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Abstract. It is shown that a unique Gibbs measure of infinite spin system with
short range interaction on one dimensional lattice satisfies log-Sobolev inequality.

0. Introduction

Log-Sobolev inequalities (shortly log-S) have been introduced in [1] and since
then many investigations of them and related problems have been published. (For
a recent bibliographical review see [2].) Although one of the important features
of these inequalities is the fact that they generalize the classical Sobolev inequalities
to infinite dimensional spaces, there are only few papers dealing specifically with
the infinite dimensional case. Let us shortly describe them. In [1] it has been shown
that any infinite product of probability measures {p,},.y satisfies log-S inequality
with a coefficient 0 <c < oo, provided each measure p, satisfies log-S with a
corresponding coefficient 0 < ¢, <c.

Moreover, using this fact, in the same paper it has been proven that also any
Gaussian measure satisfies log-S. This, together with a general theory developed
in [1], yields an elegant proof of hypercontractivity estimates of Nelson [3] (see
also [4]) for the free field, so important in development of euclidean field theory.

The first example of probability measures on an infinite dimensional space
satisfying log-Sobolev inequalities and not being of product or Gaussian type
appeared in [5]. The authors used the I',-criterion of Bakry and Emery [6] to
prove these inequalities for the measures of classical statistical mechanical systems
on a lattice with single spin space given by the S%-sphere d = 2 and at sufficiently
high temperatures. The authors of this paper, Carlen and Stroock, were motivated
by investigation of Markov semigroups and in particular by applications to the
study of stochastic dynamics in statistical mechanical systems ([7-12]).
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More recently we have developed in [13, 14] another method for the investi-
gation of log-Sobolev inequalities for probability measures on infinite dimensional
spaces. Our method is based on the use of Gibbs structure ([15,16,17]) together
with a kind of Dobrushin uniqueness condition [17,18,19]. Using our method
one can show log-S also in the cases when the I',-criterion does not work (e.g. in
[14] we deduced log-S inequalities for statistical mechanical systems on the lattice
Z* with single spin space {—1, +1}). One can apply this method together with a
lattice approximation to show also that the probability measure of euclidean
(quantum) field theory with A:expag¢:, satisfies log-S inequality with coefficient
mg 2, with m, being a bare mass used to construct the probability measure in
question. (Incidentally, one can also obtain this result by using the I",-criterion.)

In the present paper we extend the ideas and methods of [13,14] to show
that each (infinite volume) Gibbs measure of one dimensional spin system with
finite range interaction satisfies log-S inequality. By this we settle also a problem
raised in [12].

In order to formulate precisely our results we need to introduce some definitions
and notations: We consider the integer lattice Z. By &# we denote the family of
all finite subsets in Z. Let &, be an increasing sequence of intervals whose union
contains all the lattice. We take a single spin space { — 1, + 1} with discrete topology
to define a space 2= {— 1, + 1} of configurations ¢ of the infinite spin system.
Let 2 be the o-algebra of subsets in £2 generated by the product topology. Let
0:02-{—1,+ 1}, ieZ, be the i'"™ coordinate function, called a spin at site i. For
A c Z we will use X', to denote g-algebra of subsets of £2 generated by the functions
{o;:ieA}.

If a function f is X, — (respectively X —) measurable we write feX,
(respectively feX). By u, we will denote the free measure on (£2, X') defined as the
product of uniform probability measures on {—1, + 1}. For any probability
measure u on (€2, X'), the expectation value of a function feX with respect to p is
denoted by uf or u(f). A two point truncated correlation function of f,geX is by
definition

wf,9) = ufg— ufug. ©.1)

For further purposes we define a “differentiation” B; with respect to the i'®
coordinate as the projector on nonconstant functions with respect to g; given by

BifE%(fw,:n "fla.-=—1)0'i, 0.2)

where f|,,- , denotes the evaluation of the function f on 2 at the point gef2
with o; = + 1, and similarly for f|,,- _,. We set also

A;=1-B, 03)
and define for AcZ
|BofI? = Z‘AIBJI’. (0.4)
L€,
If A=Z we will write simply B = B,.

