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Classification of Lattices with Zm Symmetry
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Abstract. We consider the n-dimensional Euclidean lattices with Zm symmetries.
It is shown that such lattices can be considered as ideals of some cyclotomic
fields. Therefore we can translate problems about the above lattices into those
about number theory. For all n (n ̂  22), we have obtained the classification of
such lattices.

1. Introduction

In recent years superstring theory has been actively investigated. Since superstring
theory has the critical dimension 10, we must consider compactifϊcation problems.
Recently, many compactification schemes have been studied intensively [1-4].
Especially, since orbifold models [1] are phenomenologically interesting and easy
to handle, many orbifold models have been constructed [5-7]. Therefore, not only
phenomenological considerations, but also systematic classifications of orbifold
models are needed [7].

An orbifold is a torus divided by its automorphisms, and the torus is an
Euclidean space divided by some lattice. Therefore, in order to classify orbifold
models, we have to classify lattices, at first. So in this paper, we consider lattices
which have Zm symmetries.

This paper is organized as follows. In Sect. 2, we clarify the problem by
considering it form the viewpoint of eigenvalues of automorphism transformations.
In Sect. 3, we study cases in which lattices have special symmetries. We show that
in these cases, lattices can be considered as ideals of some cyclotomic field.
Furthermore, we classify such special lattices. In Sect. 4, we classify general lattices
by making use of the results which are obtained in Sect. 2 and 3. Section 5 is
devoted to a conclusion.

Throughout this paper, we assume some knowledge of number theory.
About number theory, we refer to [8-11]. Especially about cyclotomic fields,
we refer to [11].
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2. Consideration from Eigenvalues of Transformation

Let us denote the lattice as Γ and the transformation as X. Here XzO(ri) and
Xm = 1. Since the order of X is w, all its eigenvalues are mth roots of 1. Therefore
there exist some orthonormal basis u l n with which X has a form

(2.1)

where for all j, Jfy is some element of 0(dj) (dj is some natural number and they

satisfy that £ dj = ή) and all its eigenvalues are primitive m/h roots of 1 (m7 is
j=ι

some divisor of m). Note that if i Φ 7, then m{ φ rrij.
From now on, elements (or blocks) of a matrix which are not explicitly written

should be understood to be zero (or zero matrix).
We show in what follows that Γ is embedded in an orthogonal sum of some

special lattices.
Let some basis of Γ be {λj} t ̂ ^ „, and let us denote the matrix whose jth column

vector is λj(l ^j^ri) as A. Then, A~lXAeGL(n,Z\
Generally, minimal polynomials of the primitive /th root of 1 are called the

cyclotomic polynomials, and are denoted by Φ/(x). It is known from number theory
that they have the following characters:

1. Degree of Φt(x) is φ(l). (φ(x) is the Euler's function.)
2. Φ,(x)6Z[x], i.e., all coefficients of Φt(x) are integers.
3. Coefficient of xφ(l} is 1.
4. Φj(x) = 0, if and only if x is a primitive ίth root of 1.
5. Φ/(x) has no multiple roots.

Suppose we pick up arbitrary j(l ^ j ^ k). Then, we have

o

Since iφ j^m^ nij, for all i (i φ j), det Φmj.(AΓ, ) ̂  0. Therefore, dim Uj = n — dj,
where L/j = {xeR"\lyeR",x = Φmj(AΓ)j;}. Clearly Uj is a subspace of R", which is
spanned by {M;} ;-ι and {«,-} ; . Since Φm.(x)eZ[x], and yl

i S i S Id , Σ (ί,<ign J

GL(n, Z), we get <-' '=ι

/I-! Φmj(X)/l = Φmj(Λ-1XΛ)€Mn(Z).

(Here MΠ(Z) implies n x n-dimensional integral matrices.)
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Therefore, Γ n Uj is an (n — d^-dimensional sublattice of Γ. Let some basis of
this sublattice be {yji ^π_dj., and filling these, let another basis of Γ be {yi}l ̂ n.

Now let the subspace of Rn which is spanned by {wjj-i , be Vj. Then
Σ <*i<i£ Σ <*ι

1=1 1=1
Rn = Ujλ Vj("A.n means "orthogonal sum"). And let projections of arbitrary vectors
x on Vj be x(j}. Then we get the following:

(Here Γω = {x<J>|xeΓ}, and [yψ, . . . , )#>] implies a lattice spanned by {yp^ ̂ n.)
Notice dj- vectors {y^}n-dj+ι^i^n

 are linearly independent.
Therefore ΓU) is a ί/j-dimensional lattice contained in Vj. Clearly, Γ0) is

invariant under the operation of X, and within the subspace VJ9 the operation of
X is equivalent to that of Xj. Therefore Γ(j} is a dj-dimensional ^-invariant lattice
which is contained in Vj.

In the above consideration, j is arbitrary, and by definition of Vj9R
n =

Vί _L ••• 1 Vk. Therefore we get the following result.
"Choose proper dj-dimensional Jf^-invariant lattices Γj for 1 ̂  j ^ fc, and let

the orthogonal sum of Γ/l ^ j ^ k) be Γ'. Then Γ is embedded in ΓV

3. Lattices with Special Symmetry

Next, let us consider ΓJ9 which is a d7-dimensional X-invariant lattice. Here
XjeO(dj), and its eigenvalues are primitive m/h roots of 1 only.

