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Abstract. In the first half of this paper, we construct asymptotic solutions of linear
anisotropic elastic equations. In the latter half, we investigate waves reflected by
boundaries for plane incident waves in terms of these solutions. Especially, it is
examined whether or not the mode-conversion occurs near points where the
incident waves hit the boundaries perpendicularly.

Introduction

Let Ω be a domain in RJ(x = ί(x1,...,xπ),n^2) with a C00 boundary dΩ, and
consider the elastic wave equation

α i / X j δ x \ ( t , x ) = 0 in R x ί 2 .
/

Here, u = t(uί,...,un) is the displacement vector, and atj are real constant n x n-
matrices whose (p, ̂ -components are denoted by aipjq. We assume that atj satisfy

aipji = aPim = ajiiP> iJ,P,q=h2,..., n, (A. 1)
n n

Σ aiPjqεjq^ip = δ Σ lεfpl2 for every Hermitian matrices (ε0), (A.2)

j = l i,P=l

aijζiζj has eigenvalues of constant multiplicity for

{0}. ( A . 3 )

2
In the isotropic case (i.e. aipjq = μ(δpqδij + δiqδjp) + λδipδjq,λ + -μ>0 and μ>0),

the above assumptions are all satisfied. Let {λ^ξ}}^ lt d be the distinct eigenvalues
n

of Σ aifi£r Then, λt(ξ) become positive C00 functions (ξ φ 0). We denote by

the projection into the eigenspace of λt(ξ).
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For each λt there are waves of Λ,Γmode with the corresponding propagation
speed. One of the main purposes in this paper is to examine how the waves are
reflected near the boundary when the plane wave of a single mode hits the boundary
perpendicularly. In Sect. 2 we make this investigation in terms of asymptotic
solutions of the form

uι(t,x;σ)= £ e^ω-'XfcxXiσ)-',

where φι(x) is a C0 0 real-valued function satisfying λι(dxφ
ι(x))= 1. In this paper

"the wave of /lΓmode" means the asymptotic solution of this type. The typical
plane wave of Λ,fc-mode is expressed of the form

v(t,x;σ) = eiσiλkiω)~1/2ω'χ-t)v0

with ωeSn~* and υ0 = Pk(ω)v0, which propagates in the direction ω with the speed

We fix the above /c,ω, and v0 (Φθ\ and construct the solutions uι(t,x;σ)
d

(I = 1,..., d) so that ]ζ w*(ί, x; σ) + υ(t, x; σ) satisfies the boundary condition. Then,
ι = ι

generally, every part uι does not vanish, that is, the mode-conversion happens.
However, in special situations, this conversion does not occur; e.g., when Ω is the
half-space and ω is normal to the boundary, all uι except uk vanish. This suggests
that the waves uι in general cases with / Φ k vanish on the characteristic curves
starting at points on dΩ where the incident wave v hits dΩ perpendicularly. This
is correct if dΩ is flat there (cf. Theorem 2.1 and the corollary). But, if dΩ is not
flat at those points, this conjecture is not correct (cf. Remark 2.2). We note that
the asymptotic solutions are unique (see Theorem 1.2).

Section 1 is devoted to construction of the asymptotic solutions with non-
glancing given data on dΩ. We carry out this construction for more general
operators with the variable coefficients. In the isotropic case, Karal and Keller [2]
made such solutions. It seems difficult to apply their methods to our case. The
essence of our methods is similar to Lax's [3]. However, the transport equations
in our case are of different type, that is, they become first order equations
with matrix-valued (not scalar-valued) coefficients. To solve these equations, we
introduce the local coordinates associated with the bicharacteristic curves, and
reduce them to symmetric differential equations ordinary in the space variables.

The asymptotic solutions in Sect. 1 seem useful for studies of various problems.
By a similar idea to ours, Soga [5] has constructed the asymptotic solutions under
more restricted assumptions, and used them to solve an inverse scattering problem.
But the analysis in [5] is not so precise as to obtain the results in the present paper.

1. Construction of the Asymptotic Solutions

We set ^°°(M) = {/(x)eC°°(M); sup|3;/(x)| < oo for any α}. Let α y (x)ΛW and
xeM

c(χ) (i, j = 1,..., n) be n x w-matrices of functions GJ^°°(R Π ), and put
n n

L(x,dx)u= X aij(x)dXidx u + £ b^d^u + c(x)u.
ij=l ί=l
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We assume that the (p, g)-components aipjq(x) of α^x) are real-valued and for each
x e R " satisfy the conditions (A.I) ~ (A.3) in introduction. In view of (A.3), we denote

by λt(x, ξ) (I = 1,..., d) the distinct eigenvalues of £ ^ ( x ) ^ - (λγ < < λd). By

(A.1)~(A.3), λi(x, ξ) become positive C00 functions homogeneous of order 2 in ξ.
Let Pt(x, ξ) be the orthogonal projection into the eigenspace of λfa, ξ\ which is
a n n x n-matrix of C00 functions homogeneous of order 0 in ξ. λt(xy ξ) and Pj(x, £)
are even in ξ (i.e. λt(x9 ξ) = Λj(x, — ξ) and Pf(x, ξ) = Pt{x, — ξ)).