Let ./ denote the set of bounded measurable real functions on (£2,X). By
definition an interaction is a function

DF > M.
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An interaction @ has finite range r = r(®) iff there exist reN which is a smallest
number such that

@, =0 0.5)

for Xe#, diam(X) = r, where diam (X) is the diameter of the set X. @ is called
translation invariant iff

Dy 1 4(0.) = Dx(0._,) 0.6)

for any Xe& and a€eZ.
We will assume that the norm of interaction we consider, defined by

I@ll=sup } ||®ylla ©.7)

i€Z Xe&F

ieX
is finite (|| ||, denotes the supremum norm). This is of course satisfied for finite
range translation invariant interactions. Since the case r = 1 is trivial (then we have
a product measure already discussed in [1]) we restrict ourselves to the interactions
with range r > 1. For an interaction @ we define an interaction functional U, at

a volume AeZ by

Up= ) @y 0.8)
XnA#Qg
Now let us introduce the probability kernels
lu0| A (e_UA_)
E4()=0,——F— (0.9)
4 #01 A (e UA)

where Ae#,d, is the point measure concentrated at cef2 and y, , denotes the

conditional expectation of u, with respect to X ,..
The family & = {E,} ., forms a local specification in the sense of [15,16], i..
it satisfies:

i) for any feX and AeF

E,feX,.,
and if feX ,. then
E%f = f(o). (0.10)
ii) (Compatibility condition) for any A, A'eF,Ac A,
E%.E,=E5%.. 0.11)
A probability measure p on (€2, X) satisfying
HE =p (0.12)

for all Ae&Z is called a Gibbs measure for &. The set of Gibbs measures for a local
specification & is denoted by 4(&).

It is known (see e.g. [20]) that in one dimension for a finite range interaction
%(&) consists of a unique Gibbs measure pu. Moreover this measure has an
exponential decay of correlations, i.e.

(SIS ClS N llgllpe™ (0.13)
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with some constants 0 < C, m < co independent of f,geX and with

d(f,g)=dist (supp f,suppg). (0.14)

A probability measure p on (€2, X') is said to satisfy a log-Sobolev inequality iff there
is a constant 0 < ¢ < oo such that

pf?log|f| < cu|Bf1? + uf *log (uf)!/? (0.15)

for any function feX for which u|Bf|* < o0 and uf? < co.
For investigation of Glauber’s stochastic dynamics [21] associated with the
spin system one uses a semigroup with generator £ defined by

Zf(0):= ), cl0)(f(a*) — f(0)) (0.16)
keZ
for all functions fe€X for which the right-hand side of (0.16) is finite, where the
functions ¢,(o) are defined by
1 Be Uk
and
“ _ o for i#k
= . .1
A=y o 1ok 019

One can show, see e.g. [7, 8], that for any Gibbs measure u one has
uZLf=0 (0.19)

and so any Gibbs measure is a stationary measure for the corresponding stochastic
dynamics. We refer to [7-12] for an extensive study of stochastic dynamics. Let
us note (see [7]) that for the quadratic form which is uniquely given by — % and
the Gibbs measure y one has

1
wf(=Zf)= 2 ; pe(0)(f(6*)— f(0))* = 2§ He(0)| B f(@)1>.  (0.20)
Since by our assumption (0.7) and (0.17) we have
0<%(1—thll¢||)<ck(o)<l, (0.21)

it follows that the inequality (0.15) is equivalent with the following log-S inequality
for the Gibbs measure u

uf2loglfI<cu(f (= Zf) + uf*log(uf?)'?, (0.22)

with the constant 0 < ¢’ < oo independent of function feZX.