Here dj must be a multiple of φ(m). This statement can be proven as follows.
Let us denote some basis of Γj as {λi}^^^^ and the matrix whose ith column
vector is λ{(l ^ i ̂  dj) as /I,.. Then AJ 1 X^eGUd^ Z). Therefore fj(x)eZ[x\. Here
/7 (x) is the characteristic polynomial of Xj. And solutions of fj(x) = 0 are primitive
m/h roots of 1 only. Hence there exists some natural number njy which satisfies
//W = {Φmj(χ)}nj' Therefore dj must satisfy dj = φ(mj) Πj.

From now on we denote JΓy, X^, dj, m; , HJ as F, X, rf, m, n in this section.

3.1 The Minimal Lattice. First, let us consider special cases, n = 1. Let us denote
exp(2πi/m) as £OT, and mth cyclotomic field as β(Cm). In these cases, we show in this
subsection that there is a correspondence between Γ"s and ideals of β(ζw).

If m = 1 or, 2, then φ(m) = 1. Therefore these cases are trivial. Suppose m ̂  3.
First, we transform jΓ to a form easy to handle. With proper orthonormal basis,

X has a form ,

x =

Here for all 7,

(For all l,eίθl is a primitive mth root of 1, and let eίθί be £m.)
Let some basis of Γ be {^-J^j^^^ with λj = (λlj,...,λφ(m}j)

τ ("T" means
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"transposed"). Then there exists some A (AeGL(φ(m),Z)) which satisfies

Multiplying

from the left, we get

,-def 1

1 i

1 -i

A.

Λφ(m)φ(m)J

Ω=ΩA.

>(m)/2/

Here

for all

ί λ

Λ } 0 ^, a n d Ω = Ξ
11

VS>(m)l

This means that all row vectors of Ω are eigenvectors of A
Since all eigenvalues of A are primitive mth roots of 1, they are all contained

in β(Cm). Therefore we can choose vectors-on-β(ζw) as eigenvectors of A, and all
eigenspaces of A are 1-dimensional spaces (since Φm(x) has no multiple roots). Hence
we can write Ω as follows.

Lφ(m)/2

Cφ(m)/2j

Ω\ where
Ω'eGL(φ(m),Q(ζm))

CjeC-{0} (for all 7)'

Notice that for all j, the (2j — l)th and the (2 j)th row vectors of Ω' are mutually
complex conjugate.

Let the first row vector of Ω' be (α ls . . . , αφ(m)). Then this satisfies

Transforming both sides of this equation by some element of G(Q(ζm)/Q) (group
of automorphisms of β(Cm), which fix Q pointwise) that transforms ζm to



Classification of Lattices with Zm Symmetry 29

eίθj(l ^ j ^ φ(w)/2), we get

^(j»ι, ..,j8φ(m)) = (/ί1,...,/ϊφ(w)μ
(where for all /, βl is the image of «j by this transformation).

Since all eigenspaces of A are 1 -dimensional spaces, this equation implies

(βi,..., /W <* ίthe (2; - Wh row vector of fl/}

Therefore, by choosing the above cz(l rg / ̂  φ(m)/2) properly, we can assume

(βi, - - A(m>) = {the (2j - l)th row vector of Ω'}.

Hence Ω' is totally determined by its first row vector.
With this Ω', we consider the correspondence between lattices and ideals of

β(U
Now let us consider («!,..., αφ(m)). We define next two sets:

(φ(m)
αH Σ

It is known from number theory that om is the principal order of Q(ζm), and clearly
α is a submodule of β(ίm)

By definition of (α l5 . . . , αφ(m)) for arbitrary 7 (j ^ 0), the next relation is satisfied,

This means

(CJX-eα (j^0,l^i^φ(m)).

Therefore α is an ow-submodule of β(ζm). And it is known from number theory
that for each αf (1 ̂  i ̂  </>(w)), there exists some natural number l{ which satisfies

<p(m)

ίίαίeom. Therefore JVα c om, where JV = f] ί f.
i = l

To summarize

1. α is an om-submodule of Q(ζm).
2. There exists some natural number N which satisfies Na c om.

Hence α is some (fractional) ideal of Q(ζm\ and {αj^^^^ are its integral basis.
Conversely, if some ideal of Q(ζm\ say αr, is given, we can get a φ(m)-dimensional

Jf-invariant lattice by tracing the above process backward. Therefore we have a
correspondence between lattices and ideals of Q(ζm).

Next, we consider how many kinds of lattices exist.
First, we define some equivalence classes of lattices, then we show that number

of those equivalence classes is given by the class number of β((m).
We say "two lattices are equivalent," if and only if (considering with proper

basis) they have same transformation matrix A. Clearly this defines equivalence
classes. Let us consider how many these equivalence classes exist.
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In the process of obtaining lattices from ideals of β(Cm), we have to choose
some integral basis of α', say {αί}^^^^. Suppose we choose another integral
basis, say {^ϊ}1^i^φ(m) Let the lattices which we get from these bases be Γ' and
Γ" for each. Since both {oc'i}1 ^^φ(m) and {α"}x ̂ φ(w) are integral bases of α', there
exists some B(BeGL(φ(m\Z)) which satisfies

Remembering the above correspondence between lattices and ideals, this relation
implies that Γ' and Γ" are equivalent. Therefore, all lattices which are got from
one ideal, belong to one equivalence class. Let us denote the equivalence class
which we get from an ideal α as Γ(a).

