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Abstract. A new mechanism for the cancellation of gauge residue symmetries in
the framework of heterotic superstring compactification theories is revealed. The
model preserves all the string features and fits naturally in the consistent topological
structure of the homogeneous CP4 Calabi-Yau manifold.

I. Introduction

The anomaly cancellation for the 10-dimensional heterotic superstring theory with
5Ό(32) or E8 x E8 gauge group gives hope of allowing a consistent unified theory
including gravity, especially if N = 1 supersymmetry is required to be unbroken
at low energies.1

To make a realistic contact with the low energies phenomenology, it is assumed
that the D = 10 theories compactify into M 4 x K6, where K is a compact complex
6-dimensional Calabi-Yau manifold for orbifold with SU(N) holonomy. It is
further assumed that all the known particles at low energies are singlets under the
E8 group and belong to the representation of E6. Such realistic connection with
low energies is then intrinsically related to lowering the rank of the E6 gauge
group [1].

A powerful method of implementing such symmetry breaking in superstring
theory is to consider the string propagation on an orbifold. The most popular and
effective method of breaking the gauge symmetry - and consequently reduce the
number of generations - is known as the Wilson-lines mechanism [2] in the
framework of orbifold compactification.

The Wilson-loop is a homomorphism of the translation defining the torus into

1 One can consider the Atkin-Lehmer symmetry in a non-supersymmetric background as a
good challenge, since its discrete symmetry of modular space makes the integral over τ vanish
despite the precise absence of spacetime supersymmetry
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£ 8 x Es. (In the literature the 06 = T6/Λ flat tori are usually considered.) Since the
translation group is abelian this implies that the Wilson-lines satisfy this property:
they commute between each other!

Such commutability in the embedding of the gauge group action into the
internal degree of freedom lies in the explanation of why the rank of the gauge
group is not reduced, and so on the survival of some extra (7(l)'s under the
symmetry breakdown by the Wilson-loops mechanism. The same remark applies
when one, in an attempt to construct a chiral string model in 4-dimensions, obtains
a large rank gauge group [3]. Thus, the theoretical perspectives of making a realistic
connection between the Planck energies and the low energies phenomenology
strike on the existence of these extra singlets.2

In this paper we present a new mechanism for removing the unwanted extra
symmetries. In the language of topology this is called trivialization. We trivialize
these symmetries. The paper is divided as follows: In Sect. II, we recall some basic
properties of the algebraic topology and introduce the problem. We then treat the
reduction of the E6 gauge group associated with the SU(3) gauge holonomy. A
connection is provided between such reduction and the homogeneous CP4

polynomial deformations. Particular emphasis is given to trivializing an arbitrary
ί/(l) residue. Here, the use of the universal coefficient theorem is required. Our
treatment is generalized by considering the consequence of introducing the use of
obstruction theory. This enables us to determine exactly for which specific class
of homotopy the obstruction lives. In Sect. Ill, we discuss the string vacuum
configuration with respect to the model, and, hence show how one can meet the
geometrical requirement to not destabilize the string vacuum configuration.

The conclusion addresses some open questions, in particular, the geometrical
interpretation of our results as well as the physical implications with respect to
the Planck scale and low energies like the Salam-Weinberg scale.

II. The Model

Let us first start by recalling some basic facts. Within a complex projective space,
a bundle U(l) is defined as

with cohomology

Let M be a complex manifold of dimension 3. Relating now BU(1) to Jt leads us

2 Singlets are considered extra by taking into account the standard SU(3) x SU(2) x ί/(l) model.
For an overview of this topic refer to S. Weinberg, A. Salam and L. Glashow, "Nobel Lectures
in Physics", Review Mod. Phys., 52, No. 3 (1980). Note that the inclusion of the Wilson-loops
depends on the geometrical configurations chosen. In particular, it is related to the construction
of the orbifold which turns out to be related to some specific inner automorphism inside the
torus and to the number of singularities (usually the A-D E semi-simple laced Lie singularities)
in the light cone
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next to write

At this point, we introduce a useful notion, Hopf invariance. To roughly apply
this, take 3-spheres of respective rank 1, 2 and 3. Under the Hopf invariance, the
3-spheres will give the following map:

I
s 2 .

Applying it to a complex projective space, one obtains:

O > O

J
CP™.

Hence, a universe of the principle bundle will substantially be of the form:

CP"-1.