Let (7 be an open set in ΈLn{Uc\dΩΦ φ\ and consider the following equation
for each λt(x, ξ):

" λι(x9 dxφ\x)) = 1 in Ωn (7,

φι(x') = φ(xf) on dΩn U,

dωι

^-{x')<0 on dΩnU,
v

where φ(x') is a given C00 real-valued function and v(x') = '(v^x'),..., vπ(x')) is the
unit outer vector normal to dΩ at xedΩ (the points on dΩ being denoted by
x' = (x' l 5..., x^)). As is well known, if the (first order) derivatives of (p(x') along the
boundary are near 0 on dΩn U, we can construct a (unique) real-valued solution
φ\x) of (1.1) in a neighborhood of the boundary by the Hamilton-Jacobi methods;
we assume that the U is chosen so that φι(x) is defined on whole Ωn U. There
exists an implicit function τι(x\ ξ) defined on (dΩn U) x A (where A ( c R π ) is a
small neighborhood of ξ — 0) such that

λι(x\τι(x\ξ)v(x') + ξ)=l and τ,(

Let us note that for x'edΩn U,

τ/(x',0)=-Az(x',v(x'))-1/2,

dxφ\x') = τ,(x\ dxφ
ι

tan(x'))v(x') + 5^ia n(x'), (1.2)

where δxφ[an(x') denotes the tangential part (to dΩ) of dxφ
ι(xr).

We impose the boundary condition Bu = g on dΩn £/, where

If a function /(x; σ)G^°(M) with a parameter σ e R satisfies |/( , σ)|^ 0 ( M ) ^ C| σ|m

for IσI ^ 1, we write '/(x σ) = O(|σ|m) in M\ The asymptotic solution uι(t,x;σ) =

Σ ^σ ( < / > I ( x )" ί ) iί}(f,x)(iσ)"-' (in R x (UnΩ) and of i r mode) with the boundary dataΣ
ii(ί,x ' ;σ)= £ eMφ(x')"f)ffι(ί,x/)(ίσ)"'/+<ϊ# means that

O( |σ | - m + m o ) in R x (fln (7),

on R x ( δ # n [/)
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for any positive integer m, where ε = 0 (respectively = 1) when Bu = u \dΩ(respectively
when Bu = {N + b)u\dΩ), and m 0 ,m ί are constants independent of m. And we write

\{df - L)u\t, x; σ) s 0 in R x (fln Ό\

[Bu\t, X'; σ) £ g{t, x'; σ) on R x (dfln I/).

Theorem 1.1. Assume that the {first order) derivatives of φ{x') {in {LI)) along the
oo

boundary are near 0 on dΩnU. Then, for any data g{t,x';σ) = £ e

ισMχ')-t)
j=o

flfJ(ί,x')(^)" / + βte i /(ί,x /)eΛ0 0(R x (d/2n 17)); ε = 0 {respectively = 1) wAen £w = w|ββ

{respectively when Bu = {N + b)u\dΩ)), we have asymptotic solutions uι{t,x;σ) =
f ei°i<Pι(χ)-t)uiu X)(uή-J (/ = l,...,d) such that

(i) {df-L)u\t9x;σ)^0 in Rxfflπl/),

(ii) y Bu% x'\ σ) s ff(ί, x'; σ) on R x (δί2n 17),
/ = i

(iii) ifg{t, x'\ σ) = 0 for t< ί0, then uι{t, x; σ) = 0 for t < t0 (/ = 1,..., d).

00

T h e o r e m 1.2. 77ie asymptotic solutions u%x;σ)= £ β ' ^ 1 " 0 ! ! ^ ) " 7 ( / = l , . . . , d )
d .7 = 0 d

in Theorem 1.1 are unique: If (df -L) J] uι^0 in R x (Λn 17) and B ^ uι^0 on
1=1 1=1

R x { d Ω n U \ t h e n u % x ) = Q i n R x { Ω n U ) f o r l = l , . . . , d and j = 0 , 1 , . . . .

Theorem 1.2 will be verified after proving Theorem 1.1.
Let us prove Theorem 1.1. At first, note that the solution φ\x) of (1.1) exists

for every / ( = 1,..., d) since the derivatives of φ{xf) are near 0.
Hereafter we use the notations fx{ = dxf) and fXi{ = dx.f). We rewrite

{df-L) £ eiσ(φl-t)uι

j{iσ)~j in the following form:
j=o

j=o

+ {I-Pι){{-2dt-H)ulj.ί+{df-L)uι

j.2}+Pι{-2dt-H)Pιu
ι

j.1

where M _ 1 = M _ 2 = 0, P, = PZ(X,<

ff= Σ K ^ ^
U=i

In the same way as Lax [3], we determine (/ — P^u) and next Ptu
lj, and eliminate

each term in the above summation together with making u) satisfy the boundary
condition. When considering the boundary condition, we use the matrices

Σ

1=1

1=1
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Since P(x')= Σ P,(x',v(x')) and Q{x')= - Σ >lι(v(x/))1/2W>v(x')) if the deri-

vatives of φ(x') all vanish, P(xf) and Q(x') are non-singular when its derivatives
are near 0 on dΩn U.

