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Abstract. We prove that the rescaled upper and lower symbols for arbitrary
generalised quantum spin systems converge in the classical limit. For a large
class of models this enables us to derive the asymptotics of quantum free
energies in the classical and in the thermodynamic limit.

1. Introduction

Several authors have studied the classical limit of quantum partition functions
based on compact Lie groups. Particular cases were studied: first by Lieb [1] for
St/(2), and then by Fuller and Lenard [2] for 0{n\ and Gilmore [3] for SU(n). A
unified treatment for general compact semi-simple Lie groups was given by Simon
[4]. However, Simon's techniques were only successful for quantum systems built
upon fully symmetric group representations and, as far as we are aware, this gap
in the theory has not been filled. The contribution of this paper is to obtain clas-
sical and thermodynamic limits for quantum systems built upon arbitrary
representations of compact semi-simple Lie groups. Furthermore, we are able to
treat arbitrary polynomial Hamiltonians, rather than just the multiaffine
Hamiltonians described in [4]. Our results rest on the proof of general limit
theorems for the upper and lower symbols of polynomial Hamiltonians: we show
that in all cases they coalesce in the classical limit. By a well-known procedure,
this allows the computation of quantum-free energies in the classical limit.
Furthermore, for a general class of mean-field models we are able to calculate the
free-energies in the rather more interesting case of the thermodynamic limit.

In this introduction we will describe our framework and state our main technical
result. We shall then summarize the contents of the paper.

Let G be a compact semi-simple Lie group with Lie algebra g, H a maximal
abelian subgroup of G with Lie sub-algebra h. Recall [5] that there exists a set of
elements {λ{: ieE = {1,2,..., rank(G)}} of h* = {ίh)\ the real dual of ih, such that the
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irreducible representations of G are in one-one correspondence (up to unitary
equivalence) with the elements of a subset β of h* which is the intersection of
some sublattice of the integer lattice generated by the {λi'JeE} with the positive
cone

The correspondence is that pef is the maximal weight for the representation,
which we label Πp. Representations Πp for which p = nλt for some ieE and some
positive integer n are called fully symmetric.

The main tools in the application of our result will be the Berezin-Lieb
inequalities for the upper and lower symbols of an operator [1,4,6]. We first fix
our notation. Let Πp act on the space Vp9 and let πp be its derivative acting on
g. Let e be the unit of G, and denote by A the adjoint representation of G on g.
For xeG.pef, define the projection Pp(x) = Πp(x)Pp(e)Πp{x~ι) in S£{Vp\ where
Pp(e) is the projection onto the vector φp in Vp such that p(X)~ (φp,πp(X)φp}
for all X in g. Let Jp = {xeG:Πp(x)φp = eia{x)φp:a(x)eU} denote the isotropy
subgroup of φp. We will write x ~ y if x and y lie in the same element of G/Hp.
Note that

X /-v yorpyχ) rpyyj. v^ v

We remark at this point that since we will be considering all possible represen-
tations, we will work directly with functions on the group rather than on the
coadjoint orbits: the latter are representation dependent.

Let μ be the normalised Haar measure on G and write μp = dim(Fp)μ. For
each pef the {Pp(x):xeG} are called a family of coherent projections and have
the property that

f P (x)dμ (x) = \e$£{y ). (1.2)
G

Proposition 1. [1,4,6] For each Be^{Vp) there exists a function Bu in L00 (G,μp),
not necessarily unique, called the upper symbol of B, such that

B = U(BU):= J Bu(x)Pp(x)dμp(x). (1.3)
G

Defining the lower symbol BιeU° (G,dμp), of B by

px)B, (1.4)

then for any convex function f:R\-^U and self-adjoint B in

\ dμp{x)f{B\x)) S trace f(B) ̂  j dμp(x)f(Bu(x)). (1.5)
G G

The main technical theorem is concerned with the limits of the upper and lower
symbols as the dimension of the underlying representation becomes large. We
formulate this as follows: let {pL} be a sequence in / with p L

: = ^ Σ r L ^ r
ieE
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Let peD with p — ]Γ rlkh for some subset E(p) of E, and let D(ρ) =
ieE(p)

peD:p = £ ΓMA
ie£(p) J

Definition, W£ say that the sequence {pL} satisfies convergence condition C with
respect to p if

lim L " V L = P (1.6)

