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Abstract. The connection between different supermoduli spaces is studied. It is
shown that the coincidence of the moduli space of (111) dimensional complex
manifolds and N = 2 superconformal moduli space is connected with hidden N = 2
superconformal symmetry in the superstring theory.

Let W denote the Lie superalgebra of vector fields on C 1 ' 1

ξ = P(z,θ)^ + Q(z,θ)-?-
dz oθ

(here P(z, θ) and Q(z, θ) are finite linear combinations of zn, znθ, n is an integer). It
is proved that this Lie algebra is isomorphic to the Lie superalgebra K(2) consisting
of TV = 2 infinitesimal superconformal transformations [1,2]. One can show that
this fact is closely related with hidden N — 2 superconformal symmetry in the
superstring theory [3]. For superghost system (and for a general B-C system)
hidden N = 2 supersymmetry was discovered in ref. 4. To understand the origin
of the N = 2 supersymmetry of the B-C system we recall that the fields B and C
can be considered as sections of line bundles ωk and ω 1 "* correspondingly.
However the line bundle ω and its powers can be determined not only for a
superconformal manifold but also for arbitrary (1|1) dimensional complex
supermanifold M. (If (z, θ) and (z, θ) are co-ordinate systems in M, then the transition
functions of the line bundle ωk are equal to Dk, where D = D(z, θ\z, θ) denotes the
superjacobian.)

Let us consider a (111) dimensional compact complex supermanifold M, a point
meM and local complex co-ordinates (z,θ) in the neighbourhood of m. (Here z is
even, \z\ ̂  1, and θ is odd.) The moduli space of such data will be denoted by 0*.
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(In other words, a point of 9 is specified by a triple (M,m,(z,θ)) and the triples
connected with an analytic transformation are identified.) The Krichever
construction permits us to build for every point pe& an element Vk(p)eGr. (Here
Gr denotes the superGrassmannian manifold and Vk(p) can be defined as space
of functions on supercircle that can be extended to a holomorphic section of ωk

over the exterior of supercircle.) The element Vk(p)eGr specifies the state
corresponding to the B-C system on the manifold M. Every vector field
ξeW = K(2) generates an infinitesimal transformation of SP\ a corresponding
change of Vk{p) is given by the operator ξ + k div ξ acting in the space H of functions
on the supercircle and therefore in Gr.

It is well known that the change of the state of B-C system by infinitesimal
N =1 superconformal transformations is governed by the energy tensor T (see
[5]); in a similar way the variation of this state by other transformations for
W = K(2) is governed by the supercurrent J (see [3] for details).

The remarks above together with the results of [6] permit us to analyze the
superbosonization problem [7]. The physical state can be represented as a section
of the det* bundle over Gr. Let us fix an element VeGr and let us consider the
restriction of the det* bundle over the set Γ F c G r , where Γ denotes the
(super)group of invertible functions on the (super)circle. In the supercase this
restriction is a trivial bundle [6] and we can assign to every state a section of this
trivial bundle, i.e. a function on Γ. This realization of states by means of functions
on Γ is closely related with superbosonization and with the results of ref. 8. In
the usualcase the det* bundle is not trivial over ΓV, however it is trivial over
Γ_ V and the bosonization is connected with the representation of states by means

of functions on Γ_. I Here Γ_ consists of functions on the circle \z\ = 1 having

the form exp I Σ xnz
n I.

It is shown in [6] that the super-Mumford form can be extended to the space
SP\ this follows also from the results of ref. 9. Moreover, it is proved in ref. 6 that
the super-Mumford form can be extended to the "universal moduli space"
UMS c Gr; the Krichever construction embeds ^ in UMS. (Note that B-C system
can also be extended to UMS.) As in the case of B-C system the possibility to
extend the super-Mumford form to the space 0> shows that this form has in some
sense W-symmetry (or N = 2 superconformal symmetry).