It is obvious that the part {I — ̂ a^φ^φx^Piu) is equal to (/ — λj/)P|Uj = 0.
To eliminate the other parts, we consider the equations

= 0 in R x ( # n t / ) , (1.3)

on Rx(3l2nl/) when fto = w|,β,

" Σ
on Rx(δΩn[/) when

(1.4)

(I-ΣaPyxyXq)(l-PιWj + V-Pι)hlj-i=O in Rx(ί2nl/), (1.5)

where fl

j=(2dt + H)(I-Pl)ul

j-(df-L)ul

j-i and Λj_1=(-2δί-//)wί_1+(5ί

2-L)Mj_2.
Note that f) and Λ^j are defined from only wj_2, w' -i and (/ — Pj)wj. At first put
(/ - Pt)uι

0 = 0; i.e. take uι

0 in the eigenspace PZR
W. Then /{, = 0. If Eqs. (1.3) and

(1.4) for 7 = 0 are solvable, uι

0 is determined. Noting that (/ — P,) = Σ Ph w e s e e

that (1.5) is of the form Σ U1 ~λi)Piu\ + ̂ X} Therefore, setting P ^ =

-(1 — λ^Pift'o (for i//) determines (/ — P ^ i . Repeating this procedure
inductively, we can determine all MJ ( = 0,1,...). Furthermore it is seen that the

d

asymptotic solution V u\t, x; σ) with these u)(t, x) satisfy the required boundary
/ = i

conditions: In fact, when Bu = u\dΩ, (1.4) yields that
dm m d

/ = 1 7 = 0 j=01=1 I 1=1

= Σ eiσiφ-t)gj(ίσ)-j on Kx(dΩnU);
i=o

when Bu = (N + b)u\dΩ,

dm m ( d

Σ K Σ 4 Σ
1=1 1=1 ) 1=1

= Σ e^-^gjiiσ)-^1 + eiσ{φ-ι) Σ Buιjiσ)-m on R x (dΩn U).
7=0 /=1

Hence we have only to show that (1.3) and (1.4) are solvable for each

/=!,...,</. Fix xedΩnU and take bases et ( ί=l,. . . ,2) in P;(x;v(x))Rw. Then
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e'i(x) = Pι(x,φι

x(x))ei ( i= 1,...,3) are linearly independent if the (first order) deri-
vatives of φ(x') are near 0 and x moves near x. We assume that e\(x) are linearly
independent for xeΩn U. Setting

we obtain orthonormal bases e^x) (ί = 1,..., d) in Pt(x, φ^x^R", which belong to
^°°(ί2n U). We put

e(x) = (eι(x),...,e~d(x)\ (1.6)

t;7.(i,x) = ^WWJ.(i,x) 0 = 0,1,...).

Let (q{s;y\p(s;y)) be the bicharacteristic curves defined by

fdq dp

d s (1.7)

where x'(y) is a system of local coordinates of dΩc\ U (yeR" *). Then the mapping:
(s, y) -• q(s; y) becomes diffeomorphic if the (first order) derivatives of φ(x') are near 0
and \s\ are small enough. We assume that x = q(s;y) becomes a system of the local
coordinates of Ωn U. By using the variable (s, y) and w(s, t, y) = Vj(t, q(s; y)% Eqs. (1.3)
and (1.4) are transformed as follows:

< 2dt + αo(s, y)ds + £ a^s, y)dy. + bo(s, y) iw{s, ί, y) = /(s, ί, y) in (0, s0) x R x 17,

(1.8)

w(0, ί, .y) = /i(ί, y) on R x (?,

where Ωn U a {q(s;y):(s,y)e(0,so) x U} and

^ = ί ^ Σ ("pj + <*jp)<PχP^-e ( f = l n-1), (1.10)

ft0 = xe(Lφι — cφι)e + 'e ^ (α^ + a^φι

x. -— δ s^

/ d \

Solving this equation with / = - fe/J and h = teP 1 - £ (/ - Λ )"} + ^j
V i=i /

(respectively = ̂ β Ί ~" Σ (^φOU —Λ) M ί- Σ Btf-i+βj) w ^ e n β« = w|5β (res-

pectively when 5w = (Λί + fc)w|5β), we get the required solution Ptu
lj = ew for

e a c h / ( = l , . . . , d ) .
Now, let us examine (1.8). At first, note that every αf (i = 1,..., n — 1) defined
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by (1.10) vanishes: (1.8) is reduced to

(2dt + aoda + bo)w = f in (0,s o )xRxί/, (1.11)

which is seen from

Lemma 1.3. // ξ and ηeϋtn (ξφO) satisfy η-dξλι(x,ξ) = O (x and I being fixed
arbitrarily), then we have

n

Pt(x, ξ) £ (atj(x) + ajiixMfljPfa, ξ) = 0.

For the local coordinates x = q(s; y) we have (dxyi)'(d^t(x, φι

x)) = (dxyi)'(dsq) = 0
(i= \,...,n— 1); using the above lemma with ξ = φι

x and η = dxyh we obtain

Pι(χ> Ψlχ) Σ (akj + ajk)ψι

Xk Y1 Pλx> Ψlχ) = 0, which yields that a{ = 0 (i = 1,..., n -1).

