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Abstract. A general method is developed for constructing quantum group invariants
and determining their eigenvalues. Applied to the universal Λ-matrix this method
leads to the construction of a closed formula for link polynomials. To illustrate
the application of this formula, the quantum groups Uq{Es), Uq(so(2m + 1)) and
Uq(gl(m)) are considered as examples, and corresponding link polynomials are
obtained.

1. Introduction

Quantum groups [1,2] play a fundamental role in the theory of integrable models
[3], conformal field theory [4], and the classification of knots and links [5-10].
It appears possible that they may provide the key to understanding the intimate
relationship between integrable systems and knot theory [8, 9], and even the more
basic problem of why integrable models exist [8].

It is well known that to a large extent the study of a physical theory involves
the exploration of its symmetries. In particular, it is desirable to determine the
invariants of the symmetry algebra of the theory, which usually correspond to
certain physical observables. Quantum groups arise as underlying symmetries of
integrable lattice models and conformal field theory, and their invariants therefore
are of crucial importance to the understanding of these problems. The quantum
group invariants, being quantum analogs of the Gelfand invariants of ordinary
Lie algebras, are also extremely useful for characterizing quantum group repre-
sentations.

In this paper, we will develop a general method for constructing quantum group
invariants and determining their eigenvalues. As a natural application we apply
the method to Drinfeld's [2] universal K-matrix to obtain certain quantum group
invariants, which in turn enable us to construct a closed formula for link
polynomials. Our formula agrees with that of Reshetikhin [10] obtained through
a completely different approach, but is more explicit, and our derivation is also
more straightforward. To illustrate how the general formula works, we study as
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examples the quantum groups Uq(gl(m)), Uq(so(2m + 1)) and Uq(E8) in certain
representations.

The structure of the paper is as follows. In Sect. 2 we develop a general theory
for constructing quantum group invariants, and in Sect. 3 we use the theory to
construct a general and closed formula for link polynomials. In Sect. 4 we present
concrete examples of link polynomials and in the final section we briefly discuss
the main results of the paper.

2. Quantum Group Invariants

Corresponding to each simple Lie algebra g9 there exists a quantum group Uq(g)
defined as follows in terms of generators eh fte Uq(g), i = 1,2,..., r associated with
the simple roots ah i= l,2,...,r of g9 and corresponding Cartan generators hh

ί = 1,2,..., r. Let ( , •) be the invariant bilinear form for the weight space //*, the dual
of the vector space H spanned by the ft£'s, and let A = (ai}) be the Cartan matrix
of g. For a nonzero parameter qeC we define qt = ^to **)/2, κt = qh\ i = 1,2,..., r;
then Uq(g) is generated by {Kf:1

9ei9fi\i=l929...9r}9 with

where

Z | Lpπ Z<< I m>n>0,
(q —q ) - (qn — q n)

n = m, 0,

0, otherwise.
A coproduct structure Δ:Uq(g)-> Uq(g)® Uq(g) exists, which is defined by

ei®q~hil2^qhil2®eh (2)

and it can easily be checked that A does indeed define an algebra homomorphism.
Replacing q by q'1 in (2), we obtain another algebra homomorphism A. Both A
and A can be extended uniquely to the entire Hopf algebra Uq(g).

Consider a finite dimensional irreducible representation of Uq(g) furnished by
the irreducible module V(Λ0) with Λo being the highest weight. Given an operator
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ΓeUq(g)®Enά(V(Λ0)) satisfying

0, (3)

£ ) ]=0, Vΐ,

we want to construct from Γ an operator CeUq(g\ such that

[C,K<

± 1] = 0, (4a)

[C,^] = 0, (4b)

[C,/,] = 0, Vi. (4c)

Let p denote the half-sum of positive roots of g9 and let τt be the operation of
taking the partial trace of any operator belonging to End (V1®V2®-"® V^ over
the ί-th space in the tensor product. Denoting by hpeUq(g) the Cartan element
satisfying α(Λp) = (α,p) Vαe//*, we have the following

Proposition 1. Given a Γ satisfying (3), the operator CeUq(g) given by

C = τ2{(l®q-2h»)Γ} (5)

satisfies Eqs. (4).