Here it can be shown as follows that "/"(α) = 7~χb)ob/α is a principal ideal."
Suppose for some two ideals α and b that jΓ(α) = Γ(b) is satisfied. This means

these two lattices have some transformation matrix A. Therefore, remembering
that all eigenspaces of A are 1 -dimensional spaces, we get the following. Let some
integral basis of α be {αjι^i^φ(m) and some integral basis of b be {/?i}ι^i^φ(m)
Then there exists some ξeQ(ζm) which satisfies

(βl 9 - - , βφ(m)) = £(«l , - - - , Uφ(m)}'

This means b = (ξ)ά, where (ξ) is the principal ideal generated by ξ.
Conversely, suppose for two ideals α and b that b = (ξ)a is satisfied ((ξ) is the

principal ideal generated by ξ). This means the following. Let some integral basis
of α be {α, }i£i£φ(m). Then, we can take {ξαji^ ^m) as an integral basis of b. This
implies Γ(a) and .Γ(b) have some transformation matrix. Therefore Γ(a) = Γ(b)
is satisfied.

Hence there is one-to-one correspondence between equivalence classes of lattices
and ideal classes of Q(ζm). Therefore the number of equivalence classes of lattices
is given by the class number of β(ζm), which we denote as hm. It is known from
number theory that for all m, hm is finite.

3.2. General Lattices. Next let us consider general cases, n ̂  2. In these cases, we
show in this subsection that Γ is embedded in a direct sum of minimal lattices,
which we considered in Sect. 3.1.

Let some basis of Γ be {T/K^j^d Take an arbitrary non-zero vector of Γ, say
γ. For all j (j^O), it is satisfied that XjyeΓ. Here it can be shown that

ϊjίφ(m)-ί are linearly independent.
Remembering that Φm(X) = 0, and that Φm(x)eZ[x], there exist some integers

}osi*φ(»)-ι which satisfy
φ(m)-l

xφ(m)y= Σ "i

Therefore the φ(m)-dimensional subspace spanned by {^J/y}o^j^(m)-ι is an
def

X-invariant subspace. Let us call this subspace V\. Then Γ\=ΓrιV\ is a
φ(m)-dimensional Jf-invariant sublattice of Γ. Let some basis ofΓ^ be {y'ij}ι^j^φ(my

Next, we take an arbitrary vector γ' which satisfies γ'eΓ, y'φV'ί9 and with /,
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make V'2 and Γ'2 as we did above, and let some basis of Γ'2 be {/2j}ι ^j^φ(my Again
it can be shown that 2φ(m)-vectors {/ij,/2./}i^./^<p(m) are linearly independent.

Next, we take an arbitrary vector γ" which satisfies γ'ΈΓ, y"^Fi®F'2

("φ" means "direct sum"), and make V3 and Γ3 as we did above. We repeat this
process again and again.

Finally, we get {/"}}ι^7 ̂ n. For all j,Γj is a φ(w)-dimensional ^-invariant
sublattice contained in V'J9 and Γ \ φ © Γ'n is a d-dimensional Jf -invariant
sublattice of Γ. Let some basis of Γ'j be V i i m f°r 1 ̂ 7^ w Then some
matrix M (MeMd(Z), detM ^0) exists, which satisfies

(7 1 1 > - , y\φ(m)\ . . . rήi , . . . , 7^(m)) = (? i , . . . ,

Thus we obtain the following.

(yι, »yd) = (/ίι» »/ί *<«>;• ̂
where

Since detM M^eM^Z), this means that Γ is a d-dimensional sublattice of
Γ' Θ ΘΓ;'. Here for all 7, ΓJ = Γ}/det M , which is a (p(m)-dimensional X-
invariant lattice, and Γ' c K}.

Now let us transform Γ, X and A to forms easy to handle. We define sublattices
g j g n ) as follows:

Especially Γ(1) = Γ;,Γ(M) = Γ, and they satisfy Γ(1) c Γ(2) c - c Γ(n). For all j,
since Vj is an X-invariant subspace of Rd, ΓU} is a y φ(m)-dimensional, Jί-invariant
sublattice of Γ.

Let some basis of Γ(1) be {yj}ι^j^φ(m) ^y completing these, let some basis of
Γ(2) be {f}^^2φ(m^ and so on.

Finally, we get {γj}1 ^j^n.φ(m}=d as a basis of Γ(n) = Γ.
Let us denote the matrix whose jth column vector is 7J (1 ̂  j ̂  d) also as Γ.

Then, there exists some A (AeGL(d,Z)) which satisfies XΓ = Γ A. Since for all y,
are bases of an Jf -invariant sublattice Γ(j\A is a matrix of form

(where for all i, j, ̂ Iί7 is a φ(m) x φ(m)-matrix).
Now, let us take {yij}ι^i^n,ι^j^φ(m) as a basis of Kd. Since Γ is a sublattice of

;'), with this basis, ΓeMd(Z), and by definition of {y 'K^^Γ is a
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matrix of form

A

Γ =

12

Γ22

M. Ono

A*
A,

\

(where for all i, j, rtj is a φ(m) x φ(m)-matrix).
Since Γ] (1 ̂  j ^ ft) are Jf-invariant lattices, Jf is a matrix of form