L->oo

and

pLeD(p) VL. (1.7)

For arbitrary p = JVλj i n A ^ e & x e G define

βp(x,χ)= ΣniΨ^Πx.^x.Wπ^x-1^^. (1.8)

Note, [7] that when pe^/, QP(X, •) is just the lower symbol of X in the representation

Let g" = g(χ) ••• (χ)g (rc terms) and define nn

p:g
n-^^(Vp) by

= πp(X1) . πp(Λr"). (1.9)

Gilmore proves the following result about the lower symbols:

Theorem 2A. [7] Let X = X1 ®--®Xnegn, and suppose that {ρL} satisfies
convergence condition C with respect to p. Then

limL-"(π«pL(X))i(x)= f\ Qp(Xm,x) (1.10)
L-»oo ιn= 1

ί/ze /imiί existing uniformly in x and norm-bounded subsets ofgn.

Remark. The uniformity, although not stated in [7], is straightforward to obtain.
Our main technical result is the following:

Theorem 2B. Let {pL} satisfy convergence condition C with respect to p. Then

lim L~\πpi{X)nx) = lim L'%π^(X))\x) (1.11)
L~* oo L-* oo

for any X in gn, the limits existing uniformly as in Theorem 2A, and the right-hand
side being obtained by linearity from Theorem 2A.

Theorem 2A for lower symbols is well known. The upper symbols have been
far more problematic. Simon [4] gives explicit formulae for the upper symbol of
an operator B in J£{Vp) under the conditions that (i) B = πp(X) for some Xeg,
and (ii) Πp is fully symmetric (see above).

Our main limit theorem is proved in Sect. 2. We do not obtain explicit formulae
for the upper symbols, but in Proposition 3 and Lemma 5 we prove that they are
bounded and equicontinuous. This turns out to be sufficient. In Proposition 4, we
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formalise an argument often given (like the main result) as an assumption (see e.g.
[8]), namely, that since (ψpL,ΠpL(x)ψpL} behaves like expLf(x) for some f(x)
whose real part takes its maximum value, zero, at e, only the diagonal parts in
the coherent state representation of an operator are important in the classical
limit. In fact we work with the modulus of this matrix element: the complex
oscillations of the matrix element itself make it untreatable as L / oo. This result,
along with the equicontinuity mentioned above, allows us to use a compactness
argument to prove Proposition 2B: the only possible limit point of sequence of
upper symbols is precisely the limit of the lower symbol. In Sect. 3 we apply our
result to obtain classical limits of the free energy for a wide class of Hamiltonians.
In Sect. 4 we combine the result with one from [9] concerning the limiting
distributions of multiplicities in the decomposition of tensor products of
representations into irreducible components. By use of the theory of large
deviations [10,11], we obtain a variational expression for thermodynamic limit
of the free energy for a large class of mean-field models. This result can be seen
as an extension of the work of [12], where a similar result was proved for the
G = SU(2). Finally, we note that simultaneously with our own work, the authors
of [13] have obtained variational expressions for the free energy in the
thermodynamic limit of a general class of mean-field models. It remains to be seen
which scheme is more accessible for computations.

2. Proof of the Limit Theorem

Proposition 3. Let gn = g (g) (x) g (n terms). For allxeG define the map An\gn-*gnby

An{Xι <g> <g>Xn) = A{x)X1 <g> <g> A(x)Xn

and extend by linearity to the whole ofgn. Let BeJ£(Vp) be equal to nn

p(X) for some
XeG\ Then

B\x) = Mn,p{A\χ-ι)X) (2.1)

for some MntPe(gn)*> the dual ofgn. Furthermore,

Mn,p = (AT(x)Mn,p (2.2)

for any x in Jp.

Proof For n = 1, the proof of (2.1) is just Theorem A.2.3 of [4]. For n ^ 2 the
proof turns out to be similar. Fix a basis {Xi'.ieE} in g, and hence a basis
X{i) = Xil®' -(g)Xin in g", where (ί) stands for (iί,...,/„). The action of A(x) in g
is written

A{x)Xi = A{x)jiXj (2.3)

(summation convention assumed) and so

Πp(x)πn

p(X(i))Πp(χ- *) = An(x\jmπp(X(j)l (2.4)

where

in. (2-5)
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By Proposition 1 we know that πn

p(X(i)) has an upper symbol b(i). Since the {X(l)}
form a basis in g" we can use the b(i) to define a linear function fr:g"-»L°°(G,μp)
so that