Extending this to a vector bundle with E8 as gauge group leads to:

where we view E8 as the product of a sphere [4]

S3 S1 5 S2 3 S2 7

with respective dimensions 35, 39, 47, 59.
We are now interested in computing the exact cohomology of the E8 vector

bundle, and consequently its homotopic class. This leads us to consider an
Eilenberg-MacLane space, a space with exactly non-zero homotopy group. It is,
in fact, a path connected space, all of whose homotopy groups vanish except for
a single dimension.3

According to Eq. 1, we note this space:

K(Z9 3) x K(Z, 15) x X(Z, 23) x K(Z9 27) .

What one gains from this notation is that the vector bundle will have a cohomology
of the form:

H*(BE8,R) for R = k39k159...9k2Ί.

E6 Structure Group Reduction. We turn now, at this point, our attention to a CP4

3 For a more detailed and historical overview see S. Eilenberg and MacLane, "On the Groups
H(πtn),n Ann. Math. 58, 55-106 (1953)
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Calabi-Yau manifold, which contains our vector bundle with E8 as a maximal
gauge group. In the heterotic superstring case, one way to break it down (as soon
as one is interested) to obtain a Ricci flat scalar metric is to embed the spin
connection with the gauge group4. Later we will come back to this specific topic.
Although this will be the tool of the next part, let us take here E6 x SU(3) as the
maximal subgroup of E8. So, one write:

£ 6 x S l / ( 3 ) c ^ £ 8 , (2)

where SU(3) is the gauge group for the SU(N) holonomy. Translated in the sequel
language, the decomposition takes the form

E6xSU(3)—+E1

EιxH*G: I
M

Lemma. Every E6 x SU(3) bundle gives an E6 extension of Es bundles by a
homomorphίsm.

Taking Lemma 1 into account, we define then the sequence

...-tHjCzH^Ho^.'. (3)

with cohomologies

H*(BH0) -• H^BHJ -> H*(BHj).

In order to reduce E6 one must relate E6 to a map of a cohomology of a certain
classifying space.

Let us consider again the induction

and let G s t a n d a r d be:

Gstd = St/(3)xSl/(2)xt/(l).

Thus we get the explicit induced sequence

G s t d c , £ 6 ^ £ 6 x S ί / ( 3 ) c , £ 8 . (4)

This process is a homomorphism of HjaH1cz Ho:

and thus induces an E6 bundle which naturally reduces itself to a Gstd bundle
(noted (£2)) and Gs td x (7(1) bundle (noted £(1)). Here, we took U{1) (e.g. from
Gstd x (7(1) as the gauge residue symmetry. Basically, we are not only interested - at
this stage-in reducing E6 to Gs td x (7(1) but also to G s td. So given Lemma 1 in
that respect, a first point is to find out the E1 extension of E6 from Gstd to Gstd x (7(1).
To answer, consider a principal bundle B(G1 x G2) which satisfies the commutative

4 Restricting J( < 14 means that the first fourteen homotopy groups of E8 are πk(E8) = Z for
K = 3. Such homotopy is exactly trivial if we take 1 ̂  K ^ 14 for K Φ 3
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property

B(G1 xG2) = BG1 xBG2.

If so, then the only known classifying space of

has a nontrivial cohomology of H*BG expressed as a product [6]. More explicitly
for G = Gxx G2 the cohomologies of BG1 and BG2 appear under the commutative
relation B(G1 x G2) = BG1BG2, which in turn extends to the cohomology

H*(BGί xBG2) = H*G.

Going back now to H*BU(1\ let us notice that it can be viewed as a
characteristic class, measuring whether the extension to G s t d x 1/(1) from the
restriction E2 to G s t d is isomorphic to E1.

To see how this may happen, consider the following sequence:

B(GsidxU(l)) = BGstdxBU(l)

I
BGstd

I
BGstd x 1/(1).

This gives us an extension (E2 isomorphic to Eί9 respectively) which furthermore
satisfies

When Et is actually restricted to G s t d, the composition becomes an identity (c1 is
the characteristic form of the criterion for this restriction). Defining, now, the
following sequence,

one can easily point out that any G-bundle over homogeneous CP4 can be of the
form:

H*B(E6,R)^H*B(Gstd,R), (5)

where H*B(E6,R) is taken to be the maximal cohomology of the maximal bundle
structure of E6. Before digressing to the characteristics class of our homogeneous
CP4 manifold [7], let us consider the map:

BF

/ !•• > ( 6)

and also a universe of E bundles such as
τj v τrn.

