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Abstract. We consider the n-dimensional Euclidean lattices with Z,, symmetries.
It is shown that such lattices can be considered as ideals of some cyclotomic
fields. Therefore we can translate problems about the above lattices into those
about number theory. For all n (n < 22), we have obtained the classification of
such lattices.

1. Introduction

In recent years superstring theory has been actively investigated. Since superstring
theory has the critical dimension 10, we must consider compactification problems.
Recently, many compactification schemes have been studied intensively [1-4].
Especially, since orbifold models [1] are phenomenologically interesting and easy
to handle, many orbifold models have been constructed [5—7]. Therefore, not only
phenomenological considerations, but also systematic classifications of orbifold
models are needed [7].

An orbifold is a torus divided by its automorphisms, and the torus is an
Euclidean space divided by some lattice. Therefore, in order to classify orbifold
models, we have to classify lattices, at first. So in this paper, we consider lattices
which have Z,, symmetries.

This paper is organized as follows. In Sect. 2, we clarify the problem by
considering it form the viewpoint of eigenvalues of automorphism transformations.
In Sect. 3, we study cases in which lattices have special symmetries. We show that
in these cases, lattices can be considered as ideals of some cyclotomic field.
Furthermore, we classify such special lattices. In Sect. 4, we classify general lattices
by making use of the results which are obtained in Sect. 2 and 3. Section 5 is
devoted to a conclusion.

Throughout this paper, we assume some knowledge of number theory.
About number theory, we refer to [8—11]. Especially about cyclotomic fields,
we refer to [11].
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2. Consideration from Eigenvalues of Transformation

Let us denote the lattice as I" and the transformation as X. Here XeO(n) and
X™ = 1. Since the order of X is m, all its eigenvalues are m™ roots of 1. Therefore
there exist some orthonormal basis {u;}, < ;<, with which X has a form

X = . (2.1)
' X,
where for all j,X i is some element of O(d;) (d; is some natural number and they

satisfy that Z d;=n) and all its eigenvalues are primitive m;™ roots of 1 (m; is

some d1v1so; of m). Note that if i # j, then m; # m;.

From now on, elements (or blocks) of a matrix which are not explicitly written
should be understood to be zero (or zero matrix).

We show in what follows that I" is embedded in an orthogonal sum of some
special lattices.

Let some basis of I" be {4;}, < <, and let us denote the matrix whose j** column
vector is A;(1 < j<n) as A. Then, A™' XAeGL(n, Z).

Generally, minimal polynomials of the primitive I'* root of 1 are called the
cyclotomic polynomials, and are denoted by @,(x). It is known from number theory
that they have the following characters:

1. Degree of @,(x) is ¢(I). (¢(x) is the Euler’s function.)
2. @(x)eZ[x], ie., all coefficients of @,(x) are integers.
3. Coefficient of x?? is 1.

4. @y(x)=0, if and only if x is a primitive I'* root of 1.
5. @,(x) has no multiple roots.

Suppose we pick up arbitrary j(1 < j < k). Then, we have
q)m,-(X 1) .

@mj(Xj— 1)
0, (X) = 0
@0 (Xp11)

Qmj'(Xk)
Since i # j=>m; #m;, for all i (i # j), det @, (X;) #0. Therefore, dimU;=n—d,,
where U; = {xeR"|3yeR", x = @,, (X)y}. Clearly U; is a subspace of R", which is
spanned by {u;} ;. and {u;} ; . Since @, (x)eZ[x], and A™'XAe

1515y d § a<isn

GL(n, Z), we get =1 =1
AT D, (X)A =D, (A" XA)eM,(Z).

(Here M,(Z) implies n x n-dimensional integral matrices.)

II/\
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Therefore, I'U; is an (n — d;)-dimensional sublattice of I'". Let some basis of
this sublattice be {7;}; <i<a-4,, and filling these, let another basis of I" be {;}; <;<,-

Now let the subspace of R" which is spanned by {u;},-: , be V;. Then
Y di<is ¥ 4

. =1 =1

R"=U; L V;(“L” means “orthogonal sum”). And let projections of arbitrary vectors

x on V; be x. Then we get the following:
I“(j) = [y(ii)s s ’y(yii):l = ['Yf.j)—aﬁ SRR ’yg)]'

(Here I'? = {xY|xeI'}, and [y{,...,y{"] implies a lattice spanned by {y"}, <, .,.)

Notice d;-vectors {y},_, .1 <i<a are linearly independent.

Therefore I' is a d;-dimensional lattice contained in V;. Clearly, I'? is
invariant under the operation of X, and within the subspace V;, the operation of
X is equivalent to that of X ;. Therefore I'Y is a d;-dimensional X -invariant lattice
which is contained in V;.

In the above consideration, j is arbitrary, and by definition of V;,R"=
V,L..- L V. Therefore we get the following result.

“Choose proper d;-dimensional X -invariant lattices I'; for 1 < j<k, and let
the orthogonal sum of I'j(1 £ j<k) be I'"". Then I" is embedded in I"".”

3. Lattices with Special Symmetry

Next, let us consider I';, which is a d;-dimensional X -invariant lattice. Here
X;€0(d;), and its eigenvalues are primitive m;® roots of 1 only.

Here d; must be a multiple of ¢(m). This statement can be proven as follows.
Let us denote some basis of I'; as {4/}, <;<,,, and the matrix whose i** column
vectoris A(1 <i<d;)as A;. Then A; ' X;A;e GL(d;, Z). Therefore f(x)e Z[x]. Here
f(x) is the characteristic polynomial of X ;. And solutions of f;(x) = 0 are primitive
m;™ roots of 1 only. Hence there exists some natural number n;, which satisfies
fi(x) = {®,,,(x)}". Therefore d; must satisfy d; = @p(m;)n;.