It is well known that in the string theory N = 1 space-time supersymmetry is
connected with N = 2 world-sheet superconformal symmetry [10]. In other words,
we have to consider N = 2 superconformal theory living on the world-sheet and
we obtain the string amplitudes integrating the vertex functions of the
superconformal theory over the moduli space. The question arises what kind of
moduli space we must use. The conjecture that one has to use N = 2 superconformal
moduli space leads to anomalies and therefore it must be excluded. However, to
integrate over N = 1 superconformal moduli space we have to explain how one
can consider N = 2 superconformal theory living on the N = 1 superconformal
world-sheet. To answer this question we use that the isomorphism W = K(2) leads
to the possibility of constructing for every (111) dimensional complex supermanifold
a N = 2 superconformal manifold. In particular, we can assign to every N = 1
superconformal manifold an N = 2 superconformal manifold; in such a way the
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N = 1 superconformal moduli space is embedded in N = 2 superconformal moduli
space.

We see that the symmetry with respect to the super Lie algebra W = K{2) may
play an important role in string theory. All questions discussed above will be
analyzed in more detail in a forthcoming paper [3]. The present paper is devoted
to the study of the connection between (1|1) complex manifolds and N = 2
superconformal manifolds and to related topics. In the main part of the paper we
use a more elementary co-ordinate approach. In the appendix we show how one
can simplify the proofs and go a little further by means of invariant considerations.

Let us consider a (ί\N) dimensional superdomain with co-ordinates
Z = (z, θl9..., ΘN). The covariant derivatives Di9

satisfy

ί/Λ,LM = Id a—. (2)

dz

One says that the transformation

Z = F{Z) (3)

is superconformal if

Di = Fij{Z)Dj (4)

(i.e. D!,...,DN can be considered as linear combinations of Dί9...,DN). One can
check [11] that the transformation (3) is superconformal if and only if

D:Z = θ Dβi. (5)

The infinitesimal transformation

Sz = υ- ^θjDjV, δθt = \D p (6)

is superconformal (here v(Z) = v(z, θl9..., ΘN) is an arbitrary analytic field). Really,

it is easy to check (4) with

Conversely, every infinitesimal superconformal transformation can be represented
in the form (6). The matrices FU(Z) in (7) satisfy

Fij(Z)Fkj(Z) = λ(Z)δik9 (8)

where λ(Z) = — h θ,—-[11]. We see therefore that the matrix function
dz dz

F(Z) = (Fij(Z)) takes on values in the group O(ΛΓ, <C) x C*, where O(N, C) denotes
the complex orthogonal group and (C* denotes the group of non-zero complex
numbers. (This fact follows also from (7).) We will consider here only the
superconformal transformations satisfying F(Z)eSO(N9<ϋ) x (C*. One can define
the AΓ-superconformal manifold as a (ί\N) dimensional complex supermanifold
pasted from (1|JV) dimensional superdomains by means of superconformal
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transformations. Recall that we require FeSO(N,(E) x C*, and therefore our
iV-superconformal manifolds are untwisted super-Riemann surfaces in the sence
of [11]. If T is a fc-dimensional representation of the group SO(N,<E) x C* we
define a field of type T on the superconformal manifold as a fc-component field φ
with the transformation law

φ(Z)=T(F)φ(Z) (9)

(in other words, the value of φ in the patches connected with (3) satisfy (9).) In
the case N = 2 the group SO(N, <C) x C* is abelίan; it has only one-dimensional
irreducible representations. It is easy to check that 50(2, <C) is isomorphic to C*
and therefore one-dimensional irreducible representations of 50(2, C) x<E* = <E* x
C* are labelled by two integers.

