})$ is the intertwiner of the two representations $\pi_{\xi\tilde{\xi}}$ and $\pi_{\tilde{\epsilon}\xi}$. We shall show in Appendix A the following

Theorem 3.2. The intertwiner R satisfies the Yang-Baxter equation,

$$(R(\eta,\zeta)\otimes 1)(1\otimes R(\xi,\zeta))(R(\xi,\eta)\otimes 1) = (1\otimes R(\xi,\eta))(R(\xi,\zeta)\otimes 1)(1\otimes R(\eta,\zeta)). \quad (3.3)$$

In the base $\{w_m\}$ this R matrix has factorized matrix elements:

$$R(\xi,\widetilde{\xi})w_{2j}\otimes w_{2k} = \sum_{l,m} \frac{\rho_{r'\bar{r}}(j,l)\rho_{\bar{r}r'}(l,m)\rho_{r\bar{r}}(m,k)}{\rho_{r\bar{r}'}(j,k)}w_{2l}\otimes w_{2m},$$

where

$$\rho_{r\bar{r}}(k,l) = q^{P(k,l)}\sigma_{r\bar{r}}(k-l), \quad P(k,l) = \sum_{i=0}^{n-1} (k_i l_{i+1} - k_{i+1} l_i)$$

3.3. Symmetries. In this section we shall give certain symmetries which simplify some of the computations in the previous sections.

Define $\tilde{U}_q(\widehat{\mathfrak{gl}}(n, \mathbf{Q}))$ to be an associative algebra over $\mathbf{Q}(q)$ $(q = e^{2\pi i/N})$ with the generators e_i , f_i , $q^{\pm e_i}$, $z_i^{\pm 1}$ $(0 \le i < n)$ and the defining relations given in 2.1. Let θ be a **Q**-linear involutive automorphism of $\tilde{U}_a(\widehat{\mathfrak{gl}}(n, \mathbf{Q}))$ such that

$$\theta(e_i) = f_{n-i}, \quad \theta(q^{\varepsilon_i}) = q^{-\varepsilon_{n-i+1}}, \quad \theta(z_i) = z_{n-i}^{-1}, \quad \theta(q) = q^{-1}.$$

Fig. 2. Boltzmann weights of the generalized chiral Potts model

Fig. 3. Matrix element of the R matrix

Then we have

$$(\theta \otimes \theta) \circ \Delta = \Delta \circ \theta.$$

Recall the definition of $W^{(0)}$ in 2.3. Let us denote by $W^{(0)'}$ the $\mathbb{Q}(q)$ vector space defined similarly with \mathbb{C} replaced by $\mathbb{Q}(q)$.

Denote by A the rational function field over Q(q) in the variables

$$(\lambda_i, \mu_i, \kappa_i^{1/N}, \delta_i, x_i, \tilde{x}_i, a_i, \tilde{a}_i, c_i, \tilde{c}_i, u_i, \tilde{u}_i, v_i, \tilde{v}_i, u_i', \tilde{u}_i', v_i', \tilde{v}_i')_{0 \leq i < n}.$$

Let J be the ideal of A generated by the following relations.

$$\begin{split} \delta_{i}^{N}(\lambda_{i}-\mu_{i}) &= 1, \\ u_{i}^{N}+\lambda_{i} &= v_{j}^{N}+\mu_{j}, \quad u_{i}^{\prime N}+\lambda_{i} &= v_{j}^{\prime N}+\mu_{j}, \\ \tilde{u}_{i}^{N}+\lambda_{i} &= \tilde{v}_{j}^{N}+\mu_{j}, \quad \tilde{u}_{i}^{\prime N}+\lambda_{i} &= \tilde{v}_{j}^{\prime N}+\mu_{j}, \\ a_{i}u_{i}^{\prime} &= c_{i}u_{i}, \quad a_{i}c_{i}v_{i-1} &= v_{i-1}^{\prime}, \quad x_{i}v_{i}^{\prime} &= \kappa_{i}^{1/N}u_{i}^{\prime}, \\ \tilde{a}_{i}\tilde{u}_{i}^{\prime} &= \tilde{c}_{i}\tilde{u}_{i}, \quad \tilde{a}_{i}\tilde{c}_{i}\tilde{v}_{i-1} &= \tilde{v}_{i-1}^{\prime}, \quad \tilde{x}_{i}\tilde{v}_{i}^{\prime} &= \kappa_{i}^{1/N}\tilde{u}_{i}^{\prime}. \end{split}$$