From now on we denote I';, X;,d;,m;,n; as I', X,d, m,n in this section.

3.1 The Minimal Lattice. First, let us consider special cases, n = 1. Let us denote
exp (2wi/m) as {,,, and m'™® cyclotomic field as Q((,,). In these cases, we show in this
subsection that there is a correspondence between I’s and ideals of Q((,,).

If m=1 or, 2, then ¢(m)= 1. Therefore these cases are trivial. Suppose m = 3.

First, we transform I to a form easy to handle. With proper orthonormal basis,
X has a form
R,

R pmy2
R.— cost); —sin0; '
7 \sind;  cosb;

(For all [, is a primitive m'™ root of 1, and let ¢! be (,,.)
Let some basis of I' be {4;};<j<om With 4;=(4;..., dpm;)" (‘T” means

Here for all j,



28

“transposed”). Then there exists some A (AeGL(p(m), Z)) which satisfies

A11 A1.p(m) A1 A1o0m)
X : : = : : A.
)“Wn)l 'ltp(m)w(m) Atp('n)l ’Lp(m)(p(m
Multiplying
1 i
1 —i
:“;IL
\ﬁ 1 i
1 —i
from the left, we get
R}
Q=QA.
Rmy2
Here
[0 [ e
forall j, Rj= 0 it ) and Q=F5| :
'1¢(M) 1 }”¢(M)¢(m)

This means that all row vectors of £ are eigenvectors of A.

M. Ono

Since all eigenvalues of 4 are primitive m'™ roots of 1, they are all contained
in Q({,,). Therefore we can choose vectors-on-Q((,,) as eigenvectors of 4, and all
eigenspaces of A are 1-dimensional spaces (since @,,(x) has no multiple roots). Hence

we can write (2 as follows.

2 where {a'eGL(w(m),Q(cm))

Com)/2

*
Comy2

c;eC—{0} (for all jy

Notice that for all j, the (2j — 1)'® and the (2j)® row vectors of £’ are mutually

complex conjugate.
Let the first row vector of 2’ be (a,,..., %) Then this satisfies

Cn0g 5oy Omy) = (15 - o+ Apmy) A

Transforming both sides of this equation by some element of G(Q((,,)/Q) (group
of automorphisms of Q((,), which fix Q pointwise) that transforms (, to
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e (1= j < p(m)/2), we get
eiaj(ﬁl seeey ﬂqz(m)) = (ﬁl seees ﬁ(p(m))A

(where for all [, §, is the image of «; by this transformation).
Since all eigenspaces of 4 are 1-dimensional spaces, this equation implies

(Bys--- s Boem) o {the (2j — 1)™ row vector of Q'}.
Therefore, by choosing the above ¢,(1 <1< ¢(m)/2) properly, we can assume
(By1s-- -5 Boem) = {the (2j — 1) row vector of £2'}.

Hence €2’ is totally determined by its first row vector.
With this ', we consider the correspondence between lattices and ideals of

Q).

Now let us consider («,,...,%,m). We define next two sets:
@(m)
a=<Y moy|Vi,neZ ¢,
i=1

om 1 )
D, = { ni(Cm)tl\ji’ niez}'
i=0
It is known from number theory that o,, is the principal order of Q((,,), and clearly
a is a submodule of Q((,,).

By definition of (ay,.. ., %,um) for arbitrary j (j = 0), the next relation is satisfied,

(Cm)"(al sy a(p(m)) = (al LR a(p(m))Aj'
This means
CmYoea (j20,1Zi< (m)).

Therefore a is an o,-submodule of Q((,,). And it is known from number theory

that for each «; (1 £i < ¢(m)), there exists some natural number [; which satisfies
o(m)

li;€0,,. Therefore Na < o,,, where N =[] I..
i=1

To summarize

1. ais an o,-submodule of Q((,,).
2. There exists some natural number N which satisfies Na <o,

Hence a is some (fractional) ideal of Q((,,), and {o;}; <;<,m) are its integral basis.

Conversely, if some ideal of Q((,,), say «’, is given, we can get a ¢(m)-dimensional
X-invariant lattice by tracing the above process backward. Therefore we have a
correspondence between lattices and ideals of Q((,,).

Next, we consider how many kinds of lattices exist.

First, we define some equivalence classes of lattices, then we show that number
of those equivalence classes is given by the class number of Q((,,).

We say “two lattices are equivalent,” if and only if (considering with proper
basis) they have same transformation matrix A. Clearly this defines equivalence
classes. Let us consider how many these equivalence classes exist.
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In the process of obtaining lattices from ideals of Q((,,), we have to choose
some integral basis of a, say {a}; <;<,m- Suppose we choose another integral
basis, say {o; }; <;<,m- Let the lattices which we get from these bases be I'" and
I'" for each. Since both {0}, <; < pom and {&}'}; <; < ,m are integral bases of a’, there
exists some B(BeGL(¢(m), Z)) which satisfies

(5. Ugm) = (o}, . ., Xipmy) B.

Remembering the above correspondence between lattices and ideals, this relation
implies that I"’ and I'” are equivalent. Therefore, all lattices which are got from
one ideal, belong to one equivalence class. Let us denote the equivalence class
which we get from an ideal a as I'(a).

Here it can be shown as follows that “I"(a) = I'(b)<>b/a is a principal ideal.”

Suppose for some two ideals a and b that I"(a) = I"(b) is satisfied. This means
these two lattices have some transformation matrix A. Therefore, remembering
that all eigenspaces of 4 are 1-dimensional spaces, we get the following. Let some
integral basis of a be {0}, <;<,m and some integral basis of b be {f;}1 <i<pm-
Then there exists some £eQ((,) which satisfies

(Bl’ cee 9B(p(m)) = é(alr . ’“(p(m))'

This means b = (£)a, where (£) is the principal ideal generated by &.