G—>EG

I I
BG BH-
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Hence, what we construct is nothing other than a homogeneous space5 with fiber

bundles [8,9]:

C/H > EG/H > EG/G

and

F

E ^

A first question to ask is whether the section E-+B exists and, if so, under which

conditions. As it will become clear later this implies that one has to look at the

global cohomology of F. Such global cohomology is obtained if one combines the

nn_x homotopy of F with EG/H:

In that case and only in that case, (4) ignores the torsion [10], since the DeRham

cohomology of EG/H will be isomorphic to

This is an interesting fact. We now wish to specify the triviality of the torsion, in

other words, to work out these implications. A useful notion will be required: the

universal coefficient theorem [11]. If we consider any principal ideal domain, S,

with a non-trivial cohomology Hι(M, S) defined by /Γ(M, Z) and use the fact that

M is compact, it follows that the only case where H\M, Z) is finitely generated is

when it is isomorphic to 6

5 Space is homogeneous in the sense that G admits a transitive Lie group of a homomorphism
and carries a complex analytic structure. The coset spaces C/H and EG/G are homogeneously
complex (respectively homogeneous Kahlerian) if they carry a complex analytic structure invariant
under G. For a discussion see H. C. Wang, Am. J. Math. 76, 1-32 (1954)
6 We do not have torsion when prime P does not divide the order of the Weyl group of G. For
E6,EΊ,E8 the order of the Weyl Group is

27 3 4 5; 9! 8; 10! 3 26.

If P is greater than the coefficients of the highest roots then the simply connected group G has
no torsion. We restrict G to be either Gstd or Gstd x 1/(1). Thus the simplest connected
representatives of the structures E6, EΊ,E8 would imply no P-torsion (no torsion P and no torsion,
respectively) for P ;> 5; P ̂  5; P ̂  7 respectively.

We are able to work out the vanishing of the torsion in CP4 simply if we point out that there
is a deep relation between the cohomology of CP4 and the first Chern class. Since CP4 is defined

5

by 5 homogeneous polynomials, £ zo = 0, such as the first Chern class c1=0i the relation is
immediately given by i = 1
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Zκ0Z/Pf'Z® Z/Pf2Z0 Θ Z/P^Z, (5)

where Z/Pf1 are integer modules of Pfι and Px is a prime,

R and

the torsion being Z/Pfι in this tensor form.
Reducing the structure group from G to E corresponds to a specific section of

some bundle. The first step is to find out which section we may consider.
Again it will be useful to construct an explicit map of the sequences which are

of some relevance for our purpose. Let such a sequence be

G/H bundle

>...G >£ 6 > E6/H (8)

M = E0/G.

We are interested in

(9)

Substituting (7) into (4), such that (7) must be exactly solvable, then it follows by
the use of obstruction theory [12] that a set of F lives in Hi[B,πi-ί(F)']9 where
π,--! denotes the first homotopy of F. Given this statement, considering now any
reduction of G-bundles to E over M implies asking whether

• ••• H • Eι > E^XHG "' •

I J
M M

is isomorphic to the coset homogeneous space E/G.
If we define a global cohomology both from M and G/H,

then it is not so difficult to work out the cohomology of M and G/H together as
a tensor product:

(10)

Consider now the following inductive sequence:

— > . . . G β t d x £ / ( l ) >

I
_ _ > . . . G s t d >•

By the use of (10) one writes

f f i [ (M,π i _ 1 (£ 6 /G β t d ) ]#0 (11)

for any arbitrary H czG. Then by definition

G/H1 • EG/H - ^ EG/G.
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If H is taken as a maximal rank subgroup of G, then

H*{G/H) = H*BH/P*(H*BG). (12)

What is now the correct homotopy of E6/GstdΊ First we may recall that the global
cohomology of E6 was given already by

H\MlZ).

So then, by recurrence, the cohomology of SU(3,R) is7

H*SU(39R)~ Λ[e59e3 ]9

the cohomology of G s t d is

and, finally, the cohomology of E6 is

H ( £ 6 , K ) = Λ [ F 3 , F 9 , F 1 1 , . . . ] .

So

π £ - 1 ( E 6 / G β t d ) # 0 for ί = 2,4,6.

This results allows the obstruction to live only in

ff2(Mi,π|)#0, ff4(Λί5,π3)#0, # 6 ( M i , π 5 ) . (13)

III. String Vacua Stability

In order to be consistent, the model as described in Sect. II must obey certain
geometrical requirements which at last resort should ensure that world sheet
instantons do not destabilize the string vacuum configuration. For the general
case, conditions to preserve the string vacuum state have been extensively and
explicitly discussed by Witten and collaborators [15]. We will follow these
prescriptions.

