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Abstract. In the first half of this paper, we construct asymptotic solutions of linear
anisotropic elastic equations. In the latter half, we investigate waves reflected by
boundaries for plane incident waves in terms of these solutions. Especially, it is
examined whether or not the mode-conversion occurs near points where the
incident waves hit the boundaries perpendicularly.

Introduction

Let 2 be a domain in R%(x =(x,,...,x,),n=2) with a C* boundary 42, and
consider the elastic wave equation

(atz - il aijaxiax,->u(t,x)=0 in RxQ

NE

Here, u ="(u,,...,u,) is the displacement vector, and g;; are real constant n x n-
matrices whose (p, g)-components are denoted by a;,;,. We assume that g;; satisfy

aiqu =apijq=ajqip’ i’ j,P,q = la 2,...,", (Al)
n n

' Z 1 Aipjaialip 2 0 i pzl le;p|>  for every Hermitian matrices (g;;), (A.2)

L,P:J,9= WP =

n
. Zl a;;¢;¢; has eigenvalues of constant multiplicity for
LJ=

any é = t(él; ey fn)GR" - {0} (A3)

2
In the isotropic case (i.€. a;,;, = (6,,0;; + 0;40;p) + A6;,0,4, A + LK >0 and p>0),

.....

of Y a;¢¢; Then, 4,(€) become positive C* functions (¢ # 0). We denote by P,(¢)
i,j=1

the projection into the eigenspace of 1,(&).
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For each 4, there are waves of A,-mode with the corresponding propagation
speed. One of the main purposes in this paper is to examine how the waves are
reflected near the boundary when the plane wave of a single mode hits the boundary
perpendicularly. In Sect. 2 we make this investigation in terms of asymptotic
solutions of the form

(e, x;0)= Y €@ 0ui(t, x)(io)
j=o0
where ¢'(x) is a C* real-valued function satisfying 4,(0,¢'(x)) = 1. In this paper
“the wave of A-mode” means the asymptotic solution of this type. The typical
plane wave of 1,-mode is expressed of the form

U(t, x: O') — eiu(lk(w)‘ l/Zar.vc—-t)vo
b

with weS" ™! and v, = P,(w)v,, which propagates in the direction e with the speed
M) 2,
We fix the above k,w, and v, (#0), and construct the solutions u'(t, x;0)

d
(I=1,...,d) so that Z u'(t, x; 0) + v(t, x; o) satisfies the boundary condition. Then,
=1

generally, every part u' does not vanish, that is, the mode-conversion happens.
However, in special situations, this conversion does not occur; e.g., when £ is the
half-space and w is normal to the boundary, all u' except u* vanish. This suggests
that the waves u' in general cases with [ #k vanish on the characteristic curves
starting at points on 02 where the incident wave v hits 02 perpendicularly. This
is correct if €2 is flat there (cf. Theorem 2.1 and the corollary). But, if 02 is not
flat at those points, this conjecture is not correct (cf. Remark 2.2). We note that
the asymptotic solutions are unique (see Theorem 1.2).

Section 1 is devoted to construction of the asymptotic solutions with non-
glancing given data on 0f2. We carry out this construction for more general
operators with the variable coefficients. In the isotropic case, Karal and Keller [2]
made such solutions. It seems difficult to apply their methods to our case. The
essence of our methods is similar to Lax’s [3]. However, the transport equations
in our case are of different type, that is, they become first order equations
with matrix-valued (not scalar-valued) coefficients. To solve these equations, we
introduce the local coordinates associated with the bicharacteristic curves, and
reduce them to symmetric differential equations ordinary in the space variables.

The asymptotic solutions in Sect. 1 seem useful for studies of various problems.
By a similar idea to ours, Soga [5] has constructed the asymptotic solutions under
more restricted assumptions, and used them to solve an inverse scattering problem.
But the analysis in [5] is not so precise as to obtain the results in the present paper.

1. Construction of the Asymptotic Solutions

We set 2°(M) = { f(x)eC*(M); sup |03 f(x)| < co for any a}. Let a;(x),b;,(x) and
xeM

c(x) (i, j=1,...,n) be n x n-matrices of functions eZ*(R"), and put

L(x,0)u= Y a;(x)0.0.u+ Y bi(x)d,u+ clx)u.
i=1

ihj=1
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We assume that the (p, g)-components dip; (%) of a;;(x) are real-valued and for each
xelR" satisfy the conditions (A.1) ~ (A.3) in mtroduction In view of (A.3), we denote

by A4(x,&) (I=1,...,d) the distinct eigenvalues of Z a;{(x)&:&; (Ay < -+ < Ay). By

(A.1) ~ (A.3), 4)(x, &) become positive C* functionsjhomogeneous of order 2 in £.
Let Py(x, &) be the orthogonal projection into the eigenspace of A,(x, £), which is
an n x n-matrix of C* functions homogeneous of order 0 in &. 1,(x, &) and P,(x, &)
are even in & (i.e. A,(x, &) = A(x, — &) and P(x, &) = Py(x, — &)).
Let U be an open set in R"(U n 02 +# ¢), and consider the following equation
for each A;(x, &):
M(x,0,0'(x))=1 in Q2nU,
o'(x) = o(x) on 0RNU,