Conversely, suppose for two ideals a and b that b = (&)a is satisfied ((£) is the
principal ideal generated by £). This means the following. Let some integral basis
of a be {a;}; <i<p(m- Then, we can take {&a;}; <;<,m) as an integral basis of b. This
implies I"(a) and I"(b) have some transformation matrix. Therefore I"(a) = I"(b)
is satisfied.

Hence there is one-to-one correspondence between equivalence classes of lattices
and ideal classes of Q({,,)- Therefore the number of equivalence classes of lattices
is given by the class number of Q((,,), which we denote as h,,. It is known from
number theory that for all m, h,, is finite.

3.2. General Lattices. Next let us consider general cases, n = 2. In these cases, we
show in this subsection that I" is embedded in a direct sum of minimal lattices,
which we considered in Sect. 3.1.

Let some basis of I" be {y;}, <;<4. Take an arbitrary non-zero vector of I, say
y. For all j (j=0), it is satisfied that X’/yel. Here it can be shown that
{X?9}0<j<pem-1 are linearly independent.

Remembering that @,,(X) =0, and that @,(x)eZ[x], there exist some integers
{n:}o<i<pem-1 Which satisfy

xom _w(M)-l X
v= Y mX).

Therefore the ¢(m)-dimensional subspace spanned by {X’y}o<j<pm-1 1S an

X-invariant subspace. Let us call this subspace V). Then I “rn V) is a
¢(m)-dimensional X-invariant sublattice of I". Let some basis of I} be {¥'}1 < < pwm)-
Next, we take an arbitrary vector y* which satisfies y'el’, y'¢ V", and with y/,
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make V', and I, as we did above, and let some basis of I" be {3} << pem- AgaID
it can be shown that 2¢(m)-vectors {)};,75;}; < j<qm are linearly independent.

Next, we take an arbitrary vector y” which satisfies y"el, y"¢V @V,
(“®” means “direct sum”), and make V% and I'; as we did above. We repeat this
process again and again.

Finally, we get {I'}},<;<,. For all j,I'’ is a ¢(m)-dimensional X-invariant
sublattice contained in V}, and I'/@®---@®I, is a d-dimensional X-invariant
sublattice of I". Let some basis of I'; be {¥;}; <i<pm for 1 < j<n. Then some
matrix M (MeM,(Z), det M # 0) exists, which satisfies

()”11,---a')”1¢(m)§---;7;‘1»--~aV;|¢(m))=(?1a--'an)M-
Thus we obtain the following.
(’))17'”7’)7'1)z(y,{1>""y,1,(p(m);"';y;:l’“'ay;:(p(m))(detM.M_l)s
where

V}i
detM

Vi = 1=jsn1=iso(m).
Since det M-M ~'eM,(Z), this means that I" is a d-dimensional sublattice of
I'i®---@®r,. Here for all j,I']=1I"/det M, which is a ¢(m)-dimensional X-
invariant lattice, and I'j < V7.

Now let us transform I', X and A to forms easy to handle. We define sublattices
'Y (1 £ j<n) as follows:

7 def " ,
O Irn(vVi®---&® Vj).

Especially 'V =I",,’™ =T, and they satisfy 'Y c I’'® < ... c '™, For all j,
since V;is an X-invariant subspace of R%, I'Yis a j- p(m)-dimensional, X-invariant
sublattice of I

Let some basis of I"™ be {y’}; < j< ym- By completing these, let some basis of
I'® be {y'}1 <js200m» and so on.

Finally, we get {}’}; <j<npem=a s @ basis of '™ =T .

Let us denote the matrix whose j® column vector is 3/ (1 < j<d) also as I'.
Then, there exists some A (AeGL(d, Z)) which satisfies XI" = I" A. Since for all j,
{y'}1 <i<j-oem are bases of an X-invariant sublattice I"’, 4 is a matrix of form

Ay Ay e Ay,
A A

A= 22 2
A

(where for all i, j, 4;; is a @(m) x @(m)-matrix).
Now, let us take {{;}1<i<n1<j<om as a basis of R%. Since I is a sublattice of
(I'{@---@®1I,), with this basis, I'eM,(Z), and by definition of {y'}; .;<4 " is a
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matrix of form

rll F12 rln

I I
F= 22. '2n
‘T,

(where for all i, j, I';; is a @(m) x @(m)-matrix).
Since I'} (1 £ j <n) are X-invariant lattices, X is a matrix of form

Xll
X1

Xnn

(where for all j, X;; is a ¢(m) x ¢(m)-matrix).

Next let us consider if we can eliminate off diagonal blocks of A4, ie., if " is a
direct sum of I'} (1 < j=n). For general cases, we cannot answer this question.
But for special cases, h,, =1, we show in the following that the answer for this
question is yes. (Notice that for all n which satisfies ¢(n) <22, it is satisfied
that h, =1, except for n=23,46. For these values of n, ¢(23) = ¢(46) = 22, and
hy3 =hse =3 [12].)

In these cases, since all ideals of Q((,,) are principal ideals, say (£), we can take
{&Cm)Y'}o<j<om—1 as an integral basis of it. Therefore we can take some basis of
I with which

X;=A;=Y (1<j<n).