" r \

L 2 2

Λnn/

(where for all j, J^ is a <p(w) x φ(w)-matrix).
Next let us consider if we can eliminate off diagonal blocks of A, i.e., if Γ is a

direct sum of Γ' (1 g 7 ̂  ft). For general cases, we cannot answer this question.
But for special cases, hm = 1, we show in the following that the answer for this
question is yes. (Notice that for all n which satisfies <p(ft)^22, it is satisfied
that hn= 1, except for w = 23,46. For these values of ft, φ(23) = φ(46) = 22, and

In these cases, since all ideals of β(Cm) are principal ideals, say (ξ), we can take
}o^j^<p(m)-ι as an integral basis of it. Therefore we can take some basis of

Γ with which

Here

Y =

'0

1

V

0 -<

1 -δ.φ(m) - i

where δj (0 g j ^ φ(m) — 1) are defined by

(m)-

Σ
From the relation XT" = JΆ, we get

— 1 r12y.
(3.1)

(3.2)

Now let us change the basis of this φ(m)-dimensional space so that with this basis,
the first row vector of ΓX1 is (l^^ίfj2,...,^)^1""1^1) and others of Γ^ are
obtained from this by G(β(Cm)/β)-transformations. Let us also denote the matrix
which represents this transformation as B. This B satisfies
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έ?"

B-^ΎB = \

Then from (3.2), we get

Let the first row vector of B~ 1Γ12 be (α l f . . ., aφ(m)). Then we get

Uai,...,a*M)) = ̂ ^ (3.3)

Notice that the following relation is satisfied:

Uai,«iC,,,...,M^ (3.4)

Therefore, if we write

then from (3.3) and (3.4), we get

UO, j»2,..., /U)) = (!> £m> > (f m)*m)~ *M12 + (0, β29...9 βφ(m}) Y. (3.5)

By using the explicit form of Y9 this relation is written as

/ ^-l \

CO Γ β^ ί R Λ = (£< f , ^\ 4-1 /?. /? , , — V ^./? , ,V^J ^>mtJ2^ ' 9 τntrφ(rή)) vS 1? ? S<ρ(m)/ "̂  1 r2">' ' » rφ(m) / j ^ιPι+1 I?
V >•=! /

with (^^...^^^(UCm,...,^)^^""1)^!!- Notice <^eom (l^j^φ(m)), since

Then by comparing the first component of both-hand sides, we get j32

e°m> then
by comparing the second component of both-hand sides, we get β3€Qm, and so on.

Finally, we get /?7 eom (| ̂  j ^ φ(m)). Therefore there exists some integral matrix
Z12 which satisfies

(0, β2, . . . , βφ(m)) = (1, Cm> . - . , (CmΓ(m)" 1}Z12. (3.6)

Now let us define a matrix F as follows. The row first vector of B' is
(0, β2,. , βφ(m))> an^ others of B' are got from this by G(β((J/β)-transformations.
Then from (3.6), we get

F = (β-1Γ11)Z12, (3.7)
and from (3.5), we have

Then, using (3.7), we get

j?-1r
Finally, using (3.1), we obtain

yz12 = A1 2 + z12y (3.8)
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Now, let us change the basis of Γ by the following GL(d, Z) transformation

(I-Z

c =

12

\
Then, A is transformed to

(Y A12 + Z12Y-YZ

Y

12 (Ύ 0

Y

(At the last step we used (3.8).) Therefore we can eliminate A12.
Now, this form of A means that Γ(2} is a direct sum of two φ(w)-dimensional

Jf-invariant lattices. Therefore we lose no generality if we suppose {yj}φ(m)<j^2φ(m)
are contained in Γ29 i,e., Γ12 = 0. Then the relation XΓ = ΓA becomes as follows:

0 A,* -/ \
7

V Ύ)

Λl 0 Γ13 : \

Γ22 Γ23 ...

Γ33 -

V '•. /

/Γn 0 Γ13 -\

Γ22 Γ23 ...

^33 -

v '•• /' J \
From this relation, we get

Therefore, repeating the same process as we did above, we can eliminate Aί39 A2^

^13? 7"23

Repeating this process again and again, finally we obtain the following form of
A and Γ:

(Y

A =

\ \

Γ.,

Therefore we can eliminate off diagonal blocks of A9 i.e., Γ is a direct sum of
n-sublattices, each of which is a φ(m)-dimensional, X-invariant lattices.

4. General Lattices

Let us consider again the result of Sect. 2. In this section we suppose that hmj = 1
for all j.

First, let us transform JΓ, X and A to forms easy to handle. Let some basis of
Γ' be { / J i a , and take these vectors as the basis of Rn. Then X has a form of
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(2.1), where for all j, XjGGL(dp Z), and all elements of vectors which are contained
in Γ are integers. Let some basis of Γ be {λ(ί}}1^i^Λ9 which satisfies that for all j,

{λ(i)} j are a basis of Γn(V1 © ••• φ K7 ), and let us denote the matrix whose
l^ ig £ dj

i=l

iih column vector is /(0(1 ̂ i^ri) also as 7". Then there exists some integral matrix
A which satisfies XΓ = ΓA. Here

Γ =

A2

Γ22 Γ2k

Γkk)

A22

AkkJ

where for all i, 7, Γ^ and Atj are df x dj-matrices. (These Γ^ 's and ̂ /s have nothing
to do with those Sect. 3.2.)

From this relation, we get

XjΓjj=ΓjjAjj ( l£ j£fc) .