Proof of Lemma 13. Applying dξp to the equality
n

Σ ay(x)^^P,(x, ξ) = Aj(x, ί

we obtain the equality £ (α,, + αrffoP, + V a^x)ξιζJdirPι = (d{rλι)Pι + λιdirPt.
i = 1 i,j = 1

Multiply this equality by ηp and sum it up in p = 1,..., n. Then we have

Pi Σ K + apdZtVpPi
i,P=l

= (t Ί Λ Ψ ' + W Σ *\vhPι-Pι Σ βo W^̂  Σ ?Λ p ι = 0

The proof is complete.

Next, let us note that ao(s,y) is of the special form:

Lemma 1.4. ao(s9y) (defined by (1.9)) is a symmetric dxd-matrix of real-valued
functions, and satisfies

\ao(s,y) - I\aθi{0tSo)xϋ) g C\dyφ(xf(y))\^φy

Proof. Let (q(s; y), p(s; y)) be the solution of (1.7). Then, p(s;y) = φι

x(q(s;y)) and
λt(q(s;y),p(s;y)) = 1. By the Euler equality, we have 2 = dξλ-p = dsq-p. Differenti-
ating this in y( yields that dsdyiq-p + dsq-dy.p = 0. In the same way, we obtain
dyiQ'dsP — dsq'dyiP^® fr°m ^ e ecluality ^/fep)=l Therefore, ds(dy.q-p) = 0.
Combining this euality with (1.2), we have

\dyiq p\^C1\dyφ(x'(y))\gsoφy (1.12)

L e t μ(s,y) b e t h e u n i t v e c t o r o r t h o g o n a l t o e v e r y dy.q(s;y) ( i = l , . . . , n — 1) w i t h
1 ( ds ds\

v μ>0. y= I -—, . . . , -—I satisfies ydy.q = 0 (x=q(s;y)), which implies that
\ϋx1 dxnj

y= — lylμ From this and the equality p = (p-μ)μ + (p — (p-μ)μ), we have

y= -\y\(p'μ)~1p + \y\{p'μ)~ι(p-(P'μ)μ)

ΓιP + y (1.13)
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Since y is expressed by linear combination of dyiq,...9dyn_ίq and satisfies

rdyiq = \y\(P'μ)~18ytq-p9 (1.12) yields that

\y\^C2\dyφ(x'(y))\0θiϋr (1.14)

Insert (1Λ3) into l=ydsq. Then l = -\y\(pψy1pdsq + rdsq=-2\y\(p μ)-1 +
y-dsq. Therefore, using (1.13) again, we have

Mixing this with (1.14), we get

ds 1
£C3\dyφ(x'(y))\aoiϋ),

which proves the lemma. The proof is complete.
Thus it suffices to analyze the following problem:

)w(s, t) = /(s, t) in / x R (/ = (0, s0)),

on R, ( ' )

where α and β are d x 3-matrices of functions in ^°°(/) and α is real-valued and
symmetric. As is easily seen, all the requirements are derived from

Lemma 1.5. (i) // |detα| ^ α 0 (>0), there exists a unique solution w(s,t) of (1.15)
in @°°(I x R) for any f(s,t)e@<°(I x R) and /ι(0e^°°(R).

(ii) Let 2" 1 |CI 2 ύ %ocζ for ζeΈL3. Then, if the support of the data (fh) in (1.15)
is contained in {t0 ^ ί}, so is the support of the solution w of (1.15).

Proof, (i) From the assumption, oc~1(s) becomes a symmetric matrix of functions
G^°°(/). Equation (1.15) is equivalent to

" 1 δ f + ct~ίβ)w = f in / x R,

h o n R .

This is a well-known Cauchy problem (cf. Friedrichs [1] or Chap. 5 of Mizohata
[4]). Therefore (i) in the lemma is obtained.

(ii) Introduce the variables s' = s and t' = 2~1t — s. Then (1.15) is transformed
into the problem

) = Γ(s\tΊ in J x R ,
w'\s,=o = h(t') onR. l * ]

It is seen from the assumption that α " 1 - / is a symmetric matrix satisfying
I'ζία"1 — I)ζ\ ̂  ICI2 for ζelR3. This implies that every eigenvalue of this matrix is
in [— 1,1]. Therefore (1.16) is not only solvable but also has finite propagation
speed less than 1 (cf. Note 2 in Sect. 12 of Chap. 6 of [4]). Hence, in the original
Eq. (1.15), the solution w(s, t) exists and is equal to 0 on the cone D = {(s, t)el x R;
|2 - 1 ( ί— ί1) — s + s x I ̂ s x —s,s<s 1} if the data vanish on D, which proves (ii) in
the lemma.