1
%%(x’) <0 on 0QnU,

(1.1)

where @(x’) is a given C® real-valued function and v(x') = '(v,(x’),...,v,(x’)) is the
unit outer vector normal to 002 at x'edQ2 (the points on 02 being denoted by
X' =(x1,...,Xy)). As is well known, if the (first order) derivatives of ¢(x’) along the
boundary are near 0 on 02n U, we can construct a (unique) real-valued solution
¢'(x) of (1.1) in a neighborhood of the boundary by the Hamilton-Jacobi methods;
we assume that the U is chosen so that ¢'(x) is defined on whole 2N U. There
exists an implicit function 7,(x’, £) defined on (02N~ U) x A (where A (cR") is a
small neighborhood of £ = 0) such that

A, T (L Ev(x)+ € =1 and 71/(x, &) <O.
Let us note that for x'ed2n U,
(X', 0) = — A(x', v(x')) " 1/2,
0,9'(x') = T(X', 05 Plan(X'))V(X) + 05 Plan(X'), (1.2)

where 0,¢!,,(x') denotes the tangential part (to 092) of 0,¢'(x').
We impose the boundary condition Bu =g on 021 U, where

Bu =u|,, or =(N + b)ul,,,

N = Zl aijviaxj, b = b(x)e'@w(ag).

ij=
If a function f(x; 6)e #°(M) with a parameter seR satisfies | f(-, )| ao0n = Clo|™
for |o] = 1, we write f(x;0) = O(|6|™) in M’. ‘The asymptotic solution u!(t, x;0) =

Z €7@ ™0 yl(¢, x)(io) 7 (in R x (U N R) and of 4,-mode) with the boundary data

g(t x;0)= Z €90)"0g (1, x')(ic) "I** means that
(@2 -—L)( y e“"‘"""u}(ia)’j> = 0(jg|~™+m) in Rx(@nU),
i=o

B{ ) e""‘“’""u§(ia)‘f} - { S eoeerng x')(ia)‘f“}=0(|ar'"+'"*)
j=0 ji=0
on IR x(02nU)



40 H. Soga
for any positive integer m, where ¢ = 0 (respectively = 1) when Bu = u|,, (respectively
when Bu = (N + b)ul,,), and m,, m, are constants independent of m. And we write

(0* - L)u'(t,x;0)=0 in R x(2n0),
Bul(t,x';0)~g(t,x;6) on R x(02nU).

Theorem 1.1. Assume that the (first order) derivatives of ¢(x') (in (1.1)) along the
boundary are near 0 on 02nU. Then, for any data g(t,x';0)= Z gioe)=n

g(t,x')(io)~ ’”(g,(t x)eB (R x (02N U)); ¢ =0 (respectively = 1) when Bu=ul,,
(respectively when Bu=(N + b)u|,,)), we have asymptotic solutions u'(t,x;0) =

'io o@D "0yl x)(ioc) ™ (I=1,...,d) such that
=
@) (0? — Lyu'(t,x;0) =0 in R x(2nU),
(i) z—i Bul(t,x';0)=g(t,x';6) on R x(02nU),
(i) if g(t,x';0) =0 for t < t,, then u'(t,x;0)=0 for t <ty (I=1,...,d).

Theorem 1.2. The asymptotic solutions u’(t X;0) = Z €7 " yl(ig) ™I (l =1,...,d)
in Theorem 1.1 are unique: If (02 — L) Z W=0inR >< R2nU)and B Z u'~0on
R x (02N U), then u§(t, x)=0in R x (.Qn U)forl=1,...,d and j= 0 1

Theorem 1.2 will be verified after proving Theorem 1.1.

Let us prove Theorem 1.1. At first, note that the solution ¢'(x) of (1.1) exists
for every I (=1,...,d) since the derivatives of ¢(x') are near 0.

Hereafter we use the notations f(=0,f) and f,(=0,,f). We rewrite

(02 —L) ¥ €' “ul(is)~/ in the following form:
j=0

@O0 Y [(I =Y apg 0k, 0 ) Prtts + (I — Y a0 0% ) — P))us
j=o0
+(I —P){(—20,— H)u}_ | + (07 — L)uj_,} + P,(— 20, — H)P,u_,
+ P{(—20,— H)I — P))uj_; + (07 — Lyuj—,}1(io) /"2,
where u_, =u_, =0, P, = P/(x, ¢%(x)) and

H= Z (au(x) + aﬂ(x))(px,(x)axj + (L - C)(p

i,j=1
In the same way as Lax [3], we determine (I — P,)u} and next P, and eliminate
each term in the above summation together with makmg u satlsfy the boundary
condition. When considering the boundary condition, we use the matrices

d
P(x')= l; P(x', (X)),

d
o) = l; (N@')(x')Pi(x', 9(x")).
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Since P(x') = i Py(x',v(x')) and Q(x')= — i L(v(x))?Py(x,v(x)) if the deri-
151 =1

vatives of ¢(x') all vanish, P(x') and Q(x’) are non-singular when its derivatives
are near 0 on 02N U.