It is convenient to consider instead of derivatives DUD2 their linear

combinations D+ = (Dx + iD2\ satisfying

D\=D2_=0, [ D + , D _ ] = | - . (10)
ϋz

In the co-ordinates θ± = (θι±iθ2)
 t n e derivatives £>+,£)_ have the form

D + = h -θ+ —, D_ = h -0_ —.The behaviour of D, by superconformal
+ dθ. 2 +dz dθ+ 2 dz + y P

transformations is given by
D+=F+D + , D_=F_D_. (11)

(Replacing the matrix FeS0(2,C) x C* by two numbers F+,F_ we obtain the
isomorphism S0(2, (C)xC* = C*x C* mentioned above.)

The field of type (fe, /) on N = 2 superconformal manifold can be defined by
means of the transformation law

φ* f(Z) = F\{Z)Fι_{Z)φκ\Z\ (12)

such a field can be interpreted as a section of the line bundle ω + ® ω^, where ω+
and ω_ are defined by means of transition functions F+ and F_ correspondingly.
It is easy to check that the transformation law for the field v entering (6) for N = 2
is given by (12) with k = l—— 1. Therefore infinitesimal superconformal
transformations for N = 2 are specified by analytic fields of the type (— 1, — 1). In
the general case v is

v(Z) = (det F(Z)) ~ 2/Nv(Z). (13)

One can also obtain [11] that the transformation law for the density / on the
AΓ-superconformal manifold is

f(Z) = (det F{zψ-2^f{Z). (14)

Let us prove that the moduli space Jί2 of N = 2 superconformal manifolds
can be identified with the moduli space M1Λ of all (1|1) dimensional complex
manifolds. The assertion was proved for the first time by Deligne in an unpublished
letter to Ύu. Manin [12]. Speaking about the moduli space one assumes usually
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that all manifolds under consideration are compact. However, this assumption
will be irrelevant for our conclusions.

By definition the N = 2 superconformal manifold X is patched together from
(1|2) dimensional superdomains by means of AT = 2 superconformal transform-
ations. Let us replace the co-ordinates z ,0 l 5 0 2 by

u = z - - 0 1 0 2 = z + - 0 + 0 _ ,

1 - ί β 2 ) = β-. (15)

It is easy to check that the operators D +, D _ in these co-ordinates have the form

D * D _ = f + «f. (16)
doc dη du

The general superconformal transformation in the co-ordinates z, 0+,0_ can be
written as follows:

_(z) = q'(z) + i(ε+(z)ε'_(z) + ε_(z)ε'+(z)), (17)

where #(z), q+(z), #_ (z) are arbitrary even and ε+(z), ε_ (z) are arbitrary odd analytic
functions. Corresponding formulas in the co-ordinates u, η, α are

u), (18)

(19)

α = ε _ (μ) + α̂ f _ (u) + αί/ε'_ (M). (20)

It is important to stress that α does not enter the expression for u, η. This assertion
can be proved without calculation. One has to use the fact that d+u = D+η = 0
and the superconformal conditions (5) which in the co-ordinates u, η, oc take the form

D.(u - %ή8) = jdtD.ή, D_α = 0.

For every N = 2 superconformal manifold X we construct a (111) dimensional
complex manifold X' as the manifold obtained by patching together (1|1)
dimensional superdomains with co-ordinates (u,η) by means of (18) and (19). One
can verify that this construction gives one-to-one correspondence between classes
of N = 2 superconformal manifolds and (111) dimensional complex manifolds. This
fact follows from the explicit formulas (18), (19) and (20). Really, let us take (1|1)
dimensional complex manifold obtained by patching together (111) dimensional
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superdomains in an arbitrary way:

u = (S(u) + ηV(u)φ(ύ),

where 5(w), V(u)(φ(u), \j/{u)) are arbitrary even (odd) analytic functions. Then the
corresponding N = 2 superconformal manifold can be obtained in a similar way
by means of (18), (19), (20), where

ε+(u) = ψ(u% q+(u)=V(u)

ε.(u) = φ(u\ q-(u)

In other words, to obtain an N — 2 superconformal manifold X from a (1|1)
dimensional complex manifold Xf we add to u,η a new odd co-ordinate α and
patch together (112) dimensional superdomains with coordinates (w, η, α) by means
of (21) and

3 = φ(u) + α(S'(iι) - ψ'(u)φ(u))V- \u)

+ aηφ'{u).