Proof of Theorem 1.2. Inserting u = £ £ eiσ{φl~t)u)(iσ)-j into (df -L)u^0 and
j=Ol=l
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Bu = 0, we have

d

45

= ° on
0 in Rx(ΩnU\

w h e n # w = M L>

(1.17)

(1.18)

Σi Σ
ϊ l lp,q=l

on ΈLx(dΩnU) when Bu = (N + b)u\dΩ, (1.19)

for any j = 0,1,..., and any large σ.
Take any pair φι and φj (1 ^ i <j ^ d). Then, for any open set W a Ω n U there

exists a point x in W such that φι(x) Φ φj(x)\ because, if not, φx = φ{ in W and so
1 = λt(x9 φx) = λi(x, φJ

x) < λj(x9 φJ

x) = 1, which is a contradiction. This fact implies
that the set Ω = {x: φ\x) Φ φj(x) for every i and j with i Φj} is dense in Ωn U.
On the other hand, if φ1,...,φd are different each other, each term (hereafter
denoted by eiσφlΦι) in the summation of (1.17) must be equal to 0. In fact,

differentiating £ e

iσφlΦι = 0(d- l)-times in σ, we have (Φ \ . . . , Φd)J = 0, where
1=1

J is the d x d matrix whose (/,/c)-component is (ίV)* ^ " ^ This yields that
(Φ \ . . . , Φd) = 0 since det J φ 0. Therefore each term e ι V Φ ' vanishes in R x β and
so in R x (Ωn U) (since Uj are assumed smooth). Hence, rewriting the Φ\ we obtain
from (1.17)

ίj V / / \/r

V* — y,^ΌqΨx Ψx )\* —

2 }(;<τΠ + 2 = 0

inΈLx(Ω nU) (1= 1,...,</). (1.20)

Equation (1.20) with ; = 0 means that (I-PJu^O in R x ( ί 2 n ί / ) for

/ = l , . . . , d . Combining this with (1.18) and (1.19), we have YPtUl

o = 0 and
d d 1=1

Σ Σ vP^ίc aPqPιUlo = 0 on 1R x (5Λn U) respectively. These yield that Ptu
ι

0 = 0
l=lp,q=l q

on 1R x (dΩn U) for / = 1,..., d since the following estimates are derived:

d

1 = 1 ' =

d d

Σ Σ

2

v <jp̂  apqPtv
ι

L

which are seen from the facts that P ί( = Pί(φ^)) is near Pz(v) (cf. (1.2)) and that
P^v),..., Pd(v) are the orthogonal projections. Applying Pt to (1.20) with j = 1, we
get P,(2δf + fOPjiiΌ = 0 in R x (Ω n U). Therefore, considering Eq. (1.8) (or (1.11))
as we did for (1.3), we obtain Ptu

ι

0 = 0 in R x (Ω n U); hence uι

0 = 0 in R x (Ω n U).
Multiplying (1.20) (with; = 1) by (/-P,) yields that (I-Σ*pq<Pχpφ

lxq)(I-PιWi = 0
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i n R x ( f i n U), which implies that (/ - Pt)u[ = 0 in R x (Ω n U). By the same
procedures as for uι

0, we have u\ = 0 in R x (fln ί/). Continuing these processes
inductively, we obtain u' = 0 in R x (β n I/) for all j = 0,1,... and / = 1,..., d, which
proves the theorem.

2. Reflected Waves for Plane Incident Waves

In this section, we assume that atj are constant matrices satisfying (A.I), (A.2) and
n

(A. 3) stated in the introduction and that L = £ a^dx^Xj. Furthermore we

suppose that the boundary operator is of the form Bu = u\dΩ or = Nu\dΩ
n

(N = £ Vidijdx.). We use the same notations that in Sect. 1. When they do not
depend on the variable x, they are abbreviated in the following way: λk(ξ) (= λk(x9 ξ)\
Pk(ξ)( = Pk(x,ξ)Utc.

If yoeR" satisfies v0 = Pk(ω)v0 (ωeSn *), the function

is one of the solutions of the equation (df -L)v = 0 (where σ is a real parameter
with | σ | ^ l ) . We call the solutions of this type the plane waves of λk-modQ
proceeding in the direction ω. Hereafter we fix the k and the ω arbitrarily. Set

M = {xedΩ:v(x) = ω},

and take a sufficiently small neighborhood U of M so that the discussions later
are correct.

Since it can be assumed that the gradient of φ(x') = λk(ω)~ί/2ω'x' is small
enough on UndΩ, for each /(=l,.. .,d) there exists the solution φ\x) of (1.1) with
φ(x') = λk(ω)~1/2ω-x'. By the procedures stated in Sect. 1, we can construct an

asymptotic solution u(t9x;σ)= t u\t,x;σ) = £ { ^ ^ ' n φ ) { i σ r A such

?-L)(iι + i;)sO in Rx(flnί/),
u + v)^0 on ΈLx(dΩnU).

Note that in this case the amplitude functions M' (X) do not depend on ί, and that
u) are determined uniquely (cf. Theorem 1.2).

We choose local coordinates x'(y) of dΩc\ U defined on U a Rw~1 (dΩnU =
{x'(y):yeϋ}). Let (qι(s;y), pι(s;y)) be the bicharacteristic curve associated with ψ\x)
(defined by (1.7)). With these notations we have

Theorem 2.1. (i) Every principal amplitude function uι

0 ofu1 with IΦ k satisfies

ulo(ql(s;y)) = 0 when x'(y)eM and qι(s;y)eΩnU.