πn

p(X)=U(b(X)). (2.6)

For any function h on G define (Lyh)(x) = h(y~xx). Then [4],

U(Lyh) = Πp{y)U(h)Πp{y-% (2.7)

and so

U(Lyb(X(i))) = Π^π iX^Π^y-1) = A\y\Mί)πp{XU))). (2.8)

Multiplying by A^y'1)^^, summing over (i) and integrating over G with μ,

b(X(i)) = f rfμ^μ"^- %mLyb(X(j)) (2.9)
G

is also an upper symbol for πn(X(i)). A brief calculation shows that

b(X(i))(y) = (Lyb(i))(e) = A»(y-%Ui)b(Xik))(e). (2.10)

Since {X(i)} are a basis and b(-)(e) defines a linear map from the basis to C, we
can write

b(X(i))(y) = Λn(y-%Ui)MnJX(k)) = Mn^A\y-')X^) (2.11)

for some MM/?e(g")*. Now extend (2.11) by linearity to obtain (2.1). For (2.2), note
that by (1.1) and (1.3),

(πn

p(X{i)))u(x) = J dμ^P^M^Λ^x'^X^)
G

= ί dμp{x)Pp{x)MnJA\yχ-i)X(C)) (2.12)
G

for yeJp, so that we can replace Mnp by

Mn,p= $dfip(x)(AT(x)Mn,P (2.13)
Jp

in (2.11), where μp is the measure on Jp with mass 1 inherited from μ. •

For β = Σ blXi in D, define the quantity
E

^ W = Π < ( / Ά ί ^ Λ ( W ^ i > 6 ι (2-14)

Clearly Fβ+β, = FβFβ,. In fact, [4], it can be shown when p = Yjr
iλief that

E

Fp(x) = (ψp9ΠP(x)ΨP> (2.15)

By (1.1) xsJp if and only if \Fp(x)\ = 1. Since all representations are unitary, this
occurs if and only if |FΛ.(x)| = 1 for all i such that r ι Φ 0, i.e. if and only if xeJλi

for all such i. The point of (1.7) is that if {pL} satisfies the convergence condition
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C with respect to p, then all pL have the same isotropy subgroup. We shall call
this Jp.

Proposition 4. For all p = J V ^ e D and peβ define the measure γp on G by
E

= dμp(x)\Fp(x)\2. (2.16)

Then

(i) yp is a probability measure.
(ii) // {pL} satisfies convergence condition C with respect to p, then for allge%>(G, C)

\im$dyPL(x)g(x) = g(e), (2.17)
L-*co G

where

(2.18)

convergence being uniform on uniformly bounded and equicontinuous subsets of

Proof (i) follows from (1.2) and the fact that the Pp(x) are one dimensional. For
(ii), first note that by (1.1), |Fp(x)| = | F , ( J O | if and only τϊx~y, so

l (2.19)

Let

ΛΓL(ε) = {xeG:21og|FpJx)| ^ - εL}. (2.20)

Let C be a uniformly bounded and equicontinuous subset of ^(G, C). Then for
all g in C,

g(e) - J dγPL(x)g(x) = J dγPL(x)(g(e)-g(x))+ \ dγPL(x)(g(p)-g{x)\ (2.21)
G JVL(«) Nc

L(ε)

and so

sup I g{e) - g(x) \ + 2cμ (G)e"ε L, (2.22)

where c = sup^eC||gf||. Since r^-tr* for all ieE, we can find Lo such that r^^r1/
for all i when L^L0. Define

x)| ^ - ε } . (2.23)

Since log\FPL(x)\ = Σri

Llog\Fλί(x)\ we see that for L^L0, NL(ε)cN(2ε).

Consequently the upper bound of (2.22) is itself bounded by

sup sup \g(e) -g(x)\ + 2 c μ p J G ) ^ ε L (2.24)
#eC xeN(2ε)

By the argument preceding the proposition, if \Fp(x)\ = 1 then xeJp. Since the 77λ.
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are continuous and unitary, \Fp(x)\ is continuous and bounded above by l : log |F p |
is upper semicontinuous. Hence N(ε) is a neighbourhood of Jp for ε sufficiently
small and f] N(ε) = Jp. By Ascoli's theorem C is compact so that first supremum

in (2.24) is \gε(xε) - g(e)\ for some gεeC and xε such that the limit points of xε as

ε -» 0 + lie in Jp. Note furthermore that g(x) = g(e) iϊxeJp. For the second supremum

just note that μPL(G) is just (dim Vpi) which is bounded (see e.g. [9, Lemma 2.2])

by a polynomial in L. The result follows by a standard argument. •

Lemma 5. Let {ρL} satisfy convergence condition C with respect to p. For any fixed
n, the sequence {LΓnMn>pi} is bounded in norm in (gπ)* as L-+co.