This means that Γ}j is a lattice like Γj in Sect. 3.2. Therefore we can assume that
for all j

Y.—. AΛ J — Sljj —

\ /
,JJ /

where YJ is defined as Y was done in Sect. 3.2, and let us define for all z, j,
/ -Γ-,/1 1 \ T-, ί 1 „ _Λ \ /

/-(ml
v U

where for all i, 7, fc, /, Γίj0 and XjJ0 are (jt?(wiί) x <p(m/)-matrices.

4.1. Is Γ a Direct Sum of Small Lattices'! Let us consider if we can eliminate off
diagonal blocks of A, i.e., if Γ is a direct sum of -Γ//s. As we will see below, it is
easier to consider if we can eliminate off diagonal blocks of 7". Actually, it is not
always possible to eliminate them. Let us consider this problem.

From the relation XΓ = ΓA, we get

And the ίth row (1 g i ̂  ̂ (7 )̂) and the jth column (1 rg j ^ φ(m2)) of this equation
mean

Let us change basis of this φ(m ̂ -dimensional space so that with this basis, the
first row vector of Γ($ is (l,ζmί,...,(ζmι)

φ(mι}~1), and others of Γ(^ are obtained
from this by G(β(Cmι)/β)-transformations. Let us denote the matrix which represent
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this transformation as B(ι\ This B(^ satisfies

then from (4.1), we have

. (4.2)
Let us denote the th row vector of B^'1^1^ as (α^, . . . , α$mι)). Then from (4.2),
we get for all j,

eίβ^f, . . . , a«mi)) = (1, 9j(ζmί), ..., gj((ζmrmι}- '

(4-3)

where g}eG(Q(ζmι)/Ql which satisfies gjζmι) = e?β>.
Therefore

"' -

(Notice by the supposition m^ φ m2, for all j, det (eίθ} - Y2) = Φm2(eίθj) φ 0.)
Therefore all we have to do is to consider if we can eliminate the first row vector

of Έ^~ 1^Γ(

1

1

2

1). If we can eliminate A129 (4.4) means Γ12 = 0. Therefore, if we cannot
eliminate Γ12>

 we cannot eliminate A12 either.
Let us consider the first row vector of B(^~1Γ(^\ This is given as

y(l) (1) \ _
—

\<p(mι)-l\ βi y \
~ * 2)

and

Therefore two cases can occur.

1. Φm2(Cmι)e<C (o^ is the unit group of omι.)
In this case, (eίθl - Y2)eGL(φ(mi)9 omι). Therefore all elements oίA(^\elθί ~Y2Γ

l

are contained in owι. Hence for allj,αj.1)6θmι. Therefore some integral matrix Z(/2

υ

exists, which satisfies

. ThereforeThΪQ mpariQ R(l)-l Γ (ll) — R(l)-l Γ U)7(ll) i p l-(il)_i iiio iiivctiio j j ι 12 — 1 11 12 ' i ^/ j -» -^2 — -

changing the basis of Γ by the following GL(n, Z)-transformation,

\

0

/ 0

I
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we can eliminate Γ(^2\ Similarly we can eliminate all Γ([%. Therefore we can
eliminate Γ12.

2. Φm2(ζmι)φo^
In this case it is possible that for some j, a,(1}φomί. Then there exists no integral

matrix Z(

1

1

2

1) which satisfies

fad) α(D \-(l r (r yp(mO-UZ(ll)
l«l » » α φ(mι)> '~V 1 » ί 5mι> ΛS>mι; J^ 12 '

Therefore we cannot eliminate Γ(^2\ Hence this time Γ is not a direct sum of small
lattices.

Hence Γ is not always a direct sum of small lattices.

As for the problem about if Φm2(Cmι)
eomι» refer to Appendix B.

4.2. How Many Kinds of Lattices Exist! As we saw above, we cannot always
eliminate off-diagonal blocks of Γ, i.e., Γ is not always a direct sum of small lattices.
Next let us consider the number of possibilities for Γtj (i < j).

First let us consider jΓ12. As we saw above, Γ12 satisfies the next relation,

%1Γ12 = Al^l2 + ̂ 12^22-

From this relation we get the following:

Notice that by the same consideration as we did in Sect. 4.1 case (1), we can always
change all column vectors of Γ(

1

1

2

1) by arbitrary vectors contained in a lattice
spanned by column vectors of Γ(^. Therefore we must consider all column vectors
of /"(

1

1

2

1) by modΓ^, when we count the number of possibilities for Γ(^2

}. With
the basis we used in Sect. 4.1, this means that we must consider α^υ (1 ̂ j ^ φ(m2))
by mod omι. Writing (4.3) (with j=ί) again, we have

C-M", , «(;,L2)) = (1, Cn,, , (CmιΓ
<raι) - Wtf + (<$\ ..., α<J>mϊ)) y2. (4.5)

Using the explicit form of Y2, which is given in Sect. 3.2, we get

omι).
i = 0

From this relation, we have

CmX 11 = «5V i (mod omι)(l ̂  7 ̂  φ(m2) - 1), (4.6)

From (4.6), we obtain

«J1) = (CW1Γ ̂ ^ (mod omι)(2 ̂  j ^ ψ(m2)\ (4.8)

Then from (4.7) and (4.8), we obtain

*ma(CmX1} = 0 (modomι). (4.9)