Set B = A/J. We denote by E the B subalgebra of $B \otimes_{\mathbb{Q}(q)} \operatorname{End} W^{(0)'}$ generated by $(Z_i, X_i)_{0 \le i < n}$. Define a Q-linear involutive automorphism * of E by

$$\begin{split} Z_i^* &= Z_{n-i+1}^{-1}, & X_i^* &= X_{n-i+1}, & q^* &= q^{-1}, \\ \lambda_i^* &= \mu_{n-i}, & \kappa_i^{1/N*} &= \kappa_{n-i}^{-1/N}, & \delta_i^* &= -\delta_{n-i}, \\ x_i^* &= x_{n-i}^{-1}, & a_i^* &= a_{n-i+1}^{-1}, & c_i^* &= c_{n-i+1}, \\ \tilde{x}_i^* &= \tilde{x}_{n-i}^{-1}, & \tilde{a}_i^* &= \tilde{a}_{n-i+1}^{-1}, & \tilde{c}_i^* &= \tilde{c}_{n-i+1}, \\ u_i^* &= v_{n-i}, & u_i'^* &= v_{n-i}', & \tilde{u}_i^* &= \tilde{v}_{n-i}, & \tilde{u}_i'^* &= \tilde{v}_{n-i}'. \end{split}$$

Note that π_{ξ} $(\xi = (x_i, a_i, c_i)_{0 \le i < n})$ and $\pi_{\tilde{\xi}}$ $(\tilde{\xi} = (\tilde{x}_i, \tilde{a}_i, \tilde{c}_i)_{0 \le i < n})$ are $\mathbf{Q}(q)$ -linear homomorphisms

$$\pi_{\xi}, \pi_{\tilde{\xi}}: \tilde{U}_{a}(\widehat{\mathfrak{gl}}(n, \mathbf{Q})) \to E.$$

The following symmetry is valid.

$$(\pi_{\varepsilon} \circ \theta(g))^* = \pi_{\varepsilon}(g), \quad (\pi_{\varepsilon} \circ \theta(g))^* = \pi_{\varepsilon}(g), \quad \text{for } g \in \widetilde{U}_g(\widehat{\mathfrak{gl}}(n, \mathbf{Q})).$$

Suppose that $R \in E \otimes E$ satisfies

$$R(\pi_{\varepsilon} \otimes \pi_{\tilde{\varepsilon}}) \circ \Delta(g) = (\pi_{\tilde{\varepsilon}} \otimes \pi_{\varepsilon}) \circ \Delta(g)R,$$

for some $g \in \widetilde{U}_a(\widehat{\mathfrak{gl}}(n, \mathbf{Q}))$. Then we have

$$(R(\pi_{\xi} \otimes \pi_{\xi}) \circ \Delta(g))^{*} = R^{*}((\pi_{\xi} \circ \theta \otimes \pi_{\xi} \circ \theta) \circ \Delta \circ \theta(g))^{*}$$

$$= R^{*}(\pi_{\xi} \otimes \pi_{\xi}) \circ \Delta \circ \theta(g)$$

$$= (\pi_{\xi} \otimes \pi_{\xi}) \circ \Delta \circ \theta(g)R^{*}.$$

It is easy to check that

$$R(\xi, \tilde{\xi})^* = R(\xi, \tilde{\xi}).$$

Therefore, the intertwining equation (2.3) for f_i follows from that for e_i .

Appendix A. Proof of the Yang-Baxter Equation

The goal of this appendix is to prove that the intertwiner of Sect. 3 satisfies YBE (3.3).

A.1. Trigonometric Limit. We begin with the discussion of the minimal cyclic representations in the trigonometric limit. This means the case where the moduli κ_i , λ_i , μ_i , and hence $a_i = a$, $c_i = c$, $x_i = x$, are all independent of i. In fact c does not enter the representation. Denoting this representation by π_x we have

$$\pi_{x}(e_{i}) = x\{aZ_{i}\}X_{i}X_{i+1}^{-1},$$

$$\pi_{x}(f_{i}) = x^{-1}\{aZ_{i+1}\}X_{i}^{-1}X_{i+1},$$

$$\pi_{x}(q^{e_{i}}) = aZ_{i}, \quad \pi_{x}(z_{i}) = a^{-2}.$$
(A.1)

The following Proposition will be of use later.