Proof. Suppose the opposite is true. We can find a sequence {XL} in gw with
= 1 such that

From (1.4)

MntPL(XL)=\\MntPJ.

\ = Λttaceπ"(XL)PpJe)

(2.26)

(2.27)

where 01 denotes the real part, the last equality following because yPL is a real
measure. Now,

ML~- \ S \Mn^(XL - A»(χ-ι)XL)\,

ί dμp{y)A»(y){XL -

which by (2.2)

where

By (2.6)

and by the hypothesis that the norm diverges, then for any positive K

^ K J dγPL(x)(ί - fL(x))
G

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

for L sufficiently large. Note that /L(X) = 0 when xeJp, and that since \\XL\\ is
bounded in L, {fL} is a sequence of uniformly bounded and equicontinuous
functions on G. Taking the limit as L-» <x> along a suitable subsequence we find
from Proposition 4 that the limit of the right-hand side of (2.32) is simply K. But
K is arbitrary, which contradicts Theorem 2A. •
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Proof of Theorem 2B. Fix X{ϊ) in g". Combining (1.3) and (1.4) and (2.15),

L-n(πn

pL(X{i)))ι(x) = L~n J dyPL(y)(πpL(X{i)mxy). (2.33)
G

Note that by (1.1) (respectively (2.2)), the lower (respectively upper) symbols are
equal to their μ-averages. (Remark: This is just saying that the symbols can be
defined as functions on the coadjoint orbit Γp = {^4*(x)p:xeG}, which is
isomorphic with G/Jp.) Since, by the previous lemma, the norm of L~nMnβL is
uniformly bounded in L, the sequence of upper symbols is uniformly bounded and
equicontinuous on G for all (ί) and L. Thus some subsequence converges uniformly
to some limit. By application of Proposition 4 to (2.33) and the note above, this
limit is simply the limit of the lower symbol. The above argument holds for any
convergent subsequence so the theorem is proved. In terms of the M π p j L we have that

lim L~nMnpL = p(χ) ® p. •

3. The Classical Limit for Free Energies

For our first application, we combine Theorem 2 with the Berezin-Lieb inequalities
of Proposition 1 to obtain classical limits of quantum free energies. This procedure
is, of course, well understood from other cases where the upper and lower symbols
coalesce (see for example [1,4,7]).

Fix a maximum weight vector p and let pL = Lp. Trivially, the sequence {pL}
satisfies the convergence condition C with respect to p. By the note in the proof
of Theorem 2B, we can write the upper and lower symbols as functions on the
coadjoint orbit Γp. Correspondingly we define the measure vp on Γp by

vp(Q <= Γp) = μp({xeG:A*(x)peQ}). (3.1)

Let A be a finite set. Attach a copy gα of g to each α in A and for Xa in gα define

πp(Xa) = np(Xa) (x) 1 Λ^a. (3.2)

In a Hamiltonian which is polynomial in these operators, the classical limit consists
of rescaling the Lie algebras as the dimension of the underlying representation
increases, i.e. replacing (3.2) by πPL(LΓ1Xa) and taking the limit as L->oo. We
obtain the class of models with polynomial local interactions. Define the
Hamiltonian

where for each aeA,Ar

a is a subset of A x ••• x A (r — 1 terms) with the property
that \Ar

Λ\ is a constant for all α if |Λ| is greater than some Λo. We can define both
upper and lower symbols on {Γp)

xΛ with respect to the measure dvΛ{ω) =

Y[ dvp(ωa). By Theorem 2 we see
αeΛ

\(HLJ(ω) - (HL

Λ)
u(ω)\ ^ μ|p»(εL)(ω), (3.4)
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where {εL} is some sequence of positive numbers with lim εL = 0 and pnχL(ω)
L-*oo