Since we must consider αjυ (1 ̂ j^φ(m2)) by modomι, (4.8) means that all α^1}

(2^j^ 9(^2)) are determined if we choose α^. Therefore what we have to do is
to count the number of possibilities for α^ by mod omι.
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First, α^ must satisfy (4.9). Conversely, suppose that some α^ which satisfies
(4.9) is given. Then if we choose α<.υ (2 ̂ 7 ̂  φ(w2)) to satisfy (4.8), all elements of
next vector are contained in omι,

Therefore some integral matrix A(*2

} exists, which satisfies

φ(mι)-l\ /t
)Λ 12

This implies that (4.5) is satisfied. Therefore the number of possibilities for JΓ(

1

1

2

1)

is given b/ that of α^ which satisfies (4.9), and it is known from number theory
that this number is given by \NmιΦm2(ζmι)\. (Here 4Wmι" means "norm considered

in β(ζmι)".)
Similarly, for all i, j, the number of possibilities for Γ($ is given by \Nmι Φm2(ζmι) \.

Hence the number of possibilities for Γί2 is given by \NmιΦm2(ζmι)\nin2. Notice that
if Γ12 is given, A12 is determined by (4.10).

Similarly, the number of possibilities for ΓjJ+1 is given by \Nmj+l(ζmj)\njnj+\
and if Γjj+1 is given, Ajj+1 is determined.

Next let us consider the number of possibilities for 7"13, assuming that Γjίj+ί

(1 rgj g; fc — 1) are given. Notice, since we assume Γjj+1 (1 ̂ j ^k— 1) are given,
Ajj+i (l^j^k—1) are also given. Also in this case, we obtain a similar result
in the following.

As we saw above, 7"13 satisfies next relation,

^1^13 = ̂ 11^13 + ^12^23 + ̂ 13^33-

From this relation we get the followings.

»2

γ yίll).— Γ ( l) j( l l ) _ι_ V

This time, we can change all column vectors of Γr(

1

1

3

1) by arbitrary vectors contained
in a lattice spanned by column vectors of
performed by the next GL(n, Z) matrix

and (1 ̂  i ̂  n2). This is

0

O

z<V>

But, unless Z(

2^ = 0 (Vi,V/), this basis transformation also changes Γ2Z. Therefore
if we want to leave Γ23 unchanged, we must consider only the case Z(

2

ίJ

3

} = 0 (Vz, V/)
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This means that we can change column vectors of Γ(^} only by arbitrary vectors
contained in a lattice spanned by column vectors of Γ(^Γ

Let B(^ be the same matrix as we used in Sect. 4.1. Denoting the first row vector

of B^-^Γ^ as (βi9 . . . , βφ(m^ and the first row vector of β^- 1 £ Γ™A™ as

(- ξl9 . . . , - ξφ(m3)), we get the following relation: ί= l

C m i v P l i 5 Pφ(m3y ~ (•*•» ίmi? 5 (smi) Ml 3

— ̂ ,)̂ . (4.11)

Since we assumed that ΓjJ+ 1 and AjJ+ ^(l^j^k—1) are given, ξt (1 ^ z ̂
are known numbers. With this basis, we must consider βt (1 ̂  i g φ(w3)) by mod omι.

Using the explicit form of 73, we have the following relations:

1 (mod O(l ^7 ̂  Φ(m3) - 1), (4.12)

φ(m3) - 1

C«Ao«>s -£*»,)- Σ ^l+ι (modomι). (4.13)
i = 0

From (4.12), we obtain

βj = (ζmίy-lβι+ηj-ι (modomι)(2^;^φ(m3)), (4.14)
/- i

where ηl = Σ (CmiX^-j (1 = ' = φ(ma) — 1) (Notice that since ξt (1 ̂  i ̂  Φ(wι3)) are
j=o

known, y/ f (1 ̂  i ̂  φ(m3) — 1) are also known.)
From (4.13) and (4.14), we obtain

Φm^mι)βι^ηo (modomι), (4.15)

<jp(m3)-l

where η0= — ς^^) — CTOι^(m3)-ι ~~ Σ (5 .̂. (Notice that ?70 is also a known

number.)
Since we must consider βt (I^f^φ(m 3)) by modomι, (4.14) means that βt

(2^i^ φ(m3)) are determined, if we choose βλ. Therefore what we have to do is
to count the number of possibilities for β^ by modomι. By the same consideration
as we did above, this number is given by \NmιΦm3(ζmι)l and β^ is given by (4.15).
Therefore the number of possibilities for /"(

1

1

3

1) is given by |NmιΦm3(£mι)|.
By the same consideration as we did above, the number of possibilities for Γ\3

is given by |NmιΦm3(ζmι)|B1"3. If Γ13 is given, A13 is determined by (4.11).
Repeating this consideration again and again, the number of possibilities for

Γβ (j < I) is given by I AΓm.Φmι(CrMj)Γ^ί. And if Γjt is given, Aβ is determined.
As for NmjΦmι(ζmj)9 refer to Appendix C.

5. Conclusion

We have studied n-dimensional lattices which have Zm symmetries. We have seen
that such lattices are embedded in an orthogonal sum of some smaller lattices,
each of which is a lattice whose automorphism transformation has the primitive
m/h roots of 1 only as its eigenvalues. Such smaller lattices are direct sums of
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minimal lattices. Minimal lattices can be considered as some (fractional) ideals of
some cyclotomic field, and the number of different minimal lattices are given by
the class number of that cyclotomic field.