By the general theory developed in [1] the inequality (0.22) implies hyper-
contractivity of the semigroup exp(t#) and the existence of a mass gap for
the generator % as an operator in L?(u). (By mass gap we understand as usual
the gap in the spectrum of the positive self-adjoint operator — % in L?(u) between
the infimum of its spectrum and the rest of the spectrum).

The main result of the present paper is summarized in the following theorem.
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Theorem 0.1. Let p be a Gibbs measure of a one dimensional lattice spin system
with finite range interaction of bounded norm. Then u satisfies the log-Sobolev
inequality. QO

Let us remark that due to the geometry of a one dimensional lattice no
assumption on the temperature (as in [13,14 or 5]) is needed. We shall discuss
the inequality (0.15), but we should keep in mind that it is equivalent with (0.22),
which has direct application in statistical mechanics.

1. Proof of Theorem 0.1

The proof of our main result is based on some extension of ideas of [13] and [14]
where was shown that log-S satisfied by the finite volume kernels E% ed with
| A| = nfor some neN, uniformly in boundary conditions o €42, by some “generalized
induction” imply log-S inequality for infinite volume measure pue%(&). It was
assumed there that the temperature of the spin system is sufficiently large. Here
we take advantage of geometry of one dimension to obtain a stronger estimate
sufficient to get the result for any temperature.
We consider an interaction @ of finite range r = r(®)eZ* satisfying

@] < oo (1.1)

with ||| given by (0.7). Let LeN, L> 1. (This is a number we will control.) Let
Iy = {A,}1ez consist of intervals A, = [a,, b,] where a,,b,€Z, keZ are restricted
by the conditions

by—a,=QL+ Dr
o1 —be=r (1.2)
a,=r.

We define also I'; = {A, }4c as a translation of I’y by (L+ 1)r.
We note that the following fact holds:

Lemma 1.1. For any Aerl’; (i=0,1) and any measurable function f we have
EQf*log|f1= coEQIBASI? + EQf* log(ERf?)'2, (1.3)
where
0<co=Clog|A| (14)
with a constant 0 < C < oo independent of A,c€£ and a function f. QO
REM. As we shall see below it is sufficient for our purposes to have the estimate
0<co=Zexp(C|A[) (1.5)
with some 0 < C < o0 and 0 < ¢ < 1 independent of A,6eRand f. O

Proof of Lemma 1.1. Under condition (1.1) on the finite range interaction, our
lemma follows by use of property (0.21) and Lemma 1.5 in [12] (see also [11]
Sect. 6) where the property (1.3) is shown for finite volume measures with the form
of corresponding operator —.% on right-hand side.
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Now let us define a sequence {I'®:= I'j 04, ez +» Where kmod, equals O for
k even and 1 otherwise. Similarly as in [13, 14] we have to consider the following
arguments, based on the definition of the Gibbs measure (0.12) and use of the log-S
inequality for conditional measures E%,AeI'®, keZ*. For A,eI'® we have
pf21og|f1=pEy, f2log| fI S plcoEa, 1B, fI* + E4, f2108(E 4, f2)1%]
=Colt|Ba, f 1> + WE 4, f*10g (E 4, f?)1/?). (1.6)
By applying the same argument to the second term on right-hand side (1.6) for
some A,eI’'?. We get
1f?log| fI < coulBa, f12 + coptl Bo,(E 4, f2)2)?
+ WEp,E 5, f210g(E 0,E 4, f2)'). (L.7)
Since B,, affects only the function f not the measures E,,, for A;,A,el'?,
A, # A,, we have the estimate
|BAJEA, S22 S Ey |By, f12. (1.8)
This together with (1.7) gives
:ufz log |f| é coﬂlBAlu Azflz + ”(EAzEAlfz log(EAzEAxfz)Uz)' (1'9)
An iteration of the above arguments leads to the inequality
uf?log|f1 < coptl Bror fI* + WE @ f2 108 (Epo f*)!'2), (1.10)
where we used the notations

|Bro f1>= Zo |B;f1? (1.11)

ier'®
(with an abuse of notation we used I'” to denote { ( ) A,:A, el ‘0’}; we will keep
such a notation also in the rest of this paper) and = *