is some polynomial of order n whose coefficients are functions on Γ* Λ which are
uniformly bounded in L. Define free-energies

l ( ( d i V)~IAI t r a c e e χ p -

and

\ l o g ί ds> Λ{^exp ~
\

fϊW Ί^T\
 l o g ί

β\Λ\ G\Λ\

where vΛ is v Λ normalised to mass 1, and # stands for u or /, denoting upper or
lower symbol. Combing (3.4) with the Berezin-Lieb inequalities

ftm ^ Km ̂  rt'u{β) ̂  ft\β)+h (3.7)
with lim δL = 0. Let

L->oo

fΛ(β) = - - 1 - log J dμ Λexp - βH \ω\ (3.8)
β\Λ\ Gl"l

where HΛis the polynomial in ω obtained by replacing in ί/^each πpJLΓ1X^ s))
by πp(Ar<---s>)'(ωα). By Theorem 2A,

1/^/0-/Λ(«l^i. (3-9)
for some sequence {δ'L} coverging to zero. Thus

lim#(/?) = /Λ(/0. (3.10)
L-*oo

Note that since δL and b'L are independent of Λ, if the existence of a limit of for
fΛ(β) as |Λ|->oo implies that the limits |yl| —• oo and L-»oo are interchangable
for the quantum free energy f£.

4. The Thermodynamic Limit for Mean Field Generalised Spin Systems

As a second application of Theorem 2, we obtain a variational expression for the
free energy in the thermodynamic limit for mean-field generalised spin systems.
We rely heavily on the theory of large deviations [10,11] and in a particular
employ a result proved in [9] about the limiting distribution of multiplicities
occurring in the decomposition of tensor product representations into their
irreducible components.

We consider the following class of models: fix a maximal weight λ and let H^
be a self-adjoint operator on {VpL)®N of the form

Σ (4 i)
r = l s = l α = l

with X ( r ' s ) identical for fixed (r, s) and equal to X(r's). Define h'.DxG^Uby letting
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h(p,x) be the number obtained by dividing H^ by N and replacing πλ{X{*'s)/N) by
Qp(X{r's\ x). This function turns out to be the limiting classical form for the
Hamiltonian density.

Let j be the natural bijection from ΐh its dual h* furnished by the Killing form
on h. (See e.g. [5].) Define /A:h*-•[(), oo]:

l\p)= sup L^-λogί'^P)} (4.2)

with dλ = dim (Vλ). Then:

Theorem 6. Define the free energy fN(β) = — (1/ΛΓ) log trace exp( — βH^),

lim/„(/?) = /(/?):= inf {h(p,x)-7\p)}, (4.3)
N-*co peh*,xeG

where Ίλ = log dλ — Iλ.

Remarks. (1) The effective domain of Iλ is [9] S) = Dn{λ — D}, where D is the
positive cone generated by the dual basis of the {λi'.ieE}. Consequently the
p-supremum can be restricted to Θ. (2) h(p,-) is constant within each element of
G/J, where J = f] Jλi. Thus h(ρ, •) can be written as a function on the coset space

ieE

( = coadjoint orbit).
For the proof of the theorem we will need the technology of the theory of large

deviations.

Definition. Let {Kn:n = 1,2,...} be a sequence of probability measures on the Borel
subsets of a complete separable metric space E and {Vn} a divergent sequence of
positive numbers. We say that {Kn} satisfies a Large Deviation Principle with
constants {Vn} and rate function I:E-+ [0, oo] if the following conditions hold:

(LD1) / is lower semicontinuous.
(LD2) For each m < oo, {x:I(x) ^ m} is compact.
(LD3) For each closed subset C of E

lim sup —log Kn(C) S - inf J(x).
n->oo Vn xeC

(LD4) For each open subset G of E

liminf—log(Kn(G)^ - inf J(x).