Proposition A.1. Let $(W^{(0)}, \pi_x)$ be as above, and let (V', π') be a finite dimensional representation of \tilde{U}_a . Consider the linear equation for $F \in \text{End}(W^{(0)} \otimes V')$:

$$[(\pi_{\mathbf{x}} \otimes \pi') \Delta(e_{\mathbf{i}}), F] = 0 \quad \text{for all} \quad i,$$

$$(\pi_{\mathbf{x}} \otimes \pi') \Delta(q^{\varepsilon_{\mathbf{i}}}) F = q^{m_{\mathbf{i}}} F(\pi_{\mathbf{x}} \otimes \pi') \Delta(q^{\varepsilon_{\mathbf{i}}}) \quad \text{for all} \quad i. \tag{A.2}$$

Here the m_i are given integers satisfying $\sum_i m_i = 0$. Then, for generic x, F has the form $F = \prod_i Z_i^{k_i} \otimes F'$, $F' \in \text{End}(V')$, with $k_i - k_{i+1} + m_i = 0$ and

$$[\pi'(e_i), F'] = 0 \quad \text{for all } i,$$

$$\pi'(a^{e_i})F' = a^{m_i}F\pi'(a^{e_i}) \quad \text{for all} \quad i.$$
 (A.3)

Proof. Clearly F of the form (A.3) satisfies (A.2). Therefore it is sufficient to show that the only solutions are of this form at some special value $x = x_0$. We shall take $x_0 = \infty$.

First consider the case n > 2, and define

$$A_{\pm} = [x^{-1}(\pi_x \otimes \pi') \Delta(e_i), x^{-1}(\pi_x \otimes \pi') \Delta(e_{i+1})]_{q^{\pm 1}},$$

$$B = [x^{-1}(\pi_x \otimes \pi') \Delta(e_{i-1}), A_{\pm} A_{-1}^{-1}]/x^{-1}(1 - q^2).$$

Here $[\alpha, \beta]_{a^{\pm 1}} = \alpha \beta - q^{\pm 1} \beta \alpha$. Clearly (A.2) imply the equations

$$[A_+, F] = [B, F] = 0.$$
 (A.4)

Substituting (A.1) one finds after some calculation that

$$A_{+}A_{-}^{-1} = (aZ_{i+1})^{-2} \otimes 1 + O(x^{-1}),$$

$$B = \varphi(Z)X_{i+1}X_{i}^{-2}X_{i-1} \otimes \pi'(e_{i}q^{\varepsilon_{i}-\varepsilon_{i-1}}) + \delta_{\pi^{1}}\psi(Z)X_{i+1}^{-1}X_{i+1}^{-1}X_{i-1}^{2} \otimes \pi'(e_{i+1}q^{\varepsilon_{i+1}-\varepsilon_{i-1}}) + O(x^{-1}),$$

where $\varphi(Z)$ and $\psi(Z)$ are some invertible polynomials in the Z_i . Specializing the Eqs. (A.2), (A.4) to $x = \infty$ one obtains

$$\left[\left\{aZ_{i}\right\}X_{i}X_{i+1}^{-1}\otimes\pi'(q^{-\varepsilon_{i}}),F\right]=0,\tag{A.5a}$$

$$Z_i \otimes \pi'(q^{\varepsilon_i})F = q^{m_i} F Z_i \otimes \pi'(q^{\varepsilon_i}), \tag{A.5b}$$

$$[Z_{i+1} \otimes 1, F] = 0,$$
 (A.5c)

$$[\varphi(Z)X_{i+1}X_{i}^{-2}X_{i-1}\otimes\pi'(e_{i}q^{\varepsilon_{i}-\varepsilon_{i-1}}),F]=0,$$
(A.5d)

$$[\psi(Z)X_{i+1}^{-1}X_i^{-1}X_{i-1}^2\otimes\pi'(e_{i+1}q^{\varepsilon_{i+1}-\varepsilon_{i-1}}),F]=0 \quad \text{if} \quad n=3.$$
 (A.5e)

Here we have used the fact that $X_{i+1}X_i^{-2}X_{i-1}$ and $X_{i+1}^{-1}X_i^{-1}X_{i-1}^2$ are linearly independent. Equations (A.5a) through (A.5c) imply that F has the form $\prod Z_i^{k_i} \otimes F'$

with $k_i - k_{i+1} + m_i = 0$ and $\pi'(q^{\epsilon_i})F' = q^{m_i}F'\pi'(q^{\epsilon_i})$. From (A.5d) and (A.5e) one then concludes $[\pi'(e_i), F'] = 0$.