It is obvious that the part (I — ) a,, 0% ¢k )Pu; is equal to (I — A4,I)Pu;=0.
To eliminate the other parts, we consider the equations

P20, + HPui+ P, fi=0 in R x(2nU), (1.3)

d
P,P“( Z(I Pu} +g1> on R x(02nU) when Bu=uj,,

P,u’~ —

J ﬂQﬂ< (N¢X1 PW“ZB%1+ﬁJ

on R x(02nU) when Bu=(N +b)ul,,
(1.4)

||M§_

(I =Y apol oL ) — Pyt +(I—P)H_, =0 in Rx(@nU), (L5

where f*=(20,+ H)(I — P))u;—(0? — L)u}_, and h}_, —( 20,— Hyus_, + (02 — Ly _,.
Note that f} and h}_, are defined from only u}_,,u}_, and (I — P;)u}. At first put
(I—P)ub,=0; ie. take uf, in the eigenspace P ]R" Then ft=0. If Egs. (1.3) and
(1.4) for j =0 are solvable, u}, is determined. Noting that (I — P)) = Z P;, we see

that (1.5) is of the form Y {(1—A;)Pu;+ P;hy}. Therefore, settmg Py =
—(1—=A)"'Phy (for i#l) ltiletermmes (I — P)u}. Repeating this procedure
inductively, we can determine all } (j=0,1,...). Furthermore it is seen that the
asymptotic solution i u'(t, x; o) with these u}(z, x) satisfy the required boundary
conditions: In fact, véljeln Bu =u|,,, (1.4) yields that

d m m d d
¥ 5 e -ugioyi=eme § 5 {Plu}+lzl (I—P,)u;}(ia)‘f
j=01= =

1=1 /0
=Y €7@ 9(ie)” on R x(02nU),
=0
when Bu = (N + b)ul,,,

(No") P+

IlMg_
||Mg_

i ld(fp'—l)u; (io)_j =elole—) i {
d d . .
IZI (NoYI—P)u + l“zl Bu_; }(ia)'“r 14 elole—0 l; Bul (ic)™™
m d
=Y €7@ i)/t 407" Y Bup(ie)™™ on R x(02nU).
Jj=0 =1

Hence we have only to show that (1.3) and (1.4) are solvable for each
I=1,...,d. Fix X€0Q2nU and take bases & (i=1,...,d) in P,(%v(%))R". Then
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€(x) = Py(x, ¢.(x))é; (i=1,...,d) are linearly independent if the (first order) deri-
vatives of ¢(x') are near 0 and x moves near X. We assume that ¢/(x) are linearly
independent for xe 2N U. Setting

i—-1

|1 e — '21 (‘ee;)e;
=

-1 i—1 ~
<e:~ -y ('eée,-)e,-) (i=2,...,d),
1

j:

/
e, =lej| el e =

we obtain orthonormal bases e;(x) (i=1,...,d) in P,(x, ¢'(x))R" which belong to
B2(2nU). We put
e(x) = (el (X), ey e;(x)), (16)
vj(t, x) ="e(x)ui(t,x) (j=0,1,...).
Let (q(s; y), p(s; y)) be the bicharacteristic curves defined by

d
Z=—o4ap)
s (1.7)

90; ) =x'(y),  p(0;y) = P(X'(y)),

dq
& = a{'ll(q’ P),

where x'(y) is a system of local coordinates of 02 U (yelR"~!). Then the mapping:
(s, y) — q(s; y) becomes diffeomorphic if the (first order) derivatives of ¢(x’) are near 0
and |s| are small enough. We assume that x = ¢(s; y) becomes a system of the local
coordinates of 2N U. By using the variable (s, y) and w(s, t, y) = vj(t, q(s; y)), Eqs. (1.3)
and (1.4) are transformed as follows:

n—1 ~
{26, + aO(s, y)as + Z ai(sa y)ayi + bO(S’ )’)}W(S, t, Y) =f(sa ta y) in (0’ SO) X ]R X U’
i=1

(1.8)
w(0,t,y)=h(t,y) on RxT,
where 2 U < {q(s; y):(s, y)€(0,50) x U} and
n 0
ao="e Y (ay+ap)el, e, (L9)
i,j=1 axl
t < 1 ayi .
a="e Y (a,+a,)e. ——e (i=1...,n—1), (1.10)
p,j=1 pax]
t 1 1 Lo\ , Os
by ="e(Lo' —colle+'e Y, (a;+ a;)pk,~— 0.
Lj=1 6x,-
n—1 n a ;
+'e 2 Z (api+ajp)‘p;p ay ay.-e'
i=1 p,j=1 Xj

d
Solving this equation with f= —‘ef% and h =‘eP'1< -ya —Pi)uj-+gj)
i=1

d d
(respective1y=‘eQ‘1(— Y. (N YT —Pui— Y. Buj-_1+gj> when Bu=u|,, (res-
i=1 i=1

pectively when Bu=(N + b)ul,,), we get the required solution P,uj. =ew for
each I (=1,...,d).
Now, let us examine (1.8). At first, note that every q; (i=1,...,n— 1) defined
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by (1.10) vanishes: (1.8) is reduced to
(20,4 agd, + bg)w=f in (0,50) x R x U, (1.11)
which is seen from

Lemma 1.3. If ¢ and neR" (¢ #0) satisfy n-0:4,(x,£)=0 (x and | being fixed
arbitrarily), then we have