In such a way we realize X as a (0| 1) dimensional fϊbering over Xr.
The above construction can be generalized to the case N>2. Let us consider

at first the subgroup G, G cz SO(N, (C) x C* and define G-superconformal
transformation as a transformation satisfying (3) with FeG. We define a
G-superconformal manifold as a manifold obtained by patching together (ί\N)
dimensional superdomains by means of G-superconformal transformations. Let
us denote by H the subgroup of 50 (2N, C) x (C* consisting of transformations
that leave invariant a maximal isotropic subspace in (C2N. Introducing the operators

D ί = (Dk ±DN+k) one can characterize the iί-superconformal transformations

V2
as transformation satisfying

D Γ = f - + 2 ) + + i r - - D - . (22)

In the co-ordinates w, ηj9 ocp

aj = F ( θ j i θ

the operators D^, DJ have the form

(23)

δ
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It is easy to check that by the H-superconformal transformation

u = φ(u9ηk% (25)

ή. = φ + (u9ηkl (26)

δίj = φ7(u,ηk,(xk). (27)

In other words only u,ηk enter the expressions for ύ9ήj. This remark permits us
to construct for every (1|2N) dimensional if-superconformal manifold a complex
(1\N) dimensional supermanifold (this manifold is pasted by means of (25), (26)).
As in the case N = 2 one can show that this construction gives an isomorphism
between the moduli space <%ίtN of complex (ί\N) dimensional supermanifolds and
the moduli space %]]* of (1|2JV) dimensional ϋ-superconformal manifolds. (One
can see that in the case JV = 2 the notion of H-superconformal transformation
coincides with the notion of AT = 2 superconformal transformation, i.e. auto-
matically F~+ = 0.)

It is evident that there exists one-to-one correspondence between the analytic

vector fields on (l\N) dimensional complex manifold X' and infinitesimal H-

superconformal transformations of corresponding ϋ-superconformal manifold X.

Let / be a density on X1. Then the field / on X satisfying f(Z) — f(Z)) is a chiral

field on X (i.e. Dkf = 0) and the transformation law of / is

/(Z) = (det F_ _{Zψ-2)INάet F+ + (Zy2INf(Z) (28)

(the projection π transforms the point x = (u9ηl9...9ηN,θίl9...9 ocN)eX into the point
x' = (μ, η1,..., ηN)eX'). The transformation of X preserving the density / generates
an #-superconformal transformation Z = F(Z) on X satisfying

(det F_ _(Z))<"-2>/2 (det F+ +(Z))2'N = f(π(Z(Z)))/f(π(Z)). (29)

The infinitesimal if-superconformal transformation can be determined by means
of the analytic field v satisfying

It obeys (29) if

ί r) \ .
'v) = 0. (30)

Of course the constructions above give isomorphisms between different super-Lie
algebras and super-Lie groups. For example, it is evident that the algebra W = W(\)
of vector fields in C 1 ' 1 is isomorphic to the superconformal algebra K(2). (See [2]
for rigorous definitions of algebras W(N),S(N,f) and K(N).)