Er(onyE |1|imoo EA"“'EAOfZ. (1.12)
Aer @0k <|nl

Note that the right-hand side of (1.12) is independent of the ordering of elements
in '®,

Now we take sets A,eI'® and apply similar arguments to the second term
on the right-hand side of (1.10). Afterwards we shall repeat all this with the sets from
I'® and iterate further the procedure. These inductive arguments after N steps
yield the following inequality

N
uf?log| 1= co{ulBrof?+ Y. ulBro(Epa----Epof2)V? [}
n=1

+ WE;m - Epof?log(Epm - Epo f2)12). (1.13)
We will use the following lemma to control the right-hand side of (1.13) as N — co.
Lemma 1.2
a) There is a constant 0 < ¢, < oo such that
|Bro(Epof )2 < ¢, Epo| Bf|? (1.14)

Jor any measurable function f.
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b) There is LeN such that for any f€)  po pu+n,
| By o(Epnf 222 < AEpin| Byan f |2 (1.15)

with a constant 0 < A < 1 independent of neZ* and a function f. O

We shall give the proof of Lemma 1.2 in a while, but first we like to show how
using this lemma one completes the proof of Theorem 0.1. For n = 2 we set

fo—2=(Epo-2---Epof?)2 (1.16)

It is easy to see that we have f,_,€) i+, po-n. Application of Lemma 1.2 b) gives

| Bro(Epin-vf2_ )2 > < AEpu-| Bro- f |2 (117)
If n> 2 we can repeat the arguments and by induction we get
|BroEpo-v+-Epo f2)22 £ A%~ DE w-- Epo| Byl Epo f)2 2. (L18)
This together with Lemma 1.2 a) yields
|Brn(Epin-n-+Epof )22 ¢, A% DEw-n-Epo| Bf 2. (1.19)

The inequality (1.19) has two consequences. First of all, as one can easily see, that
its combination with property (0.12) implies

lim Eqm--Epof?=puf? u—ae. (1.20)
for any measurable f such that u|Bf|* < 0.

Secondly using (1.19) (and property (0.12)) we see that the sum in the curly
bracket on the right-hand side of (1.13) is bounded by

[14+c,(1=2)"1] ulBf|% (1.21)
From (1.20), (1.21) and (1.13) we obtain the inequality
uf*log|fI < culBf 1> + uf?log(pnf?)'? (122
with
c=co(l+c;(1 -4 H< 0. (1.23)

This ends the proof of Theorem 0.1. <

Proof of Lemma 1.2 a). Although we closely follow the arguments given in [14, 13],
for the readers convenience, we present here a selfconsistent proof. In Lemma 1.3
below we show that for any A,eI'®, A, =[a,,b,] and jeI'™, d(j,A,)<r, the
following inequality is true

|Bj(Epf?)!?| < C1(Ef,| B; f )2 + Cy(Ep, | Ba S )" (1.24)

with some constants 0<C,,C; < independent of A,, j and any measurable
function f. Suppose now that je(b,,a, . ) (otherwise the left-hand side of (1.24)
equals to zero). Let us set I'=I'O\(A, UA,, ). Using (1.24) we get

|B{(Erof?)"?|=|B{(Ep(Ea, ., .E;fA)?
SC(E|Bj(Eg,, ErfA)'V2 )12
+ Co(Ep, | BoEy,, ExfH)2 )12, (1.25)
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Taking into account that in the second term on the right-hand side of (1.25) B,,
affects only the function f and not the measure E,, , Ey, we can bound (1.25) as
follows

|B{(Epof )| £ C(En,|Bj(Ea,, Erf?)1)"? + Co(Ep| By f 1P)!/2. (1.26)