Proof Consider the first equation in (3). Multiplying it by 1 (g) q ~{2hp ± hi) then taking
the partial trace τ 2, we obtain

which is (4a). The first and second equations of (3) together lead to

which yields

- τ2{{\®eiq-hil2)Γ{\®q'^-hi))} = 0. (6)

The last term of (6) can be rewritten as

and by using the fact that

[eί9 g- ( 2 h '-Λ ί )] = 0

we can simplify it further to

τ2{(l®eiq-{2h»-hil2))Γ}.

Therefore, the second and third terms in (6) cancel each other, and we obtain

2 J = 0 . (7)
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In exactly the same way we can show that (4c) holds. Thus we have proved the
proposition.

Equations (4a-c) guarantee that CeUq(g) takes a constant value on any
irreducible Uq(g) module, thus can be called an invariant of the quantum group
Uq(g). As a corollary of the proposition, we have

Corollary 1. Given

ΓeU q(g)®" ® Uq(g)® End(V(Λ0))

such that

then
fc-1

CeUq(g)® - ®Uq(g)

defined by

C = Δ^-^iq^ήτ^Δ^iq-^ήΓ} (8)

satisfies

where we have adopted the notation
t - 3

To evaluate the eigenvalue of any C on an irreducible Uq(g) module V(Λ), we
multiply C by q~2hp, then take the trace over V(Λ),

2 H (9)

where c(Λ) is the eigenvalue of C on V(Λ). On the other hand,

trV(Λ)(q-2h>Q = tτV(Λ)®V(Λo){Δ(q-2>»)Γ}. (10)

Introducing the q-dimension Dq(A) of the irreducible Uq(g) module V(Λ) defined
by

Dq(Λ) = trV(Λ)(q-2h») (11)

we obtain from (9) and (10)

Proposition 2. Given a Γ as defined by (3), the operator C defined by (5) takes the
eigenvalue

c(Δ) = tτv(Λ)®ViΛo){Δ(q-2hήΓ}/Dq(Λ) (12)

on the irreducible Uq(g) module V(Λ).

The g-dimension of an irreducible Uq(g) module V(Λ) can actually be evaluated
explicitly. Note that Dq(Δ) can be written as
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where mλ is the multiplicity of the weight λ9 and the sum is over the entire weight
spectrum of V(Λ). It is known that V(Λ) has the same weight spectrum as the g
module with the same highest weight A [10, 11] so we can rewrite (13) as

Dq(Λ)= f ] [q-^-q^y1 £ detσ<Γ ( < τ ( Λ + p ) '2 p ), (14)
αeΦ+ σeW

where Φ + and W are respectively the set of positive roots and the Weyl group of
the Lie algebra g. Using the Weyl group invariance of the bilinear form ( , ) and
the fact that detσ = detίσ" 1) VσeW, we can turn the sum on the right-hand side
of (14) into

X dQtσq-(σiΛ+p)>2p)= £ detσq-2iσ(p)>Λ+p\
σeW σeW

Upon using WeyΓs denominator formula we obtain

X detσq-iσ(Λ+p)>2p) = Π lq-<Λ+'-a>-<fί+"-a>l (15)
σeW αeΦ+

Applying (15) to Eq. (14) we arrive at

Lemma 1. The q-dimension of the irreducible Uq(g) module V(Λ) is given by

where Φ+ denotes the set of positive roots of the simple Lie algebra g.

Note that in the limit q -• 1, (16) reduces to the ordinary Weyl dimension formula.
Now we consider an example. Assume that the Uq(g) in the product Uq(g) (x)

End(F(Λ0)) acts in an irreducible representation furnished by the module V(Λ).
Define Pμ to be the operator which projects the tensor product V(Λ)®V(Λ0)
into the irreducible Uq(g) module V(Λμ) a F(Λ)® V(Λ0)9 i.e.

Pμ{V{A)® V(Λ0)) = V(Λμ% ?l = Pμ. (17)

Then it is obvious that Pμ satisfies Eqs. (3). Let

Cμ = τ2{(l®q-2l">)Pμ} (18)

and denote its eigenvalue on V(Λ) by cμ(Λ). Then following Proposition 2, we have

Dq(Λ)cμ(Λ) = trViΛ)®V(Λo)[Δ(q-2h>)Pμl (19)

Note that the right-hand side of Eq. (19) is nothing but the ^-dimension of
V(Λμ); thus we have

Lemma 2. The operator Cμ defined by (18) takes on V(Λ) the eigenvalue

cμ(Λ) = Dq(Λμ)/Dq(Λ) (20a)

3. Link Polynomials

In this section we will apply the results of the last section to Drinfeld's universal
JR-matrix, in order to construct link polynomials. In particular we will define a
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Markov trace on the braid group representation generated by the universal
R-matήx, and use this Markov trace to develop a closed formula for link
polynomials.