Our starting point is with respect to Sect. II, to take once again a 3-D
Calabi-Yau manifold which is described basically by an algebraic equation of the
form:

Zg + Z5

0 + Z\ + Z5

2 + Z5

3 + Z% = 0.

As in π, for notational convenience, we write this manifold Ml, which is a
submanifold of CP4; that is, one sets:

Ml * CPA.

Let us now define V(M\) as a "stable holomorphic vector bundle" [16] (i.e. we
refer to the vector bundle of Eq. 1, Sect. II). At this point, we can now meet one
of the algebraic geometrical requirements for string vacua stability, namely, by
posing:

V(M\) Θ T(M I) = T(CP*)/Mi (14)

7 We have used the relations SU{3) = S5 x S3 and SU(2) = S3
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Although V is holomorphically stable it is still a 1-dimensional complex normal
bundle, while T denotes the 4-D complex tangent bundle of CP4.

The question arises now how one can establish an equivalence relation between
the second Chern class of V and that of T(CP4). To proceed, we first of all define
a map i:

and its dual ί*:

ί*:H*(CP4)^H*(M3

5).

Using the Whitney sum formula for Chern classes, one gains a better evaluation
off*:

[1 + c^ViMlmi + c^TiCP*)) + c2(T(CP4)) + C 3 •••] = i*, (15)

where the first term under the first bracket expression denotes the total Chern
class of V(M\) and the second one, the total Chern class of the tangent bundle of
CP4. So from Eq. (15), i* is nothing other than the total Chern class of the tangent
bundle of CP4.

It is well known that one can write the total Chern class of a complex projective
space of dimension n like:

1 (16)

where, by α we means the H2(M;Z) generator. Generally, Hκ(CPn) will be an
integer of K is even and K < 2n; or, otherwise will vanish.

Returning now to Eq. (16), it is straightforward to see:

C(T(CP4)) = ( l+α) 5 (17)

for

aeH2(CP4;Z).

Equation (17) can actually take a more explicit form, that is:

C[T(CP4)~] = 1 + 5α + 10α2 + 10α3 + 5α4. (18)

Let us note that the reason why the coefficient α5 is not in (18) has to do with the
fact that it is an element of/ί1O(CP4;Z), which is known to have a zero value. So
consequently, α5 will vanish.

Next, our main concern is about the fundamental class of Ml in H6(CP4; Z).
Introducing a certain Poincare dual, denoted by β, in CP4 one gets with respect
to Eq. (18):

β is an element of the characteristic form H2(CP4; Z). Having introduced a Poincare
dual in CP4, our next task is to apply it to Ml. While it was rather easy in the
CP4 case, one will need a different approach here. Let us then digress to this well
established relation, roughly

Going back to the fact that M\ is a submanifold of CP 4 , we get a sufficient
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condition for it to have also a fundamental class, which, among other things,
generates the following relation:

To substantially apply these interesting facts, we introduce a "homological dual"
for i, noted i^. which has the basic features of i: roughly, it is a linear map of the form:

i*:H6(Ml;Z)->H6(CP4). (19)

By the earlier well-established relation, one just writes

Z). (20)

Although (19-20) give a rich appreciation for having introduced i^, there is another
fact which deserves to be pointed out here. Namely, one can associate an element
β dual to z*. β lives in H2{CP2;Z). Now, in terms of β, β has the value:

β = βeH2(Ml;Z). (21)

So rewriting the Whitney sum formula, we obtain:

(1 + 5j8)(l + c, + c2 + c3) = 1 + 5α + 10α2 + 10α3, (22)

where, α = i*α and, furthermore, aίeH2(Ml;Z). The first term on the left is taken
to be a constant while, the second term on the left are characteristic forms for the
tangent bundle of {CP4).

What we definitely gain is a good way to find explicit forms for those
characteristic forms; they are:

5βCl +c2 = 10α2 -• c2 = 10α2 -5βcx = 10α2 - 25β(α -β)= 10α2 - 25αβ + 25j82,

c3 = 10α3 - 5βc2 = 10α3 -

where

-] = 10α2. (23)

Equation (23) is precisely the statement that the model described in Sect. II does
not destabilize the string vacuum configuration.