Applying (1.24) in the first term on the right-hand side of (1.26) and using the
triangle inequality together with arguments similar to those used in passing from
(1.25) to (1.26), we obtain

|B{Er@f?)!?| < CY(E | B; f1?)!?
+ C,Co(Epo|By, . f1)!? + CoEpo| By f1H)2 (1.27)
Squaring and summing over je I''?) we get the bound
| Bro(Epo f2)1?12 < 2CLE po| Bpon po f |2
+2C3(1 + CHr2@L* DE 0| Byor f . (1.28)
Hence taking
C, =2max[C%, C3(1 + C2y2¢L+2r] (1.29)
we get Lemma 1.2a). <©
We shall now show that (1.24) is true.
Lemma 1.3. There are constants 0 < C,, C, < oo such that
|B{EAS)?| < C(Ep,|B; f1))"/? 4 Co(Ep, | B f1))'V? (1.30)
for any A,,jeI''V, d(j, A,) <r and any measurable function f. O

Proof. Let us first observe that for any function F we have

B;F?=2A;FB,F. (1.31)
Using this in order to get (1.30), it is sufficient to show that
|B;E 4, f2| < 24;(E, f*)'* [rhs(1.30)]. (1.32)
By the definition of B; in (0.2) we have
Bj(EAkfz) = %[EA.(|¢,= +1f|2aj= +1 EAklaj= —1f|2¢,~= —1]'Uj- (1.33)

We would like to study the right-hand side of (1.33) by using the fundamental
theorem of calculus. To do that we introduce the interpolating functions

fsj(a) Ef(az\!,sj):= Aif + Ejf'sj, (1.34)
where s;e[—1,1] and
Bif

g;

B,f= (1.35)

We need also interpolating measures E,, ;, s;€[—1,1] defined by setting in the
definition (0.9)

UAk,SjE UAk(O'Z\j,Sj)I= AjUA,,+§jUA,"Sj~ (1.36)
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Using this we have

11 11
'BjEAkle'—' Py f dstEAk,s,(fsjajfsj)+_ j deEAk,Sj(f.vzjiajUAk,si) (1.37)
2—1 2—1

d
ith 0;=—.
with 9; is,
Let us consider the first term on the right-hand side of (1.37). By Hoelder
inequality we get

|E pss;(fs;05 fsi)l £ (Enyos, f2)HE 5 5,101 5, 1) M2 (1.38)
Now observe that
0;fs,=B;f (1.39)
and that the density
dE,, ..
Pt = EA 8 (1.40)
satisfies
max p,, < e"?. (1.41)

From (1.38)—(1.41) we obtain
|Eps;(fs; 03 )| < €PN Ep f2)*(En, | B; fP)!/2. (1.42)

Let us now note that by Hoelder inequality we get
; jl dS(Ep f3)"* < (Ep (A ). (1.43)
We have also
AJEn S =3 [(Engey=+1STr= + " + Epgoy=— 1 fTa,= - 1)1
2 e N EL S Tay= + N + (Ep(fTy= - )]
2 e MONEL GA ). (1.44)
Combining (1.38), (1.42)—(1.44) we obtain the bound
3 005, B s F,0,0,)| S ANEa )P (22 E B TP (149)

Now we shall consider the second term on the right-hand side of (1.37). We use
the property (1.39) for U,, ,, and the identity

Epo(f2,B;Up) =3Es , ®Ey, , (f2(0) — f2(8)(B;U A (0) — B;U,,(6)),
(1.46)

where o (respectively 6) is the integration variable with respect to E,,_,, (respectively
E,,s; an isomorphic copy of E,, ;). To simplify the notation we will write F
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respectively F for F(o) respectively F(5). From (1.46) one easily gets
|Ens, (F2s BiUA S I @I Epys, ® Eny s, 13, T3
S 2 @NEnys, f2)HEps; ® E gy, (f5, — F)DV2 (1.47)
Now we use (1.41) to increase the right-hand side of (1.47) as follows:
| Es,(F3 BiUa) S 21| @11 PNE, f2)(Ep @ Ep(f, — F))'2 (1.48)
Integration of both sides of (1.48) with respect to s; and application of Hoelder
inequality yield