Here
0 0 —0dy
y=| ' e
L —0pm-1

where 9; (0 £ j < ¢(m) — 1) are defined by
o(m)—1 X
D, (x)=x"+ Y §;xl.
j=0
From the relation XI" =1 A, we get
Yry,=rI.Y, (3.1)
YF12=F11A12+1_|12Y'. (3.2)

Now let us change the basis of this ¢(m)-dimensional space so that with this basis,
the first row vector of I'y; is (1,8, ({w)% - -+ (Cn)®™ P71 and others of I'y, are
obtained from this by G(Q({,,)/Q)-transformations. Let us also denote the matrix
which represents this transformation as B. This B satisfies
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&'%otm

Then from (3.2), we get
(BﬂlYB)(B‘IF12)=(B—IF11)A12+(B—1F12)Y'
Let the first row vector of B~ 1Ty, be (ay,...,0,,)- Then we get

Cn@ys s Cpmy) = (L, Cs e, C)? ™™D Ay 4+ (0,05 Opmy) Y (3.3)
Notice that the following relation is satisfied:
Con(@y5 0y Cms v e s 01 (En)?™ ™) = (0t g, 0 Eps -+ 21 (G)?™ ) Y. (3.4)
Therefore, if we write
(g5 ey Upgm) — (1,01 Ly oo, 2y (C)?™ 1) =(0, Bas - .., Bopimy),
then from (3.3) and (3.4), we get
Cn(0, B2, -5 Boim) = (1, s oo, C)?™ 1) Ay, 4+ (0, B2, ., Bogm) Y- (3.5

By using the explicit form of Y, this relation is written as

o(m) -1
(O’ CmBZ’ s acmﬂw(m)) = (619 [ERE] é(p(m)) + (ﬂzy tee 9ﬁ(p(m) - 'Zl 5iﬁi+ 1)’

with (£4,...,&m) =1, {m .-, ((n)?™ 1) A;,. Notice £;ev,, (1= )= @(m)), since
Ay, €M ym)(2).
Then by comparing the first component of both-hand sides, we get §,€e0,,, then
by comparing the second component of both-hand sides, we get f;€0,,, and so on.
Finally, we get f;e0,, (| < j < @(m)). Therefore there exists some integral matrix
Z,, which satisfies

(Oa ﬁZa D) ﬂ(p(m)) = (1, gma s >(Cm)¢(m— I)ZIZ~ (36)

Now let us define a matrix B’ as follows. The row first vector of B’ is
(0,85, ..., Byum) and others of B are got from this by G(Q((,,)/Q)-transformations.
Then from (3.6), we get

B = (B_1F11)Z12, (3-7)
and from (3.5), we have

(B"'UB)B' =(B™'T'},)A,, + BY.
Then, using (3.7), we get
B 'YI'\,Z,,=B '} A,+B 'T'\Z,,Y.
Finally, using (3.1), we obtain
YZ,=A,,+Z,,Y. (3.8)
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Now, let us change the basis of I" by the following GL(d, Z) transformation
1-Z,

Then, A is transformed to

Y A12+ley—YZI2 R Y 0

Y Y
C'AC= =

(At the last step we used (3.8).) Therefore we can eliminate A4, ,.

Now, this form of 4 means that I"® is a direct sum of two ¢(m)-dimensional
X-invariant lattices. Therefore we lose no generality if we Suppose {1}, < <20m)
are contained in I'},i,e., I';, = 0. Then the relation X I" = I A becomes as follows:

Y I'yy 0 Iy - ry, 0 Iy - Y 0 Ay,
' Iy Ty | Iy Thy o Y A

i Tan - J A Y
Y 33 . 33 .

From this relation, we get
YI'y,=Ty,Y, YI'3=I4A;3+1;Y,
YIh=15Y, YI,3=I5A4;53+ 1Y

Therefore, repeating the same process as we did above, we can eliminate A3, 4,3,
r 13> r 23
Repeating this process again and again, finally we obtain the following form of
Aand I':
Y r,
A=
Y r,,
Therefore we can eliminate off diagonal blocks of A4, i.e., I' is a direct sum of
n-sublattices, each of which is a ¢(m)-dimensional, X-invariant lattices.

4. General Lattices

Let us consider again the result of Sect. 2. In this section we suppose that h,, =1
for all j.

First, let us transform I', X and A to forms easy to handle. Let some basis of
I'" be {y}}, <;<n» and take these vectors as the basis of R". Then X has a form of
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(2.1), where for all j, X ;€ GL(d;, Z), and all elements of vectors which are contained
in I” are integers. Let some basis of I' be {17}, _,_,, which satisfies that for all j,

{20} ; are a basis of I'n(V;@®---@V)), and let us denote the matrix whose
1 z 4

i=1

ith column vector is A%(1 <i<n) also as I'. Then there exists some integral matrix

A which satisfies XI" = I'A. Here

=1

liA

I'yy TI'a - T'u A1 A1z - Au
Iy - T Ay - A
- 22 2 A= 22 2 ,
T Ak

where for all i, j, I';; and A;; are d; x d;-matrices. (These I';/’s and A4;;’s have nothing
to do with those Sect. 3.2.)
From this relation, we get
X, Ij=T;A; (1Sj<k).

This means that I';; is a lattice like I'; in Sect. 3.2. Therefore we can assume that
for all j

) (1)
Y; I
Xj=Aji= : » Tyi= - ,
Y; ry
where Y; is defined as Y was done in Sect. 3.2, and let us define for all i, j,
rg}l) anj) A‘i}” Ag}m)
Ij=| : N A 2 TR ol
I'"g}il) . I"gginj) Agil) e Ag;mj)

where for all i, j, k, I, 'Y and A" are ¢(m;) x ¢(mj)-matrices.

4.1. Is I' a Direct Sum of Small Lattices? Let us consider if we can eliminate off
diagonal blocks of 4, i.e., if I" is a direct sum of I';;’s. As we will see below, it is
easier to consider if we can eliminate off diagonal blocks of I'. Actually, it is not
always possible to eliminate them. Let us consider this problem.