Let us first briefly describe the universal .R-matrix obtained by Drinfeld [2].
Consider the Hopf subalgebras Uq(b+),Uq(b_)aUq(g) generated by {hi9et\i =
1,2,...,r} and {/ιί5/.|i= l,2,...,r} respectively. Define a basis {es\s= 1,2,...} for
Uq(b-); then there exists a basis {es\s= 1,2,...} dual to {es\s= 1,2,...} for the
Hopf subalgebra Uq(b+). The operator R defined by

Σ g ) (21)

satisfies the following equations

RA{u) = Ά{u)R, VueUq(g) (22)

and

# 1 2 #i3#23 = ^23^13^12* (23)

where A and A are defined in Sect. 2, and R12 etc. are given by

For the purpose of building braid group representations, we are only interested
in the special case when both Uq(gYs in (21) act in the same irreducible
representation furnished by a module V(A), i.e. ReΈnd(V(Λ)® V(A)). In this case,
we can define a permutation operator P such that

V\μ>®\v>eV(Λ)®V(Λ). (24)

Let

σ = PR. (25)

Then Eqs. (22) and (23) can be written in terms of σ as

|>,4( W ) ]=0, Vue 17,(0), (22a)

and

σ)(σ ® /)(/ ® σ) = (σ ® /)(/ <x) σ)(σ (

It follows immediately that the operators σ^eEndί (X)
defined by \ ι

n-i-l

(26)

generate a nontrivial representation of the rank (n— 1) braid group 95Π. In the
remainder of the paper, we will use Bn to denote this representation.

Let h be an arbitrary Cartan element of Uq(g) and define

(kv(A)\ (27)

Then we have the following
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Proposition 3. Define

φ(θ) = tr [4 ( π )(<Γ2 V)0]/tr LΔin)(q-2hήl (28)

where θeBn is a word in the generators σh ί= 1,2,..., n — 1, am/ ί/ie ίrace is taken
over the n-fold tensor product space. Then φ has the following Markov properties:

), VΘ,ηeBn; (29)

II: φ(θσn_1) = zφ(θ), WeB^^B,,

φ(θσ^\) = zφ(θ), VθeB.-^B., (30)

vviίft z and z defined by (33) below.

Proof. In order to prove property I, we note that

which follows directly from (22a). Therefore for any θ,ηeBn,

tr lA{n\q-2h<>)θη] = tr [Δin)(q-2hήηθl

which immediately leads to (29). To prove property II, we observe that

φ(σi) = z9 φ(σΓ1) = z9 Vίe{l,2,.. .,n-1}, (32)

with z and z defined respectively by

z = trlΔ(q-2h>)σ-1ytrlΔ(q-2h?)l (33)

For an arbitrary θeBn_1<Bn,

On the right-hand side of the above equation, tr represents the trace taken over
n

the first (n — 1) factor spaces in the tensor product (X)K(Λ) and τn is the partial
1

trace taken over the last factor space. By using Proposition 1, we immediately see
that

KB.. (35)

In exactly the same way we can show that

σ-}t) = zφ(θ\ eeBn_, < Bn. (36)

Therefore φ possesses the Markov properties, and thus qualifies as a Markov trace.
At this point we should point out the connection of our construction as described

above, with the work of Turaev [5]. If we let μ = q~2hp, α = zDq(Λ) and β = Dq(A\
then the collection (R;μ:V(A)^> V(Λ); α,j?e(C) defines an enhanced Yang-Baxter
operator in his terminology, and our partial trace τ, corresponds to his operator
trace.

Now we turn to the evaluation of z and z defined in (33). Following Proposition 1,

C = τ2{(l®q-2h»)σ}
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is an invariant, so that

z = c(Λ)/Dq(Λ), (39)

where c(Λ) is the eigenvalue of C on V(Λ), and Dq(Λ) is the ^-dimension of V(Λ),
which is given explicitly in Sect. 2.

Let us formally introduce a basis for V(Λ) consisting of eigenvectors |μ> of
the Cartan elements, orthogonal under an inner product < | >, i.e.