11
5_51 dS;E s, (3, B;Ua)| S 21 @1 " PUE L (4,1 %))

(Ea ® Ep A;(f— D). (1.49)

From this, by similar arguments as in (1.44), we get

11
l’i —Il dsjEAk,Sj(fszj’aj UAk,Sj)

S 24,(Ep SV [2'2 | @ MU E,, ® Ep A;(f— F)DM]. (1.50)
To estimate the last factor on the right-hand side of (1.50) let us note that
(Ea®E\ Aj(f =T = (En, @ EA (4, f — A;])* + (B;f — B; [)))"
S(EA®E L (f—))? + 2EA ® E, (B, f— B, ))'?
S(Ea®E L (f— )2 + 4E,|B, 1), (1.51)

Note also that since E,, satisfies log-S with coefficient ¢y, so also E;, ® E A, Satisfies
that with the same coefficient. This, by arguments of [22] (see also [23]) implies
the mass gap inequality

2E, QE L (f—F)? S coEn, ®Ep(IBy f 1>+ By f12) =2coEn|Ba f1%. (1.52)
Therefore
(EA®Ep(A;(f =)V SUELIB; f1)'? + cJH(Ep | Ba S 1)'2 (153)
Inserting (1.53) into the right-hand side of (1.50) we obtain

11
i _jl deEAk,sj(fszj’ aj UAk,Sj)

< 2A)(Ep, £2)12-2102 | @ |e81® [4(E o, B, S 1)2 + c§*(En, | Bo S )], (159)
This together with (1.45) and (1.37) yields the inequality (1.32), i.e.
|B;Eq, 2| S24/(E, [ {C1(Ep, | Bi f1P)2 + Co(E | Ba S 1)1} (155)
with
C,=4[ @] +1)-21/25°! (1.56)

and
C,=| @i/ (1.57)

This ends the proof of Lemma 1.3 (and hence also of Lemma 1.2a).
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Proof of Lemma 1.2b. Let f€) . qa+n. This means that

suppf <I'™ (1.58)
and
d(f,Z\"™) = Lr. (1.59)
In this situation, for jeI'™, we have
B,Epmf =0. (1.60)

Let us consider je I'"* V\I'™, Let us assume n to be even and je(by, a, + ;) for some
keZ (the case n odd can be treated similarly).

We follow the strategy of the proof of Lemma 1.3 and want to find a
corresponding estimation of the form (1.32). Now we shall to consider the quantity

B;Epwf*=BEy, E;o f*=3(Ey, s, +1Efw f* — Ey,j4,= -1 Efm f?),  (1.61)

where we have set

Vi= Ay UA (1.62)
and
Ir'™=rmy,. (1.63)
Let us note that, due to the finite range of our interaction, we have
B,E;wf?=EgmB,E,, f* (1.64)

By using the fundamental theorem of calculus we obtain
— 11
BE, f*= 3 J1 ds,-EVk,sj(fz, 9;Uy,.s,) (1.65)

By a similar identity as (1.46) and application of (1.39) for Uy, ,, we get
Eyos,(f%,0;Up, ) =3By, o, ® By, (/> ~ J?)(B,Uy, — B;Uy,).  (166)
From the definition of U,, with a potential of range r it follows that
supp B; Uy, = (b — 1,01 +7) (1.67)
and so
d(f,B;jUy,) 2 (L—1r, (1.68)

with f here treated as a function of the integration variables only in V, n(I'™\I"®* "),
We would like to take advantage of (1.68) and the fact that our lattice is one
dimensional to get a better bound on (1.66) than in the similar situation which
occurred in the proof of Lemma 1.2a. To do that let us define the sets