(ii) If the derivatives ofv(x') vanishes of order m + l ( ^ l ) o « M (i.e. d*v(x'(y)) = 0
when 1 ̂  |α| ̂  m + 1 and x\y)sM\ then the u){x) with I φ k satisfies

d»((ll(s;y)) = 0 when |α| ^ m + 1 -2/, x\y)sM and qι(s;y)eΩnU.
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From the above theorem, the following corollary follows immediately:

Corollary. IfdΩ is flat on M (i.e. <3"v(x'(y)) = Ofor every α Φ 0 when x'(y)eM), then
™) on {x = qι(s;y):qι(s;y)eΩnU, x'(y)eM) for Iφk.

In the above corollary, if dΩ is not flat on M, the conclusion is not neces-
sarily correct. Let us give an example showing it. Let atj be isotropic (i.e. aipjq =

μ(δpqδij + δiqδjp) + λδiqδjp9 λ + -μ>0 and μ > 0). Then, all the assumptions (A.I) ~

(A.3) are satisfied, and the eigenvalues {Λ(£)}z=i d become of the forms:
λ1{ξ) = μ\ξ\2 and λ2(ξ) = {λ + 2μ)\ξ\2(d = 2). Let Bu = u\δΩ, and assume that
Ω = {x=t(y,z)eW-1 xK;φ(y)<z}. We suppose that ι/<0) = 0, ^y(0) = 0 and
φy(y) φ 0 for all y φ 0 in a neighborhood of y — 0, and consider Eq. (2.1) near the
origin. In these situations, we obtain

Remark 2.2. (i) Assume that the Gaussian curvature of dΩ does not vanish at the
origin, and choose the incident wave v(t,x;σ) = eiσiλk(ω)~ι/2ω'x~t)v0 as follows:

ω = '(0,...,0,-l), k=l and vo = t(vou...,vOn.u0)φ0

(i.e. v is of ^M-mode). Then the Λ2(<^)-mode part u2(t,x;σ) = f eiσ{φ2{x)-t)uj{x){iσ)~j

satisfies j=0

(ii) Assume that the mean curvature of dΩ does not vanish at the origin, and
choose the incident wave as follows:

ω = ί (0, . . . ,0 ,- l ) , k = 2 and v0 = ί(0,...,0,ι; 0 / I)#0

(i.e. υ is of i2(ω)-mode). Then the function u{(x) of the M ί̂jX σ) satisfies

Let us note in the above remark that the incident wave hits dΩ perpendicularly
only at x = 0 (i.e. M = {0}), and that the properties u[(q\s; 0)) Φ 0 (/ = 1,2) follow
for any small s > 0 in the respective cases. The above remark will be provided at
the end of this section.

From now on, we shall prove Theorem 2.1. At first let us check the statement
(i). As was discussed in Sect. 1, (/ — Pt)uι

0 = 0, and Ptu
ι

0 satisfies

!z

0 = 0 in ΩnU,

— PιP~1v0 on dΩnU when Bu = u\dΩ,

-PιQ~1v.ι on dΩnU when Bu = Nu\
dΩ,

where t;_ x = λk(ω) 1 / 2 £ a^v^j^o. Furthermore, this is equivalent to the follow-

ing equation for wo(s,y) = 'e(qι(s;y)) uι

0(q\s;y)) {e(x) being the matrix in (1.6)):

f(ao(s, y)ds + bo(s, y))wo(s9 y) = 0 in I x ϋ,

on U when Bu = u\dΩ, (2.2)

-te{x\y))Q~1v.ι on 0 when Bu = Nu\dΩ.w°(Ό>y) \te{xr(y))Q-1υ
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We have P~ιv0 = i f P,(w)l v0 = v0 and j
λk(ω)1/2v0 = -v0 when x'(y)eM. Therefore, if /^/c, the data -te(x'(y))P~1v0 and
—'φc'OO)^" xt;_! vanish when X ' ^ J G M . Hence, for these y and / we have wo(s9 y) = 0
on 0 ^ 5 S So (by the uniqueness of the solutions of (2.2)), which yields that Pt

uι

0(qι(s;y)) = 0 when / φ k and x'(y)eM. Thus (i) is proved.
Next let us show (ii) in the theorem. To begin with, we note

Lemma 2.3. Assume that

da

yv{x'(y)) = 0 when 1 g |α | g m + 1 (m ̂  0) and x'(j/)eM.

Γ/iβn the function φ(xf) = λk(ω)~ 1/2ω- x' (x'edΩnU) satisfies

da

yφ(x'(y)) = 0 when 1 ̂  |a | ^ m + 2 and x ' ^ e M .

We choose a system of orthonormal coordinates \y, z) in R" such that z = —ωx
and that the origin x = 0 is represented by z = 0, y = 0. Note that correctness of
Lemma 2.3 does not depend on choice of the coordinates x'(y). Let Ω n U be
expressed by z > ι̂ (y). Then x^y) = r(j;, ̂ (y)) become local coordinates of dΩn U.
It is obvious that

ω-x'(y)= -φ(y\

v(x'(y)) = (l + I ^ ) i r i / 2 W Λ - 1 ) . (2.3)

From these equalities, Lemma 2.3 follows immediately. Hereafter, we introduce
these coordinates \y, z).