Next consider the case n = 2. Set

$$D_i = x^{-1}(\pi_x \otimes \pi') \Delta(e_i), \quad E = [D_0 D_1, D_1 D_0].$$

Noting that $q^{\epsilon_0 + \epsilon_1}$ is central, one has

$$D_i D_{i+1} (1 \otimes \pi'(q^{e_0 + e_1})) = \{aZ_i\} \{aqZ_{i+1}\} \otimes 1 + O(x^{-1}),$$

$$\begin{split} E(1 \otimes \pi'(q^{\epsilon_0 + \epsilon_1}))/(x^{-1}a^{-1}(q + q^{-1})) \\ &= \{aZ_0\} Z_0 X_0 X_1^{-1} \otimes \pi'(e_1 q^{-\epsilon_0}) \\ &- \{aZ_1\} Z_1 X_1 X_0^{-1} \otimes \pi'(e_0 q^{-\epsilon_1}) + O(x^{-1}). \end{split}$$

Using D_i , E in place of A_{\pm} , B and arguing similarly as above, one arrives at the same conclusion. \square

A.2. Indecomposability of Tensor Products. Let (V, π) be a finite dimensional representation of \tilde{U}_q . It is said to be indecomposable if, for $F \in \text{End}(V)$, $[F, \pi(g)] = 0$ for any $g \in \tilde{U}_q$ implies $F \in \text{Cid}$.

For $p \ge 1$ we set $\mathscr{S}_p = \bigcup_{\tilde{\gamma}} S_{\tilde{\gamma}} \times \cdots \times S_{\tilde{\gamma}}$ where $S_{\tilde{\gamma}}$ denotes the variety defined in Sect. 2 and $\tilde{\gamma} = (\kappa_i, \lambda_i, \mu_i)_{0 \le i < n}$. Since $S_{\tilde{\gamma}}$ is irreducible if $\tilde{\gamma}$ is generic, \mathscr{S}_p is also irreducible. Let $\Delta^{(p)} = (\Delta \otimes \cdots \otimes 1) \circ \Delta^{(p-1)}$, $\Delta^{(1)} = \Delta$. The following shows that the tensor products of the π_{ξ} are generically indecomposable.

Proposition A.2. For generic $\tilde{\gamma}$ and $(\xi_i)_{1 \leq i \leq p} \in S_{\tilde{\gamma}} \times \cdots \times S_{\tilde{\gamma}}$, the only solution of the equation

$$\begin{split} & \big[(\pi_{\xi_1} \otimes \cdots \otimes \pi_{\xi_p}) \circ \Delta^{(p-1)}(e_i), F \big] = 0, \\ & (\pi_{\xi_1} \otimes \cdots \otimes \pi_{\xi_p}) \circ \Delta^{(p-1)}(q^{\varepsilon_i}) F \\ & = q^{m_i} F(\pi_{\xi_1} \otimes \cdots \otimes \pi_{\xi_p}) \circ \Delta^{(p-1)}(q^{\varepsilon_i}) \end{split}$$

is

$$F \approx scalar$$
 if $m \approx 0$,
 ≈ 0 otherwise.

Proof. It is enough to show the assertion in the case where π_{ξ_i} are all trigonometric. Thanks to Lemma A.1 the proof is reduced to the case p = 1 by induction. But the case p = 1 can be shown easily. \square

Remark. By decomposing F into joint eigenvectors of the $Ad(q^{\varepsilon_i})$, it is clear from the proof that the indecomposability holds with respect to the subalgebra of \widetilde{U}_q generated by $e_i(0 \le i < n)$.

Corollary A.3. For generic $\tilde{\gamma}$ and $(\xi, \tilde{\xi})$ the intertwiner (2.3) is unique up to scalar multiple.

A.3. Yang-Baxter Equation. From the above results YBE follows by a general argument [15]. Let Q_L (respectively Q_R) denote the left-(respectively right-) hand side of (3.3). Since the $R(\xi,\eta)$ are intertwiners, $F=Q_L^{-1}Q_R$ commutes with $\pi_{\xi\eta\zeta}=(\pi_{\xi}\otimes\pi_{\eta}\otimes\pi_{\zeta})\circ\Delta^{(2)}$:

$$[F, \pi_{\xi\eta\zeta}(g)] = 0$$
 for any $g \in \tilde{U}_q$.