X, =[x,wluly,z} I=1...,.L+1
by setting

x=a+(L-1+ l)’} (1.69a)

w=x+r
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and
y,Eak+1 +(L+2—l)r
=y —r . (1.69b)
We set also
Xp+2= (b Grq). (1.70)
Let for i=0,...,L,
L+1
Vii=Vi\ U X.. (L.71)
i+1
We need also to introduce the following notation: For I=1,...,L+1,
H=) & (1.72)
XeX;
and
Wi = Z Dy. (1.73)
XnX#D
XnXj41#D

We will define the interpolating functions as in the proof of Lemma 1.3. With the
notation just introduced we have

L+1

Uvis;=Upp o+ Z H + Z Wiis1+ Weoii o4z, (1.74)

Let us observe that by the definition of Ej, with a fixed external conditions
gef2 we have

f’k,sj- ® E‘:’k,s,‘(fz _f~2)(§,] UVk - E] UV)()
1 _
= G @b, @y, (e el = )

‘(B’UV.(_B’UV.‘))} (1.75)
where (Z7,, ) 2 is a normalization factor. Let us compute the expectation with
respect to the point measure 8, ® 5, on the right-hand side of (1.75) and consider
Uy,.s, and Uy, as functions on the configurations {ce ¥: O\ = d,y: - For simplicity
of notation, from now on we will suppress explicit dependence on g Let us
consider the curly bracket on the right-hand side of (1.75) (with evaluated

expectation with respect to the point measure). Using the fact that the interaction
is of finite range r, by taking the conditional expectation associated to the measure

Ho,, ® g, with respect to o-algebra X| ) X, ), we can represent this curly bracket
as follows: 122

Hoyy,, ® Py, (FVA0,6)(B;Uy, — B;Uy,)
€xp (— (U, (Vi\Vi.2) + Uy, (Vi\Vi.2) + H, + H)))), (1.76)
where
FYg,6)= 5o®ga(/‘0w“ ®ﬁ°|vk,.(f2 _TZ)e—(U(VmH ﬂ(Vk,l))) (1.77)
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and where we used, for typographical reasons, the notation U (V,\ V) respectively
U(V,,,) as subscripts and similarly with V, ,. The functions F"(¢,4d) have two
important properties. First of all, due to the finite range of interaction, we
have

F%0,6) = FY(0y,,6%,), (1.78)

i.e. FV is a function only of the spins in the set X, (if ¢ is fixed). Moreover FV
satisfies

FYay,,6x,) = —FN(Gy,,0%,). (1.79)
Therefore we can write it in the form

Fox,,6x) =ty ®hy, ((f2=T2)Gi2exp(—(UVio)+ UVio)+ H, + H)))),
(1.80)

where Gy , is a particular case of the following notation:
Giiv1=3[exp (= Wi 1(0x,,0x,. ) — Wiis1(6x,» 6x,. )
texp(—Wii41(0x,6x,,,) — Wii+1(Gx,, 0x,, )] (1.81)
Now we consider (1.76) and compute the conditional expectation of the integrand

with respect to X ( Ux ,>. This gives

123
(1.76) =Hovar, , ®ﬂ0,,k\,,k‘z(F(2)(0'> &)(Ej Uy, — Ej UVk)
-exp(—(Uy,(Vi\Vis) + Uy, (V\Vi3) + Hy + Ha))), (1.82)
with
F(0,5) = F®(ox,,6x,) = Ho, ® flg, (F(0,,5x,)G557e ")) (1.83)

Applying inductively these arguments we see that the expectation in the curly
bracket on the right-hand side of (1.75) equals

L
Ho, ®ﬁ0|yk<(f2 -f? 1I=11 Giu+1(B;Vi— B;Uy,)

L+1 _ - -
-exp<_<lz1 H+H)+U(WVio) +U(Vio) + Wesiphzs;+ Wit 1,L+2,s,~>>>-
(1.84)