Let τt(y, η) be the function τz in (1.2) represented by the variables (y, η) (η(eΊR.n~ *)
moving near 0):

, , 0 , (2.4)

Lemma 2.4. Let τ^η) be the function in (2.4). lfv(x'(y)) satisfies

<3"V(X'(J;)) = 0 when 1 ^ | α | ^ m + 1 (m ^ 0) and x'(y)eM,

then we have for any β

Sydβ

ητι(y9η) = 0 when l ^ | a | ^ m + l and x\y)eM.

Proof. From (2.3), the assumption for v(x'(^)) is equivalent to

d$ψ(y) = 0 when 1 g |α | ^ m + 2 and x'(j;)eM.

Therefore we have

ajx/(y) = f(0,a;^(y)) = 0 when 2 ^ | α | g m + 2 and x'(})eM.

Applying dy. to Eq. (2.4) yields that dξλ^ddy.τ^v + τ^^v + η'dydy.x') = 0. Therefore
it follows that (dξλι'v)dy.τι = 0 when x'(j/)eM. Since dξλt-vΦQ (assuming that \η\
is small enough), we obtain δy.τz(y, n) = 0 when x'(y)eM. Repeating this procedure
inductively, we get the lemma. The proof is complete.

Lemma 2.5. Let φ(xf) and φι(x) be the functions in (1Λ\ and assume that

d;<p(*Ό0) = 0 when 2 ^ | α | ^ m + 2 and x'(y)eM,

SyV(xf(y)) = 0 when 1 ̂  |α | ^ m + 1 and x'(y)eM.



Asymptotic Solutions of Elastic Equations 49

Then the projections P^ξ) (I = 1,..., d) satisfy

Sa

y{Pι(φι

x(qι(s;y)))}=0 when l ^ | α | ^ m + l , q\s;y)eΩnU and x'(y)eM.

Proof. Let us note that φι

x(qι(s; y)) = pι(s; y) = pι(0; y) since dxλt = 0. This yields that

Pι(s;y) = φ,A-ιφy)v + (A-^yydyx
f(y\ (2.5)

where A — A(y) is the (n — 1) x (n — 1) matrix whose (i, ̂ -component is xyι'Xyj =
δυ + Ψyi(y)Ψyjb)>We s e e t h a t dϊΛ = ° w h e n 1 ̂  I αI ^ 2m + 2 and x'(y)εM; therefore,
dyA'1 = 0 when 1 5̂  |α| g 2m + 2 and x'(y)eM. Hence, applying d* to the equality
(2.5), by Lemma 2.4 we have

d"yp
l(s;y) = 0 when l ^ | α | ^ m + l, q\s,y)eΩnU and x'(y)eM,

which proves the lemma.
From the construction of e in (1.6), it follows that e(qι(s;y)) does not depend

on s; we denote it by e(y). Furthermore, by Lemma 2.5, this e(y) satisfies

d*ye(y) = 0 when l g | α | ^ m + l and x'(y)eM, (2.6)

if da

yφ{x\y)) = 0 when 2 ^ | α | g m + 2 and x'(j;)6M and 3Jv(x'(y)) = 0 when 1 ̂  | α | ^
m + 1 and x'fyjeM. Let us note that the first condition 'dyφ(x(y)) = 0' follows from
the second one ίdyv(x'(y)) = (f if φ(x') = λk(ω)~1/2ωxf (cf. Lemma 2.3). Hereafter
we put φ(xf) = λk(ω)~1/2ω-x\ and assume that dyv(x'(y)) = 0 when 1 ̂  |α| ^ m + 1
and x'(y)eM.

As was shown in the proof of Lemma 2.5, the following equality holds:

day{cpl

x(ql(s;y))} = d*yp
l(0;y) = 0 w h e n l g | α | ^ m + l a n d x\y)eM. (2.7)

In view of the definition of (q\pι) (cf. (1.7)), we see that dβ

sd
a

y(dsq\ dyiq\..., dyn_ rf){s,

y) = 0 when either 'β ^ 2'or Ί ^ β + |α|, |α| g m and x'frfeM', which mea^s that

* ~—(s, y) = Sβ

sd
a

yj^- (s, y) = 0 if either 'β ^ 2'

or Ί ^j8 + | α | , | α | ^ m and x'(y)eM\ (2.8)

Mixing (2.6), (2.7) and (2.8) yields that

dβdyai(s,y) = 0 (i = 0,...,n—1) when l ^ | α | ^ m and x'(y)eM9

d$dyb0(s, y) = 0 for β ^ 0 when 0 g | α | ^ m and x'{y)eM. (2.9)

As was seen in Sect. 1, wj(s9y) = teuι

j(qι(s;y)) satisfies

f(αo(s,y)ds + 60(5, y))Wj(s,y) = fj(s,y) in / x U,

on ϋ,

where /,•= - ^ { H ί Z - P ^ J + Lii}-!}, flf^'βP"^-^(/-PJII}-Vo) when

Bu = u\dΩ and ^ = ί β β - 1 ( - f (Nφ^I-P^u)- f JVii}-! - V - i ) when

Bu = Nu\dΩ. Note that α o - / = bo = 0 when x'(y)eM (cf. Lemma 1.4 and (2.9));
furthermore, g0 = 0 when / ̂  fc and x'(y)eM, and/ 0 = 0. Therefore it is seen from
(2.10) that wo(s,y) = dsw0(s,y) = 0 when x\y)eM and / Φ k. From the definitions of
P(y) (= P(x'(y))l Q(y)( = Q(x'(y)) and Lemma 2.5, we have da

yP(y) = d"yQ(y) = 0 when
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1 ^ |α | ^ m + 1 and x'(y)eM, which yields that

d$p-1(y) = d*Q-ί(y) = 0 when l g | α | ^ m + l and x\y)eM.