Varadhan's Theorem (1). Suppose that the sequence of probability measures {Kn}
on E satisfies a large deviation principle with constants {Vn} and rate function I. Let
{hn} be a sequence of functions hn:E^>M which are uniformly bounded above, with
the property that if xn-+x in E then lim sup hn(xn) ^ h(x) for some function h on
E. Then

lim sup — log J exp(7A(x))Kn(dx) ^ sup {h(x) - I(x)}.
H->OO Vn E E
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Varadhan's Theorem (2). In the above theorem, suppose that in addition the hn are
continuous and converge to h:E-+M uniformly on bounded sets. Then

lim —log j exp (Vnhn(x))Kn(dx) = sup [h(x) - /(*)}.
n->oo Vn E E

Proof of Theorem 6. Since H^ depends only on the total generalised spin operators:

α = l

we can decompose it in terms of the irreducible representations occurring in the

decomposition of the tensor product ΠN

λ=Πλ® ®Πλ (N terms). Thus

bλ(N,p) _

® / (4.4)

where Dλ

Naβ is the set of maximal weight vectors for the irreducible
representations occurring in the decomposition, b\N, p) is the multiplicity of Πp

in the decomposition, and H%k is a copy of HP

Ή, the operator obtained by replacing
Σπλ(X£'s)/jV) with πp{XM/N) in (4.1). Consequently

trace e~βH» = £ b\N9 p) trace e~βSk (4.5)

We can bound each term in the sum (4.5) by using the Berezin-Lieb inequalities
(1.5), and so

dp J dμ(x)e-m»)l{x) S trace e~m» ^ dp j dμ(x)e~β{n»ΐ{x). (4.6)
G G

We now rewrite the sum (4.5). Firstly define the measures {P^:iV =1,2,...} by

P N M = 7 ^ Σ bλ{N9p)d' (4.7)

for A a Borel subset of D. Secondly, define hι

N:D x G-^U by

h'N(p,x) = ~(HN

N')\x) (4.8)

if NpeDχ, and by interpolation elsewhere. Lastly, given peD, let pN to be any
element p'ofD^nD(p) which minimises \\Np — p'|l, and define hu

N:D x G->[Rby

hu

N(p,x) = ̂ (H^r(xy (4.9)

Then

(dλ)N j dPλ

N(p) J dμ(x)e'βh^x) ^ trace e'βH«
D G

S (dλ)N J dPλ

N(p) J dμ(x)g-^> x ). (4.10)
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The point of making this rearrangement is given by the following

Proposition 7. The family of measures {P^:N = 1,2,...} satisfies a large deviation
principle with constants {N} and rate function Iλ.

Proof. Define the family of measures {l£: N = 1,2,...} by

κ=bW) , Σ m " λ ( 4 1 1 )

Ό \P*) peDλ

N:p/NeA

where
b\N)= Σ bλ(N,p). (4.12)

peDλ

N

Then [9, Theorem 2.1], the sequence {11_̂ :JV= 1,2,...} satisfies a large deviation
principle with constants {N} and rate function Iλ. For any Borel subset A of D
we have that

^ ^ ^ (4-13)

By [9, Lemma 2.2], both (dλ)N/bλ(N) and dNλ are bounded below by 1 and above
by a polynomial in JV, and so (LD3) and (LD4) are satisfied by {P^} with constants
{N} and rate function Iλ. (LD1) and (LD2) carry over trivially, so the proposition
is proved. •

Remark. Roughly speaking, Proposition 7 says that ί/IP^(p)~exp(— NIλ(p))dρ.
7λ can be viewed as a specific entropy density for the limiting distribution of
multiplicities, and so (4.3) just expresses energy-entropy balance.

The constant sequence of measures {μ} onG trivially satisfies a large deviation
principle on G with constants {iV} and rate function zero. Using the theorem in
[12] for product measures, we see that the sequence {P* ®μ} also satisfies a large
deviation principle on D x G with constants {N} and rate function Iλ. By
Theorem 2A, hι

N converges uniformly on D x G to h. Given a sequence {{ρN,xN)}
in D x G converging to (p,x), then clearly the sequence {(NpN)N}N>No satisfies the
convergence condition C with respect to p for some No, and so by Theorem 2B,
hu

N(pN9xN) converges to h(ρ,x). Using the first (respectively second) version of
Varadhan's Theorem to treat the upper (respectively lower) symbols in (4.10):

f(β) ^ limsup/^/0 ^ l iminf/^) ^ f(β), (4.14)
JV->oo N-»oo

and so the theorem is proved. •

Remark. By comparison with [14], it can be seen that this result can be generalised
in two directions. Firstly, the strict mean-field nature of the Hamiltonian can be
relaxed to include heterogeneous interactions (but still with the mean-field scaling).
Secondly, by calculating the gradients of the free-energy, variational expressions
can be obtained for the thermodynamic limit of the expectation values of intensive
observables.
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