From the relation XI" =TA, we get

X Ii;=T11A;+ T'1,4;,.

And the ith row (1 £ i £ ¢(m,)) and the jth column (1 = j < @(m,)) of this equation
mean
Y1 =rHAs + reby,. 4.1)

Let us change basis of this ¢(m,)-dimensional space so that with this basis, the
first row vector of I'{} is (1, {pys- - - » (Cme)?™P 1), and others of I'{Y) are obtained
from this by G(Q((,,,)/Q)-transformations. Let us denote the matrix which represent
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this transformation as B{. This B{! satisfies
ei01

BY-ly,BO=| . (@ =),

eiaa’(m 1)

then from (4.1), we have
(B(ll)— 1 YIB(ll))(B(ll)_ 11—'(1121)) — (B(ll)- lr(lll))A(llzl) + (B(ll)— 1 _ F(llzl))YZ' (42)
Let us denote the jth row vector of BV "' I"\}V as (af,...,a) ). Then from (4.2),
we get for all j,
eioj(a(lj)’ et ag()ml)) = (1’ gj(Cm;)’ AR gj((le)(p(m” N 1))A(1121)
+@f,...,a Y, 4.3)
where g;€G(Q((,,,)/Q), which satisfies g;((,,,) = .
Therefore
@, 02 )= (L g )s- > )P0 T NALE® — ¥) 7
— gj{(l, Cmp ey (Cm‘)(ﬂ(nu)_ I)A(llzl)(ezol _ Yz)_ 1}
=g;{(@®,...,a00)}- 4.4)
(Notice by the supposition m, # m,, for all j, det (e’ — Y,) = @,,,(¢'%) #0.)
Therefore all we have to do is to consider if we can eliminate the first row vector
of B ~1I* Y 1f we can eliminate A ,, (4.4) means I';, = O. Therefore, if we cannot
N 1 12 2
eliminate I';,, we cannot eliminate A4,, either.
Let us consider the first row vector of BV~ 'I"{L1). This is given as
,. .., ocfpl(:m)) =(Lmys- o> G ™~ DAL (0 — Yy) 7t
and ,
det(e® — Y,) = @,, ()
Therefore two cases can occur.
1. @,,(n)eo,, (0, is the unit group of o,,.) A
In this case, (' — Y,)e GL(¢(m,), 0,,,). Therefore all elements of A%,V(e”* — Y,) ™!
are contained in o,,,. Hence for all j,a{"eo,,. Therefore some integral matrix Z{,"
exists, which satisfies
(a(ll), R aipl(:m)) = (19 lea ey (le)w("”)— 1)2(112‘)'
This means B IV =B0-tr®zeb e, 'Y =r{z{. Therefore
changing the basis of I" by the following GL(n, Z)-transformation,
I -z
o

I o
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we can eliminate I'{}". Similarly we can eliminate all I"{). Therefore we can
eliminate I, ,.

2‘ ¢m2(le)¢Dml
In this case it is possible that for some j, a{"’¢0,,,. Then there exists no integral
matrix Z{"’ which satisfies

(a(” a(” 1)) (1 le, (CMI)(p(mt)—l)Z(llzl).

m
Therefore we cannot eliminate I",". Hence this time I' is not a direct sum of small
lattices.
Hence I is not always a direct sum of small lattices.
As for the problem about if @, ({,,)eo,, , refer to Appendix B.

4.2. How Many Kinds of Lattices Exist? As we saw above, we cannot always
eliminate off-diagonal blocks of I, i.e., I is not always a direct sum of small lattices.
Next let us consider the number of possibilities for I7; (i < j).

First let us consider I';,. As we saw above, I, satisfies the next relation,

X Ia=T11415+ 11,4,

From this relation we get the following:
11) _ 1 11 11

VI = FRAL + TEDY,
Notice that by the same consideration as we did in Sect. 4.1 case (1), we can always
change all column vectors of I'{} by arbitrary vectors contained in a lattice
spanned by column vectors of I'{"). Therefore we must consider all column vectors
of ', by mod I'{), when we count the number of possibilities for I"{,V. With

the basis we used in Sect. 4.1, this means that we must consider a{" (1 £ j < ¢(m,))
by mod o,,,. Writing (4.3) (with j = 1) again, we have

oy (041, ~s°‘f,,1(3,,2)) =1, s G)?™ HALY + (@, 0l Y2 (45)
Using the explicit form of Y,, which is given in Sect. 3.2, we get

o(ma)— 1
G @, 0l ) = (00,0l — .Zo 6,080)) (modbo,,).
i<

From this relation, we have

{0V = fx‘i’l (rlflod 0, )(1 £j = @(my) — 1), (4.6)
Com, ;1(3"2) =— Z 5 20, (modo,,). 4.7
From (4.6), we obtain
oD = (L)' (mod 0,,)(2 <) < glmy). 48)
Then from (4.7) and (4.8), we obtain
@, ((m)0" =0 (modo,,). 4.9)

Since we must consider of (1 <j < @(m,)) by modo,,, (4.8) means that all «{"
2 £j £ o(m,)) are determined if we choose o). Therefore what we have to do’is
to count the number of possibilities for a{" by mod o,,,.
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First, a{" must satisfy (4.9). Conversely, suppose that some «!" which satisfies
(4.9) is given. Then if we choose af (2 < j < ¢(m,)) to satisfy (4.8), all elements of
next vector are contained in o

my>

1 1 1
Cm;(a( ) (mz)) (a( ) ] “fp(znz))YZ‘
Therefore some integral matrix A‘llz“ exists, which satisfies

Um0,y 0G0 ) — @, gl VYo = (L Gy, ()? ™ DAL, (4.10)

¢(mz

This implies that (4.5) is satisfied. Therefore the number of possibilities for I"{’,"
is given by that of a{" which satisfies (4.9), and it is known from number theory
that this number is given by |N,, @,,.(,,)|. (Here “N, ~ means “norm considered
in Q")

Similarly, for all i, j, the number of possibilities for I"{2 is glven bY N, @ (Cn ) -
Hence the number of possibilities for I';, is given by |N @, ()" Notice that
if I'y, is given, A,, is determined by (4.10).