Pie8) 3 (@) + a0)m,Pix =0

For the local coordinates x = ¢g(s; y) we have (0, ;)" (6§/1,(x, 0L))=(0,:) (0,9 =0
(i=1,...,n—1); using the above lemma with ¢ =¢' and n=20,y, we obtain

Py(x, %) Z (akj+a,k)goxkg P,(x, ¢.) =0, which yields that g; =0 (i=1,...,n—1).
j_
Proof of Lemma 1.3. Applymg 0y, to the equality
) Z aij(x)fiéjpl(x, &) = A(x, & Py(x,),

i,j=1

we obtain the equality 2 (@, + a) &P+ Y. ai(x)E:E;0, Py=(0:, A)P,+ A0, Py.
i j—

Multiply this equality by 1, and sum it up in p=1,...,n. Then we have

P, Zl (a;, + a,)Em, Py
Lp=

=< Zl "paél,'ll>Pl + 4P Zl 1p0:,P1— P ) Z a;;(x)&:&; 21 1,0, P1=0
p= p= p=

i,j=1
The proof is complete.
Next, let us note that a,(s, y) is of the special form:

Lemma 14. ay(s,y) (defined by (1.9)) is a symmetric d x d-matrix of real-valued
Sfunctions, and satisfies

lag(s,y)—1 |g°((0,30)x 0) = Clay(P(xl(.V))lg"(ﬁ)-

Proof. Let (q(s;y), p(s;y)) be the solution of (1.7). Then, p(s;y) = ¢.(q(s; y)) and
A(q(s; y), p(s; y)) = 1. By the Euler equality, we have 2 = 0,A'p = 0,q'p. Differenti-
ating this in y; yields that 0,0,,q9-p+ d,q-0,,p =0. In the same way, we obtain
0,,9-0;p — 0,q-0,,p =0 from the equality A,(q,p)=1. Therefore, 0,(0,,9'p)=0.
Combining this euality with (1.2), we have

10,,q°P| = C110,0(x'(y)|g0c) (1.12)
Let u(s,y) be the unit vector orthogonal to every 0,.q(s;y) (i=1,...,n— 1) with
o 0 . P
vu>0.y= <£,,5xi> satisfies y-0,,9 =0 (x =q(s;y)), which implies that
1 n

— |y|u. From this and the equality p = (p-p)u + (p — (p- w)p), we have

— Iyl w o+ 1yl W~ (o — (P Wp)
=—[y(pw 'p+7. (1.13)
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Since § is expressed by linear combination of d,4,...,d, _,q and satisfies
70,4 =7|(p-w)~'0,,9°p, (1.12) yields that

171 = C,10,0(x'(¥)lg@)- (1.14)

Insert (1.13) into 1 =y-d,q. Then 1 = — |y|(p ) " 'p-0,g + 70,9 = —2|yl(p-w)~ ' +
7-0,q. Therefore, using (1.13) again, we have

y=2""p—271(F0,9p+7.
Mixing this with (1.14), we get
o 1
ox, 2%%

which proves the lemma. The proof is complete.
Thus it suffices to analyze the following problem:

(20, + a(s)0,+ B(s))w(s, t) = f(s,) in I xR (I=(0,s4)),
w(0,7) = h(?) on R,

< C510,0(x' () a0y,

(1.15)

where « and p are d x d-matrices of functions in #®(I) and « is real-valued and
symmetric. As is easily seen, all the requirements are derived from

Lemma 1.5. (i) If |deta| = aq (> 0), there exists a unique solution w(s,t) of (1.15)
in #°(I xR) for any f(s,t)e B x R) and h(t)e B~ (R).

(i) Let 27Y¢|2 < al for {eR". Then, if the support of the data (f,h) in (1.15)
is contained in {t, < t}, so is the support of the solution w of (1.15).

Proof. (i) From the assumption, o~ !(s) becomes a symmetric matrix of functions
e#*(I). Equation (1.15) is equivalent to

Os+2a7 10, +a " fpw=f in IxR,
Wls=o=h onR.

This is a well-known Cauchy problem (cf. Friedrichs [1] or Chap. 5 of Mizohata
[4]). Therefore (i) in the lemma is obtained.

(ii) Introduce the variables s'=s and t' =27 !t —s. Then (1.15) is transformed
into the problem

Oy + (@ ' —Dd, +a 1pW(s,t)=f(s,t) in IxR,
W oo =h(t) onR.

It is seen from the assumption that o™'—1 is a symmetric matrix satisfying
['Ua™* — D £ 1L)? for (IR’ This implies that every eigenvalue of this matrix is
in [ —1,1]. Therefore (1.16) is not only solvable but also has finite propagation
speed less than 1 (cf. Note 2 in Sect. 12 of Chap. 6 of [4]). Hence, in the original
Eq. (1.15), the solution w(s, t) exists and is equal to 0 on the cone D = {(s,t)el x R;
27t —t,)—s+s,|<s, —s,5<s,} if the data vanish on D, which proves (ii) in
the lemma.