Proposition A.2 then shows for generic (ξ, η, ζ) that F is a scalar, namely

$$\rho Q_L = Q_R$$

with some scalar ρ . Comparing the determinant one finds that ρ is a root of unity, and hence is independent of the parameters (ξ, η, ζ) . From the formula (3.1) it can

be checked that $R(\xi, \xi)$ is a scalar. Hence setting $\xi = \eta = \zeta$ one obtains $\rho = 1$. This proves YBE.

Appendix B. Proof of Proposition 3.1.

Let

$$\Omega_{i} = (X_{i}X_{i+1}^{-1} \otimes X_{i}^{-1}X_{i+1})^{(1-N)/2},$$

$$C_{i} = (Z_{i}^{2} \otimes 1)(\Omega_{i}\Omega_{i-1})^{-1} = (\Omega_{i}\Omega_{i-1})^{-1}(Z_{i}^{2} \otimes 1),$$

$$\bar{C}_{i} = (1 \otimes Z_{i}^{-2})\Omega_{i}\Omega_{i-1} = \Omega_{i}\Omega_{i-1}(1 \otimes Z_{i}^{-2}),$$

$$Y_{i} = X_{i}X_{i+1}^{-1} \otimes 1, \quad \bar{Y}_{i} = 1 \otimes X_{i}X_{i+1}^{-1}, \quad K_{i} = Z_{i} \otimes Z_{i}.$$

Then C_i , \bar{C}_i , Ω_i , Y_i , \bar{Y}_i and K_i satisfy the following relations:

$$\begin{split} & [Y_i,Y_j] = [\bar{Y}_i,\bar{Y}_j] = [Y_i,\bar{Y}_j] = [C_i,\bar{C}_j] = [C_i,\bar{Y}_j] = [\bar{C}_i,Y_j] = 0, \\ & [\Omega_i,\Omega_j] = [K_i,\Omega_j] = [K_i,C_j] = [K_i,\bar{C}_j] = 0, \\ & \Omega_i^2 = Y_i(\bar{Y}_i)^{-1}, \quad C_i\Omega_{i-1}^2 = K_i^2\bar{C}_i\Omega_i^{-2}, \\ & C_iC_{i+1} = q^{-2}C_{i+1}C_i, \quad [C_i,C_j] = 0 & (j \neq i \pm 1 \bmod n), \\ & \bar{C}_i\bar{C}_{i+1} = q^2\bar{C}_{i+1}\bar{C}_i, \quad [\bar{C}_i,\bar{C}_j] = 0 & (j \neq i \pm 1 \bmod n), \\ & C_i\Omega_i = q\Omega_iC_i, \quad C_i\Omega_{i-1} = q^{-1}\Omega_{i-1}C_i, \quad [C_i,\Omega_j] = 0 & (j \neq i,i-1 \bmod n), \\ & \bar{C}_i\Omega_i = q\Omega_i\bar{C}_i, \quad \bar{C}_i\Omega_{i-1} = q^{-1}\Omega_{i-1}\bar{C}_i, \quad [\bar{C}_i,\Omega_i] = 0 & (j \neq i,i-1 \bmod n). \end{split}$$

In terms of these operators, we have

$$\begin{split} \eta_{i} \pi_{\xi\bar{\xi}}(e_{i}) &= v_{i-1}' \tilde{v}_{i-1} K_{i}^{-1} C_{i} (u_{i} \tilde{v}_{i}' \Omega_{i} - \tilde{u}_{i}' v_{i} \Omega_{i}^{-1}) \Omega_{i-1} Y_{i} \\ &+ v_{i-1}' \tilde{v}_{i-1}' \tilde{u}_{i} v_{i} K_{i} \overline{Y}_{i} - v_{i-1} \tilde{v}_{i-1} u_{i}' \tilde{v}_{i}' K_{i}^{-1} Y_{i}. \end{split}$$

Using (3.1a), we have

$$\begin{split} \delta_{i}S_{r\bar{r}'}(\Omega)\eta_{i}\pi_{\xi\bar{\xi}}(e_{i})S_{r\bar{r}'}(\Omega)^{-1} &= v'_{i-1}\tilde{v}'_{i-1}K_{i}(q\delta_{i-1}u_{i-1}\tilde{v}_{i-1}\bar{C}_{i} + \delta_{i}\tilde{u}_{i}v_{i})\bar{Y}_{i} \\ &- v_{i-1}\tilde{v}_{i-1}K_{i}^{-1}(q^{-1}\delta_{i-1}\tilde{u}'_{i-1}v'_{i-1}C_{i} + \delta_{i}u'_{i}\tilde{v}'_{i})Y_{i}. \end{split}$$