Denote the lowest weight vector of F(/l) by \Λ} and consider

<Λ\q-2h»C\Λy = q-2{pΛ)c{Λ). (40)

The lowest weight A of V(Λ) is related to the highest weight A through the equation

Λ = τ(Λ% τeW,

where τ is the unique element of W which turns all the positive roots of g to
negative ones. Using (21) and (25) we can also write the left-hand side of (40) as

Therefore

(41)

Recalling that {es} is the basis of Uq(b.) and {es} is that for Uq{b+\ we immediately
see that only those es and es made up entirely of Cartan elements of Uq(g) contribute
to the inner product in (41). Bases for such elements of Uq(b_) and Uq(b+) are
given respectively by

and

where ti is defined by

", mteZ\
ϊ = l

ί = l

Using this basis in (41) we obtain

q
{mi}

ή ϊ a (42)

where the sum is over Z + for each mhi= 1,2,...,r. This sum can easily be seen
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to equal

A
Σ h%

A \ (43)

which reduces to q{ΛyΛ\ and using this result in (42) we obtain

i.e.
c(Λ) = ql2(Λ\ I2(Λ) = (Λ + 2p, A). (44)

Note that I2{Λ) is the value taken by the quadratic Casimir operator of g in the
representation with highest weight A.

We point out that in deriving (44), the formal inner product < | > and the basis
{|μ>} for V(Λ) are introduced only as a computational device; the final result does
not depend on the existence of such an inner product or basis.

Using the fact [10] that when q-^q~1

9 the β-matrix is transformed into a
matrix similar to R'1, we can similarly evaluate z to obtain

Lemma 3.

z = q^ΛyDq(A\ z = q-^ΛyDq(Λ\ I2{Λ) = {Λ + 2p,Λ). (45)

With Proposition 3 and Lemma 3 we are now ready to construct a link
polynomial.

Theorem. Let

θeBn, (46)

where θ is the link obtained by closing the braid θ, and e(θ) is the sum of exponents
of the σϊs appearing in θeBn. Then L defines a link polynomial.

Proof Equation (46) is equivalent to

\ φ(θ\ θeBn. (46a)

It can easily be checked that the L(θ) defined by (46a) has the following properties:

II:

and thus defines a link polynomial.
The formula (46) agrees with that obtained by Reshetikhin [10] using

the quantum analogs of Clebsch-Gordan coefficients, but is more explicit.
Furthermore, our derivation has avoided lengthy manipulations with such co-
efficients.

We now examine some of the properties of the link polynomials (46). Consider
θ — θ1θ2^Bn, where 9t is composed from generators σ 1 ,σ 2 , . . . ,σ ί _ 1 only, and θ2

from σ i ,σ i + ! , . . . ,σ B _! only. We express the associated link θ obtained by closing
the braid θ as
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where θί and θ2 are regarded as links arising from closing θγsBi and θ2eBn_i

respectively. When θ1 involves G^^ and θ2 involves σi9 this coincides with the
connected sum of the links θx and θ2 as defined in [12].

It follows readily from the corollary to Proposition 1 that

φ(S) = φ(θ1)φ(θ2),

and then by noting that

we obtain the following

Lemma 4. Let θ = θ^θ^ where the links θγ and θ2 are the closures of θ1eBi and
θ2eBn-i. Then

L(θ) = L(θί)L(θ2).

Obviously the lemma can be extended to the case of more than two links.
When

V(Λ)®V(Λ)=@V(Λμ)

is multiplicity-free, the braid generator σeEnd (V(Λ) ® V(Λ)) assumes a particularly
simple form [10,13]:

σ=Σ oi(Λμ)Pμ (47)
μ = l

with

a(Λμ) = ε(Λμ)q^Λ^2-^Λ) μ= 1,2,...,M,

where ε(Λμ) is the eigenvalue of the operator P of (24) on V(Aμ\ in the limit q^> 1.
It is easy to see that σ satisfies the polynomial identity

f[[(μn f
μ=ί 1=0

where the Ax are determined by expanding the product on the left-hand side. This
leads to the generalized skein relations for (46). For example, with

0 = 01(σ l)
M02, θl9θ2eBn,

then

ι = o

The skein relations and Lemma 4 are very useful for concrete computations
of link polynomials, especially when M < 3.