In general our construction can be used to realize algebras W(N)9 S(N9 f) as
subalgebras of K(2N). Let us consider for instance the algebra 5(2, α) = S(2, zα)
consisting of (1|2) dimensional vector fields preserving the volume element
zadzdθ1 dθ2. The assertion [2] that the algebras from this family coincide with the
so-called SU(2) superconformal algebras follows from our arguments.
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Appendix

In this appendix we give an invariant description of the above constructions. Let
us consider (ί\N) dimensional complex supermanifold X and let us fix a (0\N)
distribution y on X. In other words, we suppose that for every point XEX a (0\N)
dimensional subspace *VX in tangent space ϊFx is specified. Let us consider a frame
vt(x)9..., vN(x) in *KX. We suppose that the dependence of i^x on xeX is smooth
and therefore at least locally we can assume that vx(x)9..., vn(x) are smooth vector
fields. (Anti commutator of these fields specifies a bilinear form vx on >VX taking
on values in (l|0) dimensional space tf'J'Vx. (It is easy to check that if
Vi(xo) = v'i(xo)9 then {v'i9v'J}\x=Xo-{vi9Όj}\x=Xoe'rxo and therefore the image vxo

depends only on the values of vector fields vk(x) at the point x0.) If the form vx is
non-degenerate we will say that the distribution specifies an JV-superconformal
structure on x. One can prove that superconformal manifolds in this sense can be
identified with the superconformal manifolds in the sense of [11]. In other words,
in the neighbourhood of every point xeX we can introduce a co-ordinate system
(z, 0l5...,ΘN) in such a way that in these co-ordinates the subspace Ψ*x is spanned

by Dι = — : + θt—, i = 1,..., N. The proof is based on the remark that the quadratic
dθι dz

form vx can be diagonalized. A superconformal transformation F can be defined
as a transformation preserving the distribution V (i.e. F is superconformal if for
vei^x we have F^υeΨ*F{x). The notion of an iV-superconformal manifold is closely
related with the notion of a contact manifold. One can define contact structure in
(M\N) dimensional manifold by means of (M— 1|JV) dimensional distribution
satisfying some non-degeneracy condition. Then for N = 0 we obtain the usual
contact manifolds and for M = 1 the definition of contact structure coincides with
the definition of N superconformal structure. (We consider always complex
manifolds. Of course one can use similar definitions for real manifolds too). Some
of the constructions below are similar to the constructions used in the theory of
contact manifolds (see for example [13]).

Let us say that the superconformal manifold X is provided by an iί-super-
conformal structure if a maximal isotropic subspace ΊVX is specified in every space
yx a &~x,xeX. (Maximal isotropic subspace in ir

x is a maximal subspace in which
every two vectors are orthogonal with respect to the form vx). Of course we assume
that the subspace iΓx depends continuously onxeX In the N = 2 superconformal
manifold every tangent space contains exactly two maximal isotropic subspaces.
To specify the i/-suρerconformal structure on X we have to select continuously
one of these subspaces. If this is possible then in terminology of [11] the N = 2
superconformal manifold is untwisted. Let us stress that in the main text we have
considered only untwisted superconformal manifolds. It is evident that the
untwisted N = 2 superconformal manifold has exactly two i/-superconformal
structures.

Let us consider the arbitrary (l\N) dimensional manifold Y. We define (1\2N)
dimensional complex supermanifold Ϋ as a manifold consisting of all (0\N)
dimensional subspaces in the tangent spaces &~y9yeY. In such a way a point in Y
is a pair (y,V), where V is a (0\N) dimensional subspace in yy. The natural
projection π of Ϋ onto Y is a fibering with (0\N) dimensional fibre. In local
co-ordinates (y9ηl9...9ηN) on Y a (0\N) dimensional subspace in tangent space
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can be written in the form

dy = θί1dη1 + ••• + otNdηN. (A.I)

The projection π transforms the point (y9ηl9...9ηN9a
ί

9...9a
N)eY into the point

(y9ηl9...9 ηN)e Y. The projection π generates a map π of the tangent space ^ytΌ to

Ϋ at the point (y,V)eΫ onto the tangent space ίfy to Y at the point y.
Let us define (0|JV) dimensional subspace f y>Fc= ^ κ as the counterimage of

Vcz&'y by the map π. In the co-ordinates (y,ηl9...,ηN,oc1,...,ocN) the map π
t r a n s f o r m s t h e v e c t o r (dy, dη1,..., dηN, doc1,..., docN) i n t o t h e v e c t o r (dy, dη1,..., dηN)

and therefore the space "Ky%v consists of the vectors having the form

(aιdηi9 dηl9...9 dηN, dcc\..., docN).