Combining this with (2.6) and Lemma 2.5, we obtain

%Go(s>y) = 0 w h e n l ^ | α | ^ m + l and x\y)eM. (2.11)

Differentiating Eq. (2.10) (with j = 0) in yt and fixing y so that x'(y)eM, by (2.9)
and (2.11) we have dy.w0(s, y) = 0 for i = 1,..., n - 1 if / φ k. Repeating this procedure
yields that for any β = 1,2,...,

dζd$wo(s,y) = 0 when / Φ k, 1 ^ |α| g m + 1, x'OOeM.

Therefore we obtain the statement (ii) in Theorem 2.1 for; = 0.
In the same way, noting that dζd$fj and 5*0, = 0 for | α | ^ m + l - 2 j if

dξd*ulj-! = 0 for |α| ^ m + 3 - 2j and any /?, by induction we get (ii) in the theorem
for j ^ 1. The proof is complete.

Proof of Remark 2.2. Let us prove statement (i). For ξ,ηeJR.n we denote the matrix
by ξ ® η whose (ij)-component is ξflj. It is seen that H and P2(ξ) are of the forms

H = 2μ(φl δx)/ + (μ + Λ)(^ ® δ x + (μ + Λ)dx ® (^ + Lφ 2 ,

1 α (2.12)

where the (ij)-component of dx®φl means φljdXi. The equations of q2(s;y) and
p2(s;y) { = φ2Λq\s\y)) (cf. (1.7)) become of the forms

, P2(0; y) = φj(

From the equalities that φ2(y, ψ(y)) = -μ~ll2φ(y) and | φ \ | 2 = (A + 2μ)~ \ it is seen

that

+ {(λ + 2μ)-1-μ-1V,A-V,}1/2(l + l ^ l T 1 / 2 ί ( - V r l ) , (2.13)

where X is the matrix in (2.5) and (A ~ι ψy)i means i-component of the vector A~ιφr

Note that A -1 = dy.A = 0 (i = 1,... ,n - 1) when y = 0; hence, A " 1 - / = δ,,iA"1 = 0
(i= l , . . . ,n —1) when y-0.

Take the coordinates y so that dy.dy.φ(O) = 0^.^(0). Then, (2.13) yields that

•'(0,...,i,...,0) ( i = l n—1).

Therefore, in view of (2.12) we have

, Φ(y)))\y o = - (μ~1

( i = l , . . . , n - l ) , (2.14)
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where /C, = 0 1

0 ••• 1 ••• 0

' (i = 1,..., n). In the same way we get

P2(φx(0)) = Kn,

y y y y ( i=l, . . . ,n- l ) . (2.15)

Differentiating the equality P(y)P(yΓ1 = I(P(y) = PΛ<Px(y, Φiy)) + P2(ψ2

x(y, </Ό>)))),
and using (2.14) and (2.15), we have

dΛP- HO) = «λ + 2μ)-ίl2 - μ~ 1 / 2)^ (,,(0)/C i (i = 1,..., n - 1). (2.16)

Since e{y) = (λ + 2μ)ιl2φ2

x(y, ψ(y)), it follows from (2.13) that e(0) = '(0,... 5 0,1).
Therefore, noting that ΓO = ' ( I ; 1 O , . . . , I ; O B _ 1 , 0 ) and P(O)"1 = 1, from Eq. (2.2) of w0

we obtain wo(s, 0) = 0 for any s. This yields that

«S(O) = δ*,«S(O) = O, (2.17)

since u2

o(q2(s;y)) = and
w-1

.Σ
(/l + 2/i)-1ugXn(0) for y = 0. Furthermore, applying dyι to

l ι', Ψ(y))P(y)~ v0 (cf. (1.4)) and using (2.15) and (2.16), we have

= 2μ - ̂ Vv.ΛOKΛO, , 0,1) ( i = l π - 1

= P2«o) =

(2.18)

that
From (1.5) it follows that (1-P2)u2 = (1 - λ^φl))-χ{l - P2)Hu2

0. It is seen

/ o
I 0
0 0

0 o

0 1

. 0/

when x = 0. Therefore, by (2.17) and (2.18), we obtain

The above equality shows that (/ - P2)
Mi(0) Φ 0 since at least one of vOiφyiy.(O)

(ί=l,...,n—l) does not vanish from the assumptions.
Next, let us consider the statement (ii). In the same way as in the case of (i),

we see that

(/ - P>i(0) = μW((λ + 2μy1'2 + μ~ 1 / 2 ) » o . ( l ***(<>) )'(0' .0,1),"l
which proves that w}(0) φ 0.
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