Similarly, the number of possibilities for I"; ;. , is given by [N, . (()I"™™*",
and if I'; ;,, is given, 4, ;,, is determined.

Next let us consider the number of possibilities for I" 5, assuming that I'; ;,
(1 £j<k—1) are given. Notice, since we assume I" a1 ASJS k — 1) are given,
A;;q (1=j=<k—1) are also given. Also in this case, we obtain a similar result
in the following.

As we saw above, I';; satisfies next relation,

Xy I'y3=T11A13+ 11,423+ T'13A45;.
From this relation we get the followings.
Y, F(ll) F(I)A(11)+ Z F“')A%)+ F(“)Y
i=1

This time, we can change all column vectors of I'{}) by arbitrary vectors contained
in a lattice spanned by column vectors of I'{)) and I'{}) (1 <i<n,). This is
performed by the next GL(n, Z) matrix

I Z{
o
0

Z(2 131 )

(n21)
I Z%;

But, unless Z%) = 0 (Vi, Vj), this basis transformation also changes I" »3. Therefore
if we want to leave I, unchanged, we must consider only the case Z4) = 0 (Vi, Vj).
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This means that we can change column vectors of '}, only by arbitrary vectors
contained in a lattice spanned by column vectors of I"{").
Let B be the same matrix as we used in Sect. 4.1. Denoting the first row vector
n2 - .
of BV as (By,..., Byms)s and the first row vector of B‘l““lz I'{'PA5Y as
(= &1senvs = € yimy)» We get the following relation: =1

Cm1(ﬁ13 L] B¢(m3)) = (17 (mp sy (le)(p("“)— 1)"‘1(1131)
_(61"-"5(;.(,”3))+(B1,-"5Bw(m3))y3' (411)
Since we assumed that I'; ;. and 4, ;, (1 <j <k — 1) are given, &; (1 <i < ¢(m3))

are known numbers. With this basis, we must consider f;(1 <i < ¢(m3)) bymodo,,,.
Using the explicit form of Y5, we have the following relations:

CmiBi=—Cj+ Bjyy (modoy, )(1=j= @lms)—1), (4.12)
(m3) — 1
CnsBotmy = — Epimsy — ¢ ~-Zo 8By, (modo,,). (4.13)

From (4.12), we obtain
Bi=nY 'Br+n;-1 (modo,)2 =)< g(my), (4.14)
1

-1
where n, = Z (C,,,l)jf,_j (1 £1£ p(m;) — 1). (Notice that since &; (1 £ i < ¢(ms)) are
j=0
known, #; (1 £i = ¢(m;) — 1) are also known.)

From (4.13) and (4.14), we obtain

Py (Cm)Br =10 (modo,,), (4.15)

o(m3)—1

where 10 = = Cynyy = Emifogms) 1 — i; om;. (Notice that », is also a known
number.)

Since we must consider f; (1 =i < ¢(m;)) by modo,,, (4.14) means that p;
(2 =i = p(m;)) are determined, if we choose f3;. Therefore what we have to do is
to count the number of possibilities for f; by mod o,,,. By the same consideration
as we did above, this number is given by |N,, @,.((,,)|, and B, is given by (4.15).
Therefore the number of possibilities for '}V is given by |N,,, @,,.(,)|-

By the same consideration as we did above, the number of possibilities for I'; ;
is given by |N,, @,.((,)|""™. If I';5 is given, A5 is determined by (4.11).

Repeating this consideration again and again, the number of possibilities for
I'; (j<lI)is given by N, @,,(,)I"™. And if I'; is given, A is determined.

As for N, ®,,((,,), refer to Appendix C.

5. Conclusion

We have studied n-dimensional lattices which have Z,, symmetries. We have seen
that such lattices are embedded in an orthogonal sum of some smaller lattices,
each of which is a lattice whose automorphism transformation has the primitive
m;™ roots of 1 only as its eigenvalues. Such smaller lattices are direct sums of
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minimal lattices. Minimal lattices can be considered as some (fractional) ideals of
some cyclotomic field, and the number of different minimal lattices are given by
the class number of that cyclotomic field.

Furthermore, we have studied how general lattices are embedded in the
orthogonal sum of smaller lattices. We have seen that how many kinds of lattices
exist can be calculated by a norm of some integer of some cyclotomic field.

For 6-dimensional lattices, which are relevant to superstring compactification
problems we give the number of different lattices, their symmetries and eigenvalues
of their automorphism transformations in Tables 1, 2 and 3. For example, the
lattice for the Z5-orbifold of [1,5,6] belongs to the type (33) and the lattice for
the Z,-orbifold of [7] belongs to the type (71).

What we have done in this paper is not a classification or orbifold models, but
a classification of lattices. Therefore we have considered nothing from
phenomenological viewpoints. So what we would like to do next is to consider
phenomenological problems. In this paper, we have considered lattices with Z,,

Table 1. Number of 6-dimensional Lattices

Z, Type* Number of Lattices
Zy  (10%,6Y) 1
(104,34 1
(51,6Y) 1
Z,n (8.6 1
(8,3 1
Zy (1044 1
(5%,4Y) 1
Zis (18 1
Zs (5.3 1
Zy, (149 1
Z,, (124,69 4
(121,4Y) 9
(124,34 4
(121,241 2
(121,2%) 1
(124,13 1
(6,4Y) 1
(61,4% 1
(61,44,3%) 4
(61, 41, 22) 32.22
(61,44,21,11) 3-2:22
(6,44,1%) 22
@23 1
4',3%) 1
(44,3,2%) 22
44,34,24,1%) 2:2-32
41,3413 22.32

“Type of the lattice implies (m}’,...,m)
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Table 2. Number of 6-dimensional Lattices.