Now we consider a particular class of words θ for which L(θ) can be worked
out explicitly in a general fashion. With the help of (47) and Lemma 2, it is
straightforward to prove the following:

Proposition 4. Assume V(Λ) ® V(Λ) is multiplicity-free, and let

θ = (σiι)
h(σt2)

ι^"(σin_ι)^eBH9 / ^ . . . ^ ^ e Z , (48)
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with (ίh i 2,. . ., in- x) an arbitrary permutation of (1,2,..., n — 1). Then

L(θ) = q~2l2iΛ)<=>''Π { Σ MΛμW^'2yΦq(Λμ)/Dq(Λ)i (49)

It is worth noting that the tensor product V(Λ) ® V(Λ) is always multiplicity-free
when all the weights of V(Λ) occur with unit multiplicity.

4. Examples

In this section we consider some concrete examples to illustrate the general theory
developed in the last section. In particular, we study the rank two tensor
representations of Uq(gl(m)\ the spinor representation of Uq(so(2m + 1)) and the
minimal representation of Uq(E8\ and determine corresponding link polynomials.
For the sake of simplicity, we restrict ourselves to the special case discussed in
Proposition 4.

1. Irreducible Rank Two Tensor Representations ofUq(gl(nή). The rank two tensor
representations of Uq(gl(m)) are those obtained by deforming the rank two
symmetric and antisymmetric tensor representations of gl(m). They are furnished
respectively by the irreducible Uq(gl(m)) modules V(2ε1),V(ε1+ε2), where
εh i = 1,2,..., m is the standard basis for the gl{m) weight space with the invariant
form

Let us consider V(ε1 + ε2) first. It can be shown that

V{εx + ε2) ® V(ε1 + ε2) = 0 V(Λμ) (50)
μ = 0

with

Λ0 = 2(ε 1 +ε 2 ), Λx = 2εx + ε2 + ε3, Λ2 = εx + ε 2 + ε3 + ε4, (51)

and

ε(Λ0) = ε ( y l 2 ) = - ε ( y l 1 ) = + l .

Using the formula

1 m

P = o Σ (m ~ 2 ί + !)fii>

we can easily see that

/2(βi+fi2) = 2(m-l), /2(Λ0) = 4m

/2(Λ1) = 4(m-l) , /2(yl2) = 4(m-3). (52)

The ^-dimensions of V(ε1 + ε2) and the V(ΛμYs are given by
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W -qί-m){qm-q-m)2(qm+ι -q-ι-m)
D«(2εi+2ε2) = ( ί - ί - w 9 - 2 w ί - 3 ) — '

^ ( ( r - 2 _ g 2

Z) ϊ(2£l + β2 + β,) -

^ ( g » - 3 _ g 3

O e(£ l + β2 + β3 + ε4) - (q

(53)

For any θeBn of the special form (48), we can explicitly work out the corresponding
link polynomial; it reads

q •-' UΣM (54)
ί = l

with

v-/j\ 2iλ(lm~cl~m)(clm+1 ~Q~1 m)

Now we study the module V(2ε t). The tensor product V(2ε t) ® V(2ε t) reduces to

V{2ει)®(2ει)=@V(Aμ) (56)
μ = 0

with
Λ0 = 4ε1, /I1 = 3ε1 + ε2, Λ2 = 2ε1+2ε2, (57)

and
ε(Λ) = ε(/l 2 )=-ε(Λ 1 )= + l.

The /2's are given by

/2(2β1) = 2(m + lλ /2(Λ0) = 4(m + 3),

/2(Λ1) = 4(m+l), I2(Λ2) = 4m, ( 5 8 )

and the ̂ -dimensions read

and Dq(2ε1 + 2ε2) is given in (53). Using the formulae (57)-(59) in Eq. (49) we again
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obtain an explicit expression for a polynomial for the link arising from a braid
θeBn defined by (48).

2. Spinor Representation ofUq(so(2m+ 1)). The spinor module of Uq(so(2m+1))
has the highest weight

Denoting this module by V(Λ), we have

m

V(Λ)®V(Λ)=@V(Λm_μl (60)
μ = O

with
m — μ

The ^-dimensions are given by

+ll2_

(qm + l+μ-l_qi-m-l-ftχq2m+l-i_qi-2m-lχq2m + 2-i_qi-2m-»j

"IΪ;
M ( ί m + 1 " μ " i - ή [ I " m " 1 + ' ' ) ( ί f 2 m + 2 " 2 > - ί 2 ί " 2 m " W " + 3 " 2 i - « 2 i " 2 m " 3 ) '

(62)

The /2's can also be worked out easily, and we get

I2(Λ) = m(2m + l)/4,

Applying Eqs. (60)-(63) to (49) yields an explicit expression for L(θ\ which will
not be spelt out here.