Using (3.1b, c), we have

$$\begin{split} \delta_{i}T_{r'\bar{r}'}(C)\overline{T}_{r\bar{r}}(\overline{C})S_{r\bar{r}'}(\Omega)\eta_{i}\pi_{\xi\bar{\xi}}(e_{i})S_{r\bar{r}'}(\Omega)^{-1}\overline{T}_{r\bar{r}}(\overline{C})^{-1}T_{r'\bar{r}'}(C)^{-1} \\ &= \tilde{v}'_{i-1}v_{i-1}K_{i}^{-1}\delta_{i-1}(\tilde{u}_{i-1}v'_{i-1}\Omega_{i-1}-u'_{i-1}\tilde{v}_{i-1}\Omega_{i-1}^{-1})C_{i}\Omega_{i-1}Y_{i} \\ &+ \delta_{i}(v'_{i-1}\tilde{v}'_{i-1}u_{i}\tilde{v}_{i}K_{i}\overline{Y}_{i}-v_{i-1}\tilde{v}_{i-1}\tilde{u}'_{i}v'_{i}K_{i}^{-1}Y_{i}). \end{split}$$

Finally using (3.1a) again, we get (2.3) for $g = e_i$.

Acknowledgements. The authors would like to thank M. Kashiwara, B. M. McCoy and N. Yu. Reshetikhin for discussions. K. M. is supported in part by the Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan No. 01790204.

References

- Au-Yang, H., McCoy, B. M., Perk, J. H. H., Tang, S., Yan, M.-L.: Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus >1. Phys. Lett. A123, 219-223 (1987)
- McCoy, B. M., Perk, J. H. H., Tang, S., Sah, C. H.: Commuting transfer matrices for the four-state self-dual chiral Potts model with a genus-three uniformizing Fermat curve. Phys. Lett. A125, 9-14 (1987)
- 3. Au-Yang, H., McCoy, B. M., Perk, J. H. H., Tang, S.: Solvable models in statistical mechanics and Riemann surfaces of genus greater than one. In: Algebraic Analysis, Kashiwara, M., Kawai, T. (eds.). vol. 1, pp. 29–39. New York: Academic Press 1988
- 4. Baxter, R. J., Perk, J. H. H., Au-Yang, H.: New solutions of the star-triangle relations for the chiral Potts model. Phys. Lett. A128, 138-142 (1988)
- 5. Bazhanov, V. V., Stroganov, Yu. G.: Chiral Potts models as a descendant of the six-vertex models. J. Stat. Phys. 51, 799-817 (1990)
- 6. Bazhanov, V. V., Kashaev, R. M.: Cyclic L operators related with 3-state R-matrix, preprint (1990)
- 7. Date, E., Jimbo, M., Miki, K., Miwa, T.: R-matrix for cyclic representations of $U_q(\widehat{\mathfrak{sl}}(3,\mathbb{C}))$ at $q^3 = 1$. Phys. Lett. A148, 45–49 (1990)
- 8. Date, E., Jimbo, M., Miki, K., Miwa, T.: New R-matrices associated with cyclic representations of $U_q(A_2^{(2)})$, preprint RIMS **706** (1990). Publ. RIMS (to appear)
- Kashaev, R. M., Mangazeev, V. V.: The four-state solution of the Yang-Baxter equation, preprint IHEP 90-73 (1990)
- 10. Bazhanov, V. V., Kashaev, R. M., Mangazeev, V. V., Stroganov, Yu. G.: $(Z_N \times)^{n-1}$ generalization of the chiral Potts model, preprint (1990)
- 11. De Concini, C., Kac, V. G.: Representations of quantum groups at roots of 1, preprint (1990)
- 12. Date, E., Jimbo, M., Miki, K., Miwa, T.: Cyclic representations of $U_q(\mathfrak{sl}(n+1,\mathbb{C}))$ at $q^N=1$, preprint RIMS 703 (1990). Publ. RIMS (to appear).
- 13. Arnaudon, D., Chakrabarti, A.: Periodic and partially periodic representations of $SU(N)_q$, preprint, Center de Physique Théorique Ecole Polytechnique (1990)
- 14. Babelon, O.: Representations of the Yang-Baxter algebrae associated to Toda field theory. Nucl. Phys. **B230**, 241-249 (1984)
- 15. Jimbo, M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102, 537-547 (1986)

Communicated by N. Yu. Reshetikhin