(cont’d)

Z, Type Number of Lattices

Z,, (10%,2% 52
(101,24, 1Y 52
(5%,24,1%) 5:2
(101,12 1
(5%,2%) 1

Z, 9 1

Zs  (8L,4)) 4
(81,22) 22
81,2,1Y) 2:2:2
(81,12) 22

zZ, 1

Zs (69 1
(6%,3Y) 42
(6,33 42
(62,2%) 34
(62,24, 1Y) 32.2
(62,1%) 1
(61,34,2?) 432
(61,31,21,1%) 4-3-3:2
(61,31,1%) 4-32
(64,24 3¢
(61,23, 11) 33‘23
(61,22, 12) 32.94
(6',21,13) 3:23
(64,1% 1
(32,22 1
(32,24, 1Y) 32.2
(34,24 1
(34,23,1Y) 3.23
(31’22’ 12) 32.94
(31,21,13) 33.23

Zs  (5L1? 52

symmetry only. So to consider lattices with general symmetry is one of the

remaining problems.

Appendix A. Two Lemmas

In this appendix, we consider two lemmas which we will use in Appendix B and C.

Lemma 1. Let {p}, ., (1 Z 1) be all different prime numbers, and let y be a primitive
m™ root of 1 (m # 1). Then the next relation is satisfied,

1
m, )=1=0 €0’”,
( ,-Ul p,) ey

Jj=1
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Table 3. Number of 6-dimensional Lattice.

(cont’d)

Z, Type Number of Lattices

Z, @ 1
(42) 22) 24
@21 22222
(42’ 12) 24
(41’ 24) 24
@4,2%,1Y 23.2:23
(41, 22’ 12) 22,22_24
@4,24,19) 2232
(41’ 14) 24

Z, (3% 1
(32’ 12) 34
(31,14 34

z, (29) 1
(25’ 11) 25
(24,13 28
(23,13 29
(22,1%) 28
(21’ 15) 25

Z, (19 1

where (a,b) is the greatest common divisor of a and b, and o is the unit group of
the ring of algebraic integers, which satisfies 0™ N Q((,) =0o,.

Proof. We prove this by reduction about L.

1. I=1.
In this case, @, (y) is given as

Now by the supposition (m, p;) = 1, there exist two integers n,, n, which satisfy
nypy +n,m=1, n; >0. Then using y™ = 1, we get

y'—=1r yn—-1 1
n1p1+nzm_1 (ypl)nl__l (ypl)n1—1+__+yp1+1.

Since the denominator of the right-hand side is an element of o(o is the ring of
algebraic integers), we obtain

?,(y) =
y

D, (y)eo™.

2. Suppose for I =k, (k =2 1), the lemma is true.
Let {p;}, < j<i+, e all different prime numbers, and y be a primitive mth root of
T k+1
1 (m #1), and suppose ( m, [] p j> = 1. Then yP<*! is also a primitive mth root of

j=1
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k
1. Clearly, (m, I1 pj> = 1. Therefore by recduction hypothesis, we have

ji=1
Dk ()@ (y™+Heo™.
I1e; Pj
j=1 j=1
It is known from number theory that
d) x (ypk+1)
L Pi
D+ (y) = —-J_l———‘,
[T »j D «
b pj(y)
j=1
therefore we obtain '
Dr+1 (y)en™.
i pj(y)

J=1
Hence the lemma is true for I=k+ 1. q.ed.

Lemma 2. Let {,, be a primitive m™ root of 1. Then
1—{,¢0* (ifm=p’ (p:primenumber)),
1—{,e0™ (otherwise).

Proof.

1. m=p’. Since

0= [ (x=C)
G.p=1
we get
r= [l (1=&))
U.p=1
by letting x = 1.
(It is known from number theory that

p (m=p’(p:prime number))

(1) ={ (A1)

1 (otherwise)

is satisfied.)
For an arbitrary j which satisfies (j, p) = 1, there exist two integers ny, n, which
satisfy n;j + nym =1, n; > 0. Therefore we get
=1 _ (Gt —1 (G — 1
Gy =1 G —1 CwY —1
Clearly

= (@ e+ )+ Lo,

(e

= i1
L @ e e
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These relations imply
j_
GV =1
Cm -1
Hence
p=¢1-()"™ Eeo™.

Therefore if (1 — {,,)en ™, this relation means peo . But pg¢o™.
Hence (1 —{,)¢o0™.

2. m#p’
Since
0,x)= ] (x—())
(my=1
we get

1= ][ -G

Gm)=1
by letting x be 1 (see (A.1)).
Notice [[ (1 —((w))eo. Therefore (1 —¢,) *eo.

(G.m)=1,j#1

Hence (1 —{,)en™. q.ed.

Appendix B. Condition for @,((,)eo,,

g
Let the factorization of n be )’ p$’. Then it is known from number theory that
j=1
the next relation is satisfied,

D,(x) = @,(x""),

g
where n' = [] p; Therefore if we denote ()" = y, we get
i=1

d)n(cm) = (Dn’( y)

Notice that since n/n’ is a natural number, some powers of y are equal to 1.
Therefore three cases can occur.