3. The Minimal Representation of Uq(E8). Our final example is the exceptional
quantum group Uq(E8). Recently the other exceptional quantum groups have been
studied in their minimal representations [14]. Here we also consider only the
minimal representation of Uq(E8).

Let us first introduce some notation. We choose the following simple root
system for the Lie algebra E8:

(64)

The corresponding set of positive roots is then given by

Φ + = I ± β£ + βJ? V β 8 + fcΣt (~ υ Λ ( Λ ) ^ ) | 1 ̂  Ϊ < 7 ̂  8 , ^ α(fc) = 0 (mod2) j , (65)

from which we obtain, for the half-sum of the positive roots

p = 23ε8 + 6ε7 + 5ε6 + 4ε5 + 3ε4 + 2ε3 + ε2. (66)



26 R. B. Zhang, M. D. Gould and A. J. Bracken

The minimal irreducible representation of Uq(E8) is 248-dimensional, and is
furnished by the irreducible model V(A) with the highest weight

Λ = ε8 + εΊ. (67)

The tensor product of V(Λ) with itself reduces to [11,15]

V(Λ)®V(Λ)=®V(Λμ)9 (68)
μ

μ = 0

with

AQ = 0, Λ1 = ε8 + ε7, Λ2 = 2ε8, Λ3 = 2(ε8 + ε7), Λ4 = 2ε8 + ε7 + ε6, (69)

and

ε(Λ0) = ε(Λ2) = ε(A3) = - ε{Ax) = - ε(A4) = + 1. (70)

The dimensions of the V(AμYs are respectively given by

dim V{A0) = 1, dim V(ΛX) = 248,

dim V(A2) = 3875, dim V(Λ3) = 27000,

dim K(Λ4) = 30380. (71)

It is fairly straightforward to work out the /2's. They read

I2(A) = I2(A1) = 60, I2(Λ0) = 0,

/2(Λ2) = 96, / 2(Λ 3)=124, /2(Λ4) = 120. (72)

Using Eqs. (67)-(70) and (72) in formula (49) we arrive at

L(θ) = q~ω^ltnγ\ΣqU (73)
ί = l

with

Σq(lt) = {q~60k + (-q~30)kDq(Λ) + q-12hDq(Λ2)

+ q2hDq(Λ3) + (-l)ι<Dq(ΛA)}(Dq(Λ)r1

9 (74)

where θeBn is of the special form (48). For example, when the trefoil knot θt is
considered, we have

θt = σleB2.
Thus

L(£f) = <Γ 1 8 O ^(3)
= {Dq{Λ1))-'q-™°{q-^-q-9«Dq{Λ1) + q-™Dq{Λ2) + q*D^

(75)

The ^-dimensions are given by
a( Λμ + p,a) _ Q - (Λ μ + p,a)

P«(4.)= Π fl(p.g) :-<„,« . μ = 1,2,3,4, (76)
αeΦ+ if if

with Φ + and p given by (65) and (66) respectively. Although we could expand the
products in (76) explicitly, the final expressions are messy and not very illuminating.
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We note that the link polynomial assoicated with V(Λ) satisfies a fifth-order
skein relation; of course the general result of Lemma 4 holds here also, that the
polynomial of the connected sum of a finite number of links is the product of the
corresponding link polynomials.

5. Conclusions

A systematic method has been developed for constructing quantum group
invariants. As an application, we have used the method to construct a general
formula for link polynomials. Our formula agrees with that of Reshetikhin obtained
through a different approach [10], but is more explicit, and the theory of quantum
group invariants we have developed makes the derivation very simple. When
applied to particular representations of the quantum groups Uq(E8) etc., this
formula has yielded corresponding link polynomials.

As is well known, the Gelfand invariants of ordinary Lie algebras play a crucial
role in their representation theory. However, for quantum groups the analogous
invariants have not previously been determined (except for the case of Uq(sl(2))
[1]). The method developed in this paper allows us to construct such invariants
in a systematic way; results will be reported in a separate publication [16].
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