(1.16)

o d
Proof of T heorem 1.2. Inserting u= Y. Y €“'~%l(ig) ™/ into (67 — L)u =0 and
=011
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Bu=>~0, we have

eid(pl{(I_Zapq(oip(p;q>u}—(2a'+H)u;_l +(at2 _L)uj'—Z}
=0 in Rx(RnU), (1.17)

M=~

1

1

d
Y u5=0 on R x(02nU) when Bu=uly, (1.18)

1=

=

d
{ Y v, (0%, apqtts + ay axnu§_1)+buj~_1}=0
1 (pg=1

on R x(@02nU) when Bu=(N+bul, (1.19)

M=

1]

for any j=0,1,..., and any large o.

Take any pair ¢'and ¢’ (1 <i<j<d). Then, for any open set W = 2 " U there
exists a point x in W such that ¢'(x) # @(x); because, if not, ¢’ = ¢’ in W and so
1=A(x, )= = Ai(x, (p,‘) < A;(x, i) =1, which is a contradiction. This fact implies
that the set 2= {x: ¢'(x) ;é(p’(x) for every i and j with i #j} is dense in 2nU.
On the other hand, if ¢!,..., " are different each other, each term (hereafter
denoted by e"‘"f; ’) in the summation of (1.17) must be equal to 0. In fact,

differentiating Z €' ®' =0 (d — 1)-times in o, we have (@1,..., ®%J =0, where

J is the d x d matnx whose (I, k)-component is (up’)" le”?’. This yields that

(@1,..., % = Osince det J # 0. Therefore each term ¢/°?'®' vanishes in R x 2 and

soin ]R x (2" U) (since u; are assumed smooth). Hence, rewriting the @', we obtain

from (1.17)

(I =Y. apg @i, @ )T — P+ (I = P){(—20, — H)u}_, + (07 — Lyuj_,}

—Py(20, + H)P_y + P{(—20,— H)(I — P)uj_; + (07 — L)uj_,}(io) 7** =0

inRx@Q2nU) (I=1,...,d). (1.20)

Equation (1.20) with j=0 means that (I —P)u}=0 in ]R x (2nU) for

I=1,...,d. Combining this with (1.18) and (1.19), we have Z Pul,=0 and

d d
Yoy ,,(pxq a, P =0 on R x (02N U) respectively. These yleld that Pul, =0

=1pg=1

on ]Ii{q x (02nU) for I=1,...,d since the following estimates are derived:

-~

2

d d
P vEscCly P, v'eR”,
1 1
= =1
d d d 2
Z |Pp'2<C Zx Y 1 V0%, a5 P, v'eR”,
= Sy

which are seen from the facts that P,(=P[¢})) is near P,(v) (cf. (1.2)) and that
P,(v),..., P,(v) are the orthogonal projections. Applying P, to (1.20) with j = 1, we
get P20, + H)P,ub, =0 in R x (2 n U). Therefore, considering Eq. (1.8) (or (1.11))
as we did for (1.3), we obtain Puf, = 0in R x (2 n U); hence uh, =0in R x (2 " U).

Multiplying (1.20) (with j=1) by (I — P;) yields that (I -} a,,¢% 0% ) — P)u =0
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in R x (2nU), which implies that (I — P)u} =0 in R x (2 nU). By the same
procedures as for uf), we have v} =0 in R x (2 U). Continuing these processes
inductively, we obtain uj~ =0inR x (2nU)forallj=0,1,...and[=1,...,d, which
proves the theorem.

2. Reflected Waves for Plane Incident Waves

In this section, we assume that a;; are constant matrlces satisfying (A.1), (A.2) and
(A.3) stated in the introduction and that L= Z a;;0x;0x;. Furthermore we
suppose that the boundary operator is of the form Bu=ul,, or =Nul,,
(N= Z v;0;;0,). We use the same notations that in Sect. 1. When they do not

depend on the variable x, they are abbreviated in the following way: 4,(&) (= A,(x, &)),
Pi(&) (=Py(x,¢)), etc.

If v eR" satisfies vy = Py (w)vy (weS" 1), the function
l)(t, x; O') — eia(lk(w)‘ '/lw-x—t)vo

is one of the solutions of the equation (6> — L)v = 0 (where ¢ is a real parameter
with |o|=1). We call the solutions of this type the plane waves of A,-mode
proceeding in the direction w. Hereafter we fix the k and the w arbitrarily. Set

M = {x€002: v(x) = w},

and take a sufficiently small neighborhood U of M so that the discussions later
are correct.

Since it can be assumed that the gradient of ¢(x') = A (w)” ?w-x’ is small
enough on U nds, for each I (=1,...,d) there exists the solution ¢'(x) of (1.1) with

o(x) = 4(w) 2w x'. By the procedures stated in Sect. 1, we can construct an
d

d 0
Ut 5 o) = io(g!(x)=1) .
asymptotic solution u(t,x; )= lz ul(t,x;0)= {Z eiote tuj. (x)(ia)"} such

that = = l=o
@—Lu+v=0 in Rx(@nU) o
Bu+v)=0 on R x(02nU). '

Note that in this case the amplitude functions u!(x) do not depend on ¢, and that
u; are determined uniquely (cf. Theorem 1.2).

We choose local coordinates x'(y) of 02N U defined on UcR"1(0QNU =
{x'(y): yeU}). Let (¢(s; y), P'(s; ) be the bicharacteristic curve associated with ¢'(x)
(defined by (1.7)). With these notations we have

Theorem 2.1. (i) Every principal amplitude function ul of u' with | # k satisfies
ub(¢'(s;y))=0 when x'(y)eM and g'(s;y)e2nU.

