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Abstract. We consider scattering for the equation (• +m2)φ + λφ3 = 0 on
four-dimensional Minkowski space. For m>0, one-to-one and onto wave
operators W^.H-^H are known to exist for all Λ^O, where H denotes
the Hubert space of finite-energy Cauchy data. We prove that the maps
(λ9u)\-^Wλ

±(u) and (λ9u)\->(Wλ

±)~1(u) are continuous from [0,oo)xH to
H, and extend to real-analytic functions from an open neighborhood of
{0} x Huffl x {0} a R x H to the Hubert space H_ x of Cauchy data with
Poincare-invariant norm. For m = 0, wave operators W^ are known to exist
as diffeomorphisms of H for all λ ^ 0, where here H denotes the Hubert space
of finite Einstein energy Cauchy data. In this case we prove that the maps
(λ,u)\-^Wλ

±{u) and (λ,u)\-^{Wλ

±)~1(u) extend to real-analytic functions from
a neighborhood of [0, oo) x H c R x H to H.

1. Introduction

The classical φ4 theory is the Poincare-invariant nonlinear wave equation:

(D + m2)φ + λφ3 = 0, m, λ ^ 0,

where • denotes the D'Alembertian on Minkowski space, Mo ^ R4, and φ is a
real-valued function on Mo. Its main interest is as a simple classical analogue of
the equations describing interacting relativistic quantum fields, which in four
dimensions have so far resisted attempts at a rigorous formulation. The possibility
of the existence of wave and scattering operators for this equation as transform-
ations of the Hubert space H of finite-energy solutions of the free equation (λ = 0)
was suggested by Segal, who first published results in this direction in 1966 [10].
The problem inspired a large amount of research, most focusing on the massive
case (m > 0). In 1978 Strauss