Furthermore, we have studied how general lattices are embedded in the
orthogonal sum of smaller lattices. We have seen that how many kinds of lattices
exist can be calculated by a norm of some integer of some cyclotomic field.

For 6-dimensional lattices, which are relevant to superstring compactifϊcation
problems we give the number of different lattices, their symmetries and eigenvalues
of their automorphism transformations in Tables 1, 2 and 3. For example, the
lattice for the Z3-orbifold of [1,5,6] belongs to the type (33) and the lattice for
the Z7-orbifold of [7] belongs to the type (71).

What we have done in this paper is not a classification or orbifold models, but
a classification of lattices. Therefore we have considered nothing from
phenomenological viewpoints. So what we would like to do next is to consider
phenomenological problems. In this paper, we have considered lattices with Zm

Table 1. Number of 6-dimensional Lattices

Type" Number of Lattices

Z
3
o (10 ,6 )

(lO
1
^
1
)

(5S6
1
)

Z
24
 (S

1
^
1
)

(δ
1
^
1
)

Z (10
1
 4

1
)

(5
1
 4

1
)

Z
18
 (18

1
)

Zis (5S3
1
)

Zi4 (14
1
)

Z
12
 (12S6

1
)

(12
1
 4

1
)

(12
1
 3

1
)

(Π
1
^
1
,!

1
)

(12S2
2
)

(12
1
,!

2
)

(6
2
,4

1
)

(6S4
2
)

(ό
1
^
1
^
1
)

(ό
1
^
1
^
2
)

(ό
1
^
1
^
1
,!

1
)

(ό
1
^
1
,!

2
)

(4
2
,3

1
)

(4
1
,3

2
)

(4
1
,3

1
,2

2
)

(4
1
,3

1
,2

1
, 1

1
)

(4
J
,3M

2
)

1

1
1

1

1

1

1

1

1

1

4

9

4

2

1
1

1

1

4

3
2
 2

2

3 2 2 2

2
2

1

1

2
2

2 2 3 2
2
2
 3

2

αType of the lattice implies (m"1,..., wιjfc)



Classification of Lattices with Zm Symmetry 41

Table!. Number of 6-dimensional Lattices,
(confd)

Zm Type

Z10 (lO1^2)
(10S21, 11)
(S1^1,!1)
(101,!2)
(5\22)

Z9 (91)

Z8 (S1^1)
(δ1^2)
(8S21, 11)
(81,!2)

Z7 (71)
Z6 (63)

(ό2^1)
(ό1^2)
(6<22)
(ό2^1,!1)

(6M2)

(ό1^1^2)//:! 3! 2* 1 I1)

//: 1 3 1 ι 2\

(ό1^3,!1)
(ό1^2,!2)
(6S21, 13)
(61,!4)
(32,22)
(32,21,11)
(31,24)
(3X,23, 11)
β1'^2',!2)
(31,21,13)

Z5 (51,!2)

Number of Lattices

52

5-2
5-2
1
1

1

4
22

2 2 2
22

1
1
42

42

34

32 2
1
4 32

4 3 3 2
4.32

33 23

32 24

3 23

1
1
32 2
1
3 23

32. 24

33 23

52

symmetry only. So to consider lattices with general symmetry is one of the

remaining problems.

Appendix A. Two Lemmas

In this appendix, we consider two lemmas which we will use in Appendix B and C.

Lemma 1. Let {p}l .̂̂  (/ ̂  1) be all different prime numbers, and let y be a primitive

mth root of I (m Φ 1). Then the next relation is satisfied,

A "\ 1 Λ , X Xm' II PJ } = 1=>Φ* (y)EQ »
7=1 / ΠP;
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Table3. Number of
(cont'd)

zm

z*

Z3

Z2

z,

Type

(43)
(42,22)
(42,2M')
(42,12)
(4',2*)
(4',23,!1)
(4',22,12)
(41,21,!3)

(4M4)

(33)
(3M2)
(3M«)

(26)
(2M1)
(2M2)
(2M3)
(22,14)
(2M5)

(I6)

6-dimensional Lattice.

Number of Lattices

1
24

22 2
24

24

23 2
22 2
2 23

24

1
34

34

1
25

28

29

28

25

1

2 2

23

2.24

23

where (a, b) is the greatest common divisor of a and b, and o x is the unit group of
the ring of algebraic integers, which satisfies o * n Q(ζm) = o,*.

Proof. We prove this by reduction about /.

1. 1=1.
In this case, Φvι(y) is given as

Pl 3>-l

Now by the supposition (m, pj = 1, there exist two integers nί9 n2 which satisfy
nιPι + W2m = 1> H! > 0. Then using ym = 1, we get

Since the denominator of the right-hand side is an element of 0(0 is the ring of
algebraic integers), we obtain

2. Suppose for / = fc, (fc ̂  1), the lemma is true.
Let {Pj}1 < <k + ί be all different prime numbers, and y be a primitive mth root of

/ fc+l \

\(mΦ 1), and suppose I m, Y[ PJ I = 1. Then ypk+1 is also a primitive mth root of
V j=ι /
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/ k \
1. Clearly, I w, Y\ PJ I = 1. Therefore by recduction hypothesis, we have

\ 7=1 /

Φ * (y),Φ* (/k+1)eox.
Π PJ Π PJ

7 = 1 j = l

It is known from number theory that

Φ k (ypk+1)

therefore we obtain

Φ*+ι (y)eox.

7=1

Hence the lemma is true for / = k + 1. q.e.d.