We bound the absolute value of (1.84) by taking the absolute value of the integrand
in this expectation. Multiplying and dividing the integrand of the estimator obtained
in this way by the quanity

=

Gifiey (1.85)

1

1]

1

we obtain

- ~ ~ L — -_— A~
(Z9,,5)”21(1.84)| < EVk,sj®EVk,s,<|f2 —f’llHl ?zIB,-UVk—BijJ) (1.86)
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with
Gl 1+1
=g (187)
From this, (1.75)—(1.84) we get
((L79)| < 1 B;Uy, — B; Uy, o'V Eyys,® By, )| 1 = 77 (1.88)
with
¥ = max 1721l (1.89)
Let us note that by the very definition of y we have
O<y<l. (1.90)
Now we take into account that
Ey s, ®Fy, |2 =2 <€e"E,, @E,, | f* - ]| (1.91)

and
Ey ®@Ey,|f* — [*1 S By, ® Ey,(f + DB, ® By (f = D)
< 2AEy, f2)"*(co Ev, | By, f19)'2, (1.92)
where cg=co(|Vi|)- In the last step of (1.92) we used the fact that Eyk is an
isomorphic copy of E,, together with the triangle inequality and the mass gap

inequality for the measure EVk®EVk(see (1.52)). Using (1.91), (1.92) and (1.88)
together with the fact that

I1B;Uy,— B;Uy, . 2@ (1.93)
we obtain the bound
I(1.75)| < 4] @) "' c§/*yEy, f3)'X(Ey, | By, [ 1), (1.94)
From this, (1.65), (1.64) and Hoelder inequality for the measure Ez= we get
|BEpwf?| < 4| @1 e" >y HErm f2)*(Epw|By, [P (1.95)
Since
(E,-(n)fz)llz < e"d’"Aj(Er(n)fz)llz, (1.96)
so by the same arguments as in (1.31) and (1.32) we get
|B(Epo f2)12| 2| @] e >y E ol Vi, f D)2, (1.97)
Squaring (1.97) and summing over jeI'®*1 taking into account (1.60) we obtain
| Brnt (Epon f)2[2 < AE | Bron f |2 (198)
with
A=8r|| @21 ®lc y2k. (1.99)

By Lemma 1.1 and the fact that
[V SHL+ Dr (1.100)
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our ¢, = co(] V) satisfies

0<co < Clog(4L + 1)r). (1.101)
Using (1.101), (1.99) together with (1.90) we conclude that we can get
0<i<l (1.102)

by taking L sufficiently big.
This ends the proof of Lemma 1.2b.

2. Concluding Remarks

We have shown that each Gibbs measure of an infinite discrete spin system with
finite range interactions (at any temperature) on a one dimensional lattice satisfies
the log-Sobolev inequality. The same result is expected to hold for continuous
spins. (Some details of the proof are even simpler in this case.)

Let us stress that, despite the fact that we considered above a one dimensional
system, the results of the present paper concern in a sense a more general situation
than the one of [14], where the log-Sobolev inequalities have been proven for any
lattice system in the Dobrushin uniqueness region. Namely in the situation
considered in the present paper we work in Dobrushin—Shlosman uniqueness
region. One may expect that the logarithmic Sobolev inequalities hold in
Dobrushin—Shlosman uniqueness region for systems on an arbitrary lattice. This
problem should be a subject of future investigations. It should be treated as a part
of more general studies towards an understanding of the connections between
dynamical and equilibrium description of statistical mechanical systems. In
particular it would be interesting to show that there is a one to one correspondence
between the structure of phases in the equilibrium description and structure of
dynamical phases, the latter being distinguished (in the simplest case) by a rate of
return to equilibrium in the corresponding dissipative dynamics. (For some issues
connected to this programme as well as other interesting problems see also the
discussion in [14].)
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