(i) If the derivatives of v(x) vanishes of order m + 1 (2 1) on M (i.e. dyv(x'(y)) =0
when 1 <|a| <m+ 1 and x'(y)e M), then the u'(x) with | # k satisfies

ui(q'(s;»)=0 when |a|<m+1-2j,xX(y)eM and g'(s;y)eRnU.
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From the above theorem, the following corollary follows immediately:
Corollary. If 092 is flat on M (i.e. d;(x'(y)) = O for every a # 0 when x'(y)e M), then
ul(t,x;0) = O(|a|~®) on {x =g'(s;y):4'(s; »)e RN U, x'(y)e M} for | #k.

In the above corollary, if dQ2 is not flat on M, the conclusion is not neces-
sarily correct. Let us give an example showing it. Let a;; be isotropic (i.e. a;,;, =

2
WO pg0ij + 0:40;p) + A0ig0;py A + ;u > 0 and x> 0). Then, all the assumptions (A.1) ~

(A.3) are satisfied, and the eigenvalues {4,(¢)},—, .4 become of the forms:
2(&)=pl¢)* and A,(&)=(A+2p)|¢|?(d=2). Let Bu=ul,, and assume that
Q={x=,2eR""" x R;y(y) <z}. We suppose that %(0)=0, ¥,(0)=0 and
¥,(y) #0 for all y #0 in a neighborhood of y =0, and consider Eq. (2.1) near the
origin. In these situations, we obtain

Remark 2.2. (i) Assume that the Gaussian curvature of 0£2 does not vanish at the
origin, and choose the incident wave u(t, x; g) = e’ 9@~ 2@x=1, " ag follows:
0="0,...,0,—1), k=1 and vy="vgys-.-5V0n—1,0)#0
(ie. v is of A;(w)-mode). Then the A,(p2)-mode part u(t,x;0) = Y, €7@ ~9y2(x)(ic) ™/
satisfies j=0
u?(0) #0.
(ii) Assume that the mean curvature of 022 does not vanish at the origin, and
choose the incident wave as follows:
w=40,...,0,—1), k=2 and v,=%0,...,0,05,) #0
(i.e. v is of A,(w)-mode). Then the function ul(x) of the ul(t, x; o) satisfies
ui(0) #0.

Let us note in the above remark that the incident wave hits 022 perpendicularly
only at x =0 (i.e. M = {0}), and that the properties u}(q'(s;0)) # 0 (I = 1,2) follow
for any small s > 0 in the respective cases. The above remark will be provided at
the end of this section.

From now on, we shall prove Theorem 2.1. At first let us check the statement
(i). As was discussed in Sect. 1, (I — P,)u}, =0, and P,u}, satisfies

P,HP,uf)=0 inQ('\U,

Pl — —PP vy, on 02nU when Bu=ul,,
POl —=PQ ., on 02nU when Bu=Nul,,

where v_; = 4,(w)"!* Y a;v,0;v,. Furthermore, this is equivalent to the follow-
i,j=1
ing equation for w(s, y) = ‘e(q'(s; y)) ub(q'(s;y)) (e(x) being the matrix in (1.6)):

(a(s, )3, + bols, MWo(s,) =0 in IxT,
(0 - _'e(x'(y))P— 11)0 onU when Bu= ulan, 22
Wolbhy) = —'e(x'(»))Q v, onU when Bu=Nul,,
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1

d d -
We have P~ 1y, = {l; P,(w)} vo=voand Q" lv_, ={ — lzl M) ?P(w)p X

(@)?vy = —v, when x'(y)eM. Therefore, if | #k, the data —'e(x'(y))P~ ‘v, and
—'e(x'(y))Q " 'v_, vanish when x'(y)e M. Hence, for these y and I we have wy(s, y) =0
on 0<s<s, (by the uniqueness of the solutions of (2.2)), which yields that P,
ub(q'(s; ¥)) = 0 when I # k and x'(y)eM. Thus (i) is proved.

Next let us show (ii) in the theorem. To begin with, we note

-1

Lemma 2.3. Assume that
Ov(x'(y) =0 when 1=<|a|<m+1(m=0) and Xx'(y)eM.
Then the function o(x') = A, (w) " 2w x" (x' €02 U) satisfies
050(x'(y))=0 when 1=|a|<m+2 and X(y)eM.

We choose a system of orthonormal coordinates {(y, z)in R” such that z = —w-x
and that the origin x =0 is represented by z =0,y =0. Note that correctness of
Lemma 2.3 does not depend on choice of the coordinates x'(y). Let 2N U be
expressed by z > y(y). Then x'(y) = (y, ¥(y)) become local coordinates of 02N U.
It is obvious that

o x'(y) = —¥(),

vxX'()) = (L + 1y, 12) ", ), — ). (2.3)

From these equalities, Lemma 2.3 follows immediately. Hereafter, we introduce
these coordinates ‘(y, z).