Lemma 2. Let ζm be a primitive mth root of 1. Then

l — ζmφox (ifm = pf (p:prίmenumber)),

1 — Cme o x (otherwise).

Proof.

1. m = pf. Since

O',p)=ι

we get

P= Π (1 - (im)j)

by letting x= 1.
(It is known from number theory that

fp (w = p/(p: prime number))

(l (otherwise)

is satisfied.)
For an arbitrary; which satisfies (/, p) = 1, there exist two integers n l 5 n2 which

satisfy nj + π2m =!,«!> 0. Therefore we get

Clearly

(C )j-
ΐ 1Sm x
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These relations imply

Hence

p = ξ(l-CmΓ(m) ξeo \

Therefore if (1 — CJeo*, this relation means peo*. But pφo
Hence (l-U^o*.

2. m^pf
Since

we get

= Π (*-(uά
U,m)=l

= Π
ϋ,m)=l

by letting x be 1 (see (A.I)).

Notice Π (1 ~ (CJ')eo. Therefore (1 -
(j,m)=l,J9tl

Hence (1 - ζm)eo x . q.e.d.

Appendix B. Condition for Φn(

Let the factorization of n be ^ p^J. Then it is known from number theory that
j=ι

the next relation is satisfied,

ΦΛxHΦΛx"'"'),

where nf = f j PJ. Therefore if we denote (Cm)n/M = y, we get

Notice that since n/n' is a natural number, some powers of y are equal to 1.
Therefore three cases can occur.

1. y=ί. In this case

Hence
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pfj (/. = 0, 1)(1 ^7 g g). We lose
j=l

no generality if we assume the following:

There exists some integer k which satisfies < J = =

(fj = 0 (otherwise)

(2-1) k = g

This means that ζm is a primitive nth root of 1. Therefore Φπ(£m) = 0, i.e.,

(2-2) k<g

It is known from number theory that the next relation is satisfied

φ*(y Π ?Λ Π Φ^^ W"*1"

f * ,,...ι,.]...ΛΛ

iM * Ί
p; , and "[ ]" means to eliminate that prime number from the

product. J=k+1 ftp.
In the right hand side, every factor except Φ*(yj=ί ) is an element of o^ (see

Πf;
Lemma 1), and Φ*(yj=1 ) satisfies

Hence

3. yφ\9 yn' φ 1. Let the order of 3; be N.

(3-1) (N,ri)*ri

This means some prime number p0 exists, which satisfies p0 1 ri and p0JN. We
lose no generality if we assume p0 = Pi- Then we get the following:

Π ΦP1(

Every factor which appears in the right-hand side is an element of o^ (see
Lemma 1).

Hence Φπ(CJeo^.

(3-2) (N,n') = n'
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This means n'\N

N _

ri ' J — —

In this case, we get

ΠPJ
(yj=1 -i

9 9

Π Pi Π PJ
In the right-hand side, all factors except yj= * — 1 are contained in o x , and yj~l — 1

is not (see Lemma 2).
Therefore Φπ(CJ£om

x.

We lose no generality if we assume Pj = p±. Then we get

3

(y^Pj-l

π ^ π PJ
In the right-hand side, all factors except yj=ί — 1 and yj~2 — 1 are contained in

9 9

Π PJ Π PI
o x , and y=1 — 1 and yj=2 — 1 are not (see Lemma 2). And

where "JV" means "norm considered in β(Cp^
+1) " From now on, "±" means "we

do not mind whether it is + or —."
Hence Φπ(CJ^om

x.

(3-2-3) ~^pl
n

In this case, we get
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In the right-hand side, all elements are contained in o x (see Lemma 2).
Therefore Φn(Ueo^
To conclude this appendix, we obtain the following result:

if~ = P/(p:primenumber,/eZ) ),
m J

(otherwise).

Appendix C. Norm of Φn(ζm)

In Appendix B, we got

(C.I)

ΦΛfJeo* (otherwise). (C.2)

Therefore in the case (C.2), it is trivial that

NmΦn(ζm)=±l

since ξεo*=>Nmξ=±L
Let us consider the case (C.I).

l . />0
In this case, from Appendix B, Φn(ζm) can be written as

Φn(U = pξ (ξeo*).

Hence we get

) =±Nmp=± p«"\

2. / = 0
In this case, since Φn(ζm) = 0, it is trivial that

NmΦΛ(ζJ = 0.

3. / < 0, i.e., m = npf

There are two cases.

(3-l)(n,p) = l

In this case, from Appendix B, Φn(ζm) can be written as

Φn(ζm) = ( ζ p f - ί ) ξ (ξeo*).

Hence we get

NmΦn(ζJ = ± Nm(ζpί - 1) = ± Nm/pf(Npf(ζpί - 1)) = ± Nm/pf(Φpf(l))

= ±Nm/pfP=±p^\

(Here "Nm/pf" means "relative norm considered in relative algebraic number field

β(CJ/β(CP/) ")

(3-2)(n,p) = p
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Let n = ripe ((n',p) =1). Then we get m = ripe+f. In this case, from Appendix B,
Φn(ζm) can be written as

Hence we get

_ , N~ -
N
jy

To conclude this appendix, we obtain the following result:

(if_ = /(p prime number,/ > 0)
m

0 (if m = n)
±NmΦn(ζm) = \

( \
if _ = pf (p prime number,/ > 0)

n )

1 (otherwise)
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