In other words the space VytV is spanned by the vectors

1 1 d d M v d d j . 3 Λ. d , 4 *

d y Sf/j dy dηN doc doc

It is easy to check that the vector fields e~\e* satisfy

{e-\e-i} = {e?,en = 0; {e-',β;}=|-^. (A.3)

We see that these commutators determine a non-degenerate quadratic form on
yy,v. In such a way the subspaces if^γ specify a superconformal structure on Y.
Moreover, every subspace i^yfV contains an isotropic subspace i^y>v spanned by
the vectors e*9i=l9...9N. In such a way for every (1\N) dimensional complex
manifold Y we have constructed an iί-superconformal manifold Ϋ. Conversely,
for every (1|2JV) dimensional iϊ-superconformal manifold X we can construct a
(11 AT) dimensional complex manifold X' in such a way that (X1) = X, (Ϋ)' = Y. (One
has to apply Frobenius' theorem to the distribution specified by the isotropic
subspaces.) An analytic transformation of the manifold Y generates an
/2-superconformal transformation of Ϋ and vice versa. We see that the moduli
space <%lfN of (11 JV) dimensional complex manifolds coincides with the moduli
space %™ of iί-superconformal manifolds. As we have seen for every untwisted
N = 2 superconformal manifold Y we can construct two different H-superconformal
manifolds say Y+ and 7_ and therefore two different (1|1) complex manifolds
S+=(Y+)'9S = (Y-)'. In such a way we have two different isomorphisms P+ and
P_ between the spaces %2 and %1Λ defined by P+Y = {Y+)\P__Y = (Y_)'. One
can define an involution λ in Φ l f l by the formula λ(P+ Y) = P_ 7. There exists a
simple geometric description of this involution: if S is an (111) dimensional complex
manifold then λS consists of all (0|l) dimensional submanifolds in S. The
(11 l)-dimensional manifolds S that can be provided with N = 1 superconformal
structure satisfy λS — S. In other words, N = 1 superconformal manifolds are fixed
points of the involution λ.

For the proof let us recall that the N = 2 superconformal manifold X = S
consists of (0|l) dimensional subspaces of tangent spaces at all points of S. The
natural projection of X onto S will be denoted by π+; for the natural projection
of X onto 1(5) we use the notation π_. For every (0|l) dimensional submanifold
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L of S we construct a point y(L) in λ(S) by the formula

where ίe denotes the tangent space to L at the point leL. One can verify that this

definition is correct, i.e. the point γ(L) does not depend on the choice of the point

leL. To check it is convenient to use co-ordinates (υ, η, d) on X = S introduced

above. In these co-ordinates π+(y, η, α) = (y, η) and π _ (y, η, α) = (y — ocη, α). If L is

singled out by equation y = yo + σn then the co-ordinates of the point txX are

(y + ση,η,σ) and π^(t) = (yo,σ) does not depend on the parameter η specifying

the point on L. Conversely given a point ueλ{S) we can construct a (0|l)

dimensional submanifold p(u) = π+(π I * M) cz S; if w = y(L) then p(u) = L. (Here πZ1u

denotes the fibre over u by the projection π_.)

The equivalence between S and λ(S) for the N = 1 superconformal manifold 5

is proved (in other terms) in ref. 14. Namely if a (011) dimensional submanifold L

of S satisfies the equation f(y, η) = 0 then one can single out a point of s by means

of equations f(y,η) = Q, Df(y,η) = 0. We obtain in such a way one-to-one

correspondence between (0| 1) dimensional submanifolds of S and points of S (i.e.

equivalence between λ(S) and S).
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