Let 7,(y, #) be the function 7, in (1.2) represented by the variables (y, 1) (7(eR" ')
moving near 0):

HE0. ) + 18,5 0) = 1 (n-ay='f; n.-ay.), e <0, (24)

Lemma 2.4. Let t,(y,4) be the function in (2.4). If v(x'(y)) satisfies
v(x'(y)=0 when 1=Z|a|Sm+1(m=20) and x'(y)eM,
then we have for any
8t (y,m)=0 when 1=Z|a|<m+1 and x(y)eM.
Proof. From (2.3), the assumption for v(x'(y)) is equivalent to
oY(y)=0 when 1<|a|<m+2 and x'(y)eM.
Therefore we have
x'(y)="0,05y(y))=0 when 2=|a|=m+2 and Xx(y)eM.

Applying d,, to Eq. (2.4) yields that 0.4,((9,,7,)v + 7,0,,v + n°0,0,,x") = 0. Therefore
it follows that (9:4,"v)0,,7,= 0 when x'(y)e M. Since 0,4,"v # 0 (assuming that |7|
is small enough), we obtain 0,,7,(y, 7) = 0 when x'(y)e M. Repeating this procedure
inductively, we get the lemma. The proof is complete.

Lemma 2.5. Let ¢(x’) and ¢'(x) be the functions in (1.1), and assume that

Oo(xX'(y)=0 when 2=Z|a|=<m+2 and x'(y)eM,
opv(xX'(»)=0 when 1=Z|a|Sm+1 and x'(y)eM.
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Then the projections P\(¢) (I=1,...,d) satisfy
{P(0'(d'(5;»))} =0 when 1=Z|a|<m+1, ¢(s5)eQnU and x'(y)eM.
Proof. Let us note that ¢'(q'(s; ¥)) = p'(s; y) = p'(0; y) since 8,4, = 0. This yields that
P'(s;y) =, A7 o, v + (A7 9,):0,X (y), (2-5)

where A = A(y) is the (n — 1) x (n — 1) matrix whose (i, j)-component is x =
0;+ |//y,(y)l//,, (y). Weseethat 9;4 = Owhen 1 < |a| < 2m + 2 and x'(y)eM; therefore
BATI=0 when 1 Sla|=2m + 2 and x (y)eM Hence, applying d; to the equality
(2 5), by Lemma 2. 4 we have

6;p‘(s;y)=0 when 1Z|a|<m+1, ¢'5,9)eR2nU and x(y)eM,

which proves the lemma.
From the construction of e in (1.6), it follows that e(g'(s; y)) does not depend
on s; we denote it by e(y). Furthermore, by Lemma 2.5, this e(y) satisfies

Oye(y)=0 when 1=Z|a|sm+1 and x(y)eM, (2.6)

if 050(x'(y)) = 0when 2 < |a| <m + 2and x'(y)e M and d5v(x'(y)) = Owhen 1 < |a| =
m+ 1 and x'(y)e M. Let us note that the first condition ‘05¢(x'(y)) = 0’ follows from
the second one ‘dv(x'(y)) = 0" if @(x') = A(w)” 2w x’ (cf. Lemma 2.3). Hereafter
we put ¢(x') = A (w)” ?w-x', and assume that 93v(x'(y)) =0 when 1 <|a|<m+ 1
and x'(y)eM.

As was shown in the proof of Lemma 2.5, the following equality holds:

03 {0iq ()} = 35p'(0;)=0 when 1=<|a[Sm+1 and x(y)eM. (2.7)
In view of the definition of (¢', p*) (cf. (1.7)), we see that 020%(0,4",0,,4,...,0,,_,4")(s,
y) =0 when either ‘=2’ or ‘1 £ f+|al, |a| =m and x'(y)eM’, Wthh means that

656;075(5, y)=0* 8;6—;‘2"(& y)=0 if either ‘=2’
or ‘1<f+]al,|le|<m and Xx'(y)eM’. (2.8)
Mixing (2.6), (2.7) and (2.8) yields that
#0%a,(s,y)=0 (i=0,...,n—1) when 1=Z|a|<m and Xx'(y)eM,
E&by(s,y)=0 for =0 when 0=Z|a|<m and x'(y)eM. (2.9)
As was seen in Sect. 1, w;(s, y) = ‘eu}(q'(s; y)) satisfies

{(ao(s,y)as+bo(s,y))wj(s,y)=f &y in IxT,

w,(0,7) = 4,(7) on 0, (2.10)

d
where f;= —'e{H(I — P)u}+ Lu}_,}, gj=‘eP‘1(— y (I—P,.)uj—éoj%) when
i=1

d d
Bu=ul,, and g;="'eQ" 1( - .Zl (No)I — Pui— .Zl Nui_ | — b0 1) when

Bu = Nu|,,. Note that ay — I =b, =0 when x'(y)eM (cf. Lemma 1.4 and (2.9));
furthermore, g, =0 when [ # k and x'(y)eM, and f, = 0. Therefore it is seen from
(2.10) that wy(s, y) = d,we(s, ¥) = 0 when x'(y)e M and [ # k. From the definitions of
P(y) (=P(x'(y))), Q(y)(= Q(x'(y)) and Lemma 2.5, we have 05 P(y) = 0;Q(y) = 0 when
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1 Zla| E£m+ 1 and x'(y)eM, which yields that
BP (=00 '(»)=0 when 1=|a|<m+1 and x'(y)eM.
Combining this with (2.6) and Lemma 2.5, we obtain
0590(s,y)=0 when 1=|a|]<m+1 and x'(y)eM. (2.11)

Differentiating Eq. (2.10) (with j =0) in y; and fixing y so that x'(y)eM, by (2.9)
and (2.11) we have 0,,w(s, y) = 0fori=1,...,n — 1 ifl # k. Repeating this procedure
yields that for any f=1,2,...,

#wy(s,y)=0 when I[#k 1<|a|<m+ 1, X' (y)eM.