1. y=1. In this case
p. (@=1)
(1)) =@, .(y)= .
L) = () { oo
Hence

(g0, (9=1),
?,(meo, (g>1).
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g

2. y#1, y" =1. This time, the order of y is || Pl (f;=0,1)(1 =j<g). We lose
2y

no generality if we assume the following: !

fi=1 (15j=k)

There exists some integer k which satisfies {fl

;=0 (otherwise)
@2-1) k=g

This means that {,, is a primitive nth root of 1. Therefore @,((,)=0, ie.,

?,({m)¢0,,.
2-2) k<g
It is known from number theory that the next relation is satisfied

k
(p*<y l:ll Pj)‘{ H Q*(ypl"'[Pi]"‘[Pj]"'Pk)}_.,

D) = Bply) =— = ,
{ ¢*(ypl"‘[l’j]'"l7k)},._
j=1

J

g
where * = H p;, and “[  ]” means to eliminate that prime number from the
k

product. 7**! e
In the right hand skide, every factor except @, (y’=' ) is an element of o, (see

Il »j
Lemma 1), and @, (y’=! ]) satisfies

k

e k=g—1

Hence

D,({m¢o, (k=g-1,
3. y#1, y" # 1. Let the order of y be N.
(3-1) (N,n)#n

This means some prime number p, exists, which satisfies p,|n’ and po/N. We
lose no generality if we assume p, = p,. Then we get the following:

g

I1»;
@pl(yj=2 ){ H @pl(ypz"'[Pi]"'[Pj]"‘Py)},,,

i<j

{ ﬁ (I)m(yl’l“'[m]-"vg)}
i=2

Every factor which appears in the right-hand side is an element of o, (see
Lemma 1).
Hence @,((,)eo,, .

(3-2) (N,n)=n'

¢n(£m) = d>n’( y) =
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This means n'|N
N .
(3-2-1) = =p§ Po#p; (1=Zj=9)

In this case, we get
g

I1 »;

i<j

{ ‘2 (yP1~“[Pj]"'Pg — 1)}

i=1

¢n(cm) = (Dn’( y) =

9 g
I1 »; [1»;
In the right-hand side, all factors except y’=* T 1 are contained in 0, and y’=! T 1
is not (see Lemma 2).
Therefore @,((,)¢o,,.

N o
(3-2-2) P ph(31=j=9)

We lose no generality if we assume p; = p,. Then we get

g

(y;nl j_ 1 {I—I (yPl ‘pil---Ipy)--pg __ 1)}

i<j

cpn(Cm) = (Dn’(y) -

e ‘
(=2 —1) { U (yPrtoil-pe 1)}...

g9 g
[1 7 17
In the righgt-hand side, algl factors except yi=! " 1and ye? "1 are contained in
I1»i [IRZ;
0*,and y’=* —1 and y»=? —1 are not (see Lemma 2). And

'H1PJ q
= .
y AP
g - - - P1 # la
Un  @e)  py
y}'=2 - 1
where “N” means “norm conmdered in Q(C, q+1) From now on, “+” means “we
do not mind whether it is + or —
Hence @,((,)¢o,..

+N

N
(3-2-3) —#p}
n

In this case, we get
g9

I1 7
(y=t — 1)'{ H(ypl“'ll’il"'lp,]wpg — 1)}

i<j

{ ﬂ(ypl ~[pjl-pg _ 1)}

(pn(Cm) = (pn'( y) =
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In the right-hand side, all elements are contained in 0™ (see Lemma 2).
Therefore @,((,)eo,..
To conclude this appendix, we obtain the following result:

D ()0 (ifﬁ =p’ (p:prime number,er)),
m

D,((,)ev,, (otherwise).

Appendix C. Norm of @ ,({,)
In Appendix B, we got

®,(,)¢0 (iff = p’ (p:prime number, er)>, (C.1)
m
@,(()eo0,, (otherwise). (C2)
Therefore in the case (C.2), it is trivial that
N, ®,(,) = £1,

since eo =N, ¢=+ 1.
Let us consider the case (C.1).

1.f>0
In this case, from Appendix B, @,({,,) can be written as

D,({n)=p¢ (Lev,,).
Hence we get
N @,(lp) = (Nwp)(Nwé) = £ Npp = £ p*™.

2. f=0
In this case, since @,({,,) =0, it is trivial that

N, ®,(,) =0.
3. f<0,ie, m=np’
There are two cases.
G-H(n,p) =1
In this case, from Appendix B, @,({,) can be written as
D, (L) =(Lpr — D¢ (Ee0,,).
Hence we get

Nm(pn(Cm) == Nm(cpf - 1) = i_ Nm/pf(pr(Cpf - 1)) =* Nm/pf(d)p.f(l))
=z Nm/pfp =x P¢(")~

(Here “N,, ,,” means “relative norm considered in relative algebraic number field

QL) Q(Lp)7)
(3-2(n,p)=p
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Let n=n'p® (', p) = 1). Then we get m =n'p**/. In this case, from Appendix B,

@,((,,) can be written as

_ (1) x
(Dn(Cm) _(Cpf+l _ I)é (éeom )

Hence we get

N0y = 4 Mo =1 NoypersNpee Gy = 1)
Nm(CpJWl - 1) Nm/pe+j(Npg+f(Cpf+l-— 1))
Nojpe (@)

e pe—1 e’
£ NopyjpessP” 7 =:iNm/p'”fpmp)

N pypoe AD i DY
=+ qu(n')(p(p“) = + prp(n)_

To conclude this appendix, we obtain the following result:

pem <ifﬁ = p/ (p:prime number, { > O))
m

0 (fm=n)
+ N, @) =

po® (ifﬂ = p/ (p:prime number, f > 0))
n

1 (otherwise)
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