IV. Conclusion

The procedure for reducing extra £/(l)'s can be generalized to any Calabi-Yau
manifold under of course the assumptions that they are solutions for string theory.
Essentially, the generalization itself will have to deal with obstructions. As given
by Eq. (13) of Sect. II, they are natural characteristic forms generated by the
reductional structure group of the E8 vector bundle. It may not appear surprising
that, definitively, as a result of generalization to other Calabi-Yau manifolds, the
localisation of obstructions appears more or less the same as the one found in this
paper. The reason is the universality of the string gauge group for any soluble
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string manifold and in relation to this point, the requirement about the dimension
of the manifold.

One should point out at this point that the fact that one may get different
obstructions for different CY manifolds may lead to different spectrum. Roughly,
the spectrum of the model doesn't seem to be altered since, a relation like the one
given by (10) enables us to choose the "good" U(l) via hypercharge checking.

Another source of interest should be to look at the global geometrical
consequence induced by the model. In [13], it has been pointed out that, actually,
one can minimize those consequences through the introduction of a certain type
of homomorphism, known as the "Chern-Weil homomorphism."

Appendix A: The t/(l) Generators

Let us define a universal principal G-bundle by

G >EG

I
B

and assume that EG is contractible. The contractibility of EG has an a priori
meaning: the homotopy class of maps of X to BG is πi-1[X,BG'] « 1 : 2 of the
principal G-bundle over X, where BG is the classifying space for the principal
G-bundle. We take here EG and BG such that they must be essentially unique.
Consider now the contractibility property of EG. We define EG:

EG = yG.

Given F:X -• BG, then F*γG is nothing other than the correspondence of G-bundles
over Y. Let us take G = (7(1), and define EG:

EG = SCO ciC 0 0.

1/(1) acts on C00 by

for any complex number C" <= C w + 1 (n = 1) so, one has:

( Z 1 , Z 2 , . . . , Z π ) - ^ ( Z 1 , Z 2 , . . . , Z M , 0 ) ,

and furthermore

C00 = U Cn.

This implies that the relation between S00 and C00 is S°° = infinite dim sphere

il2 = 1 and 1/(1) acts definitely on C00 by

l9Z29...9) = (λZl9λZ29λZ39...9λZH).

Given the Hopf invariance, one can just write S°° invariance S^/S1 = CP*°. We
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are able to work out an interesting fact, namely the S°° contractibility by

51 > s°°

I
CP4.

This contractibility generates in turn the universal (7(1) bundle.
It follows that if

H*(CP °°, Z) = Z\X~\ dim X = 2

then a (7(1) bundle over X had a 1 to 1 correspondence with [X, CP 0 0 ] :

X <—> IX, CP«>'] = IX, K(Z, 2)] = H2(X, Z).
1:1

Notice that K(Z, 2) is a Eilenberg-MacLane space with dim 2. A brief look tells
us that the cohomology class corresponding to a (7(1) bundle γ is simply CΊ(y).

We wish now to point out the generators of (7(1) bundle. To do this we first
recall a constraint in the cohomology of (M\,Z). From Sect. II, we know that
H2(M\,Z) ^ 1, and a Kahler form Ω was associated with H2(M,Z).

Consider now the following transition functions:

and

F* :#2[K(Z,2),Z] >iί2(Z,Z).

These transition functions generate a class which turns out to be represented by
F and which gives furthermore the following map:

CP4 • C P 0 0

MI
The F* generator of H^CP^.Z) is precisely the generators of H2(CP% Z).

They turn out to be equivalent to a universal constant modulo the Kahler form
of C P 4 (i* is the congruent here of Ω of M\). In conclusion, /°i is the classifying
map for the (7(1) bundle with a restriction corresponding to the Kahler form /*.8

8 To be more precise, a principal G1 x G2 bundle E-+M will have a trivial G2 piece only if the
structure group can be reduced to Gx. In that case (1) for FE a classifying map for E is

M -^>BGί x BG2 - B(G! x G2)

ΪΊ is induced by g - φ j ) . Then if i^ exists we have iί°Fί=FE and Fξ^Ffoi^ (2) For
H*(BG2,Z) c= k e r F | all the characteristic classes in the G2 piece would vanish for E by the use
of the "Chern-Weil homomorphism." That is, φ: adj. G-invt. polynomials with connection on
Ml^>H*(Ml,R). This could be translated into differential forms by the use of the extension
derivative of the DeRham cohomology (see ref. 13)
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