Therefore we obtain the statement (ii) in Theorem 2.1 for j =0.

In the same way, noting that 9¢3%f; and d%g;=0 for |a|<m+1-2j if
08 o%ul;_, =0 for |a| <m+ 3 —2j and any B, by induction we get (ii) in the theorem
for j = 1. The proof is complete.

Proof of Remark 2.2. Let us prove statement (i). For & #eR" we denote the matrix
by ¢ ®n whose (i, j)-component is {;n;. It is seen that H and P,(¢) are of the forms

H =22 0)] +(u+ N2 ®0, + (1 + 10, ® @2 + Lo?,
P, =(EI7'O® (&7 1Y), (2.12)

where the (i,j)-component of 9, ® ¢2 means @2 ,0x,- The equations of q*(s;y) and
P2(s;y) (= 02(q%(s;y)) (cf. (1.7)) become of the forms

dqz ) dpz
K—Z(/HZu)p , g—O,
a*(0; ) =" ¥(»),  P0;y) = 92y, Y(y))-
From the equalities that ¢2(y, ¥(y)) = —p~ "*Y(y) and |@2]|*> = (A + 2u) ™, it is seen
that

n—1 i
P Y(y) = —u1? ~=Zl (A~ )0, 1,...,0,¥,)

+ {(/1-]- 2#)—1 —ﬂ_nl//yA_ll//y}I/Z(l + l¢x|2)—1/2t(_x¢y, 1), (213)

where A is the matrix in (2.5) and (4~ 'y,), means i-component of the vector 4~ 'y,
Notethat A —1=0,,A=0(=1,...,n—1)when y =0; hence, A "' —1=0, A7 =0
(i=1,...,n—1) when y=0.
Take the coordinates y so that 0,,0, ¥(0) = 6,;02¥(0). Then, (2.13) yields that
@3(0) = (A +2p)~ 11240, 1),
0 {0200} =0 = — (™12 + (A + 21" "*)¢,,,,(0)
50,...,1,...,00 (i=1,...,n—1).
Therefore, in view of (2.12) we have
P,(9(0)) = K,,

0, Py (@I Y=o = — (™2 + (A +21) "), (0K,
(i=1,...,n-1), 2.14)
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0
where K; = 0 1 (i=1,...,n). In the same way we get

0 - 1 - 0
Py(p:(0)=K
0y P2 @: (Y=o = — 20" 2Y,, OK; (i=1,...,n—1).  (215)

Differentiating the equality P(y)P(y) ™" = I(P(y) = P1(0x(3: ¥ () + P2(0:(3, ¥ (»)))),
and using (2.14) and (2.15), we have

0, P 0) = ((A+2u) V2= )y, (OK, (i=1,...,n—1). (216)

Since e(y) = (4 + 2u)*"?0(y, ¥(»)), it follows from (2.13) that e(0) =(0,...,0, 1).
Therefore, noting that vy ="(v0,---,Von-1,0) and P(0)~! =1, from Eq. (2.2) of w,
we obtain wy(s,0) =0 for any s. This yields that

u5(0) =20, ud(0)=0, 2.17)

. ol dg? dg?
since  ulg*(si3)) = eOIwo(sy)  and  O,{ud(aN)} = Y, o+ 1, =

(A+2p)~'ui, (0) for y 0. Furthermore, applying 9,, to u3(y,y(y)) (= P,u3)=
— P,(02(y, ¥ (3))P(») ™ *v, (cf. (1.4)) and using (2.15) and (2.16), we have

0, 43(0) = 24~ 2y (0)00,'(0,...,0,1) (i=1,...,n—1). (2.18)

From (1.5) it follows that (I — P,)u? =(1 — 4,(02))~'(I — P,)Hu3. It is seen
that

0
-1/2 I 0 -1/2 "o : i
(I—P,)H =2u(A+2u) 0 0 O, +(u+)A+2p)~ 2% 10 1
i=1 .
0
I 0 2 .
0., + 0 0 L¢* when x = 0. Therefore, by (2.17) and (2.18), we obtain

(I - Pz)“f(o) = Zﬂ_ 1/2(2' + 2"‘)1/2 t(001 l//yxyl(o)’ RS ] vOn— 1 l/’}’n— 1Vn~— 1(0): 0)
The above equality shows that (I — P,)u?(0) # 0 since at least one of ve¥,,,,(0)
(i=1,...,n—1) does not vanish from the assumptions.

Next, let us consider the statement (ii). In the same way as in the case of (i),
we see that

(I = PyJub(0) = k(4 + 24172 +u-”2)v0n(§ wyiyi(O))'(o,...,o, 1),

which proves that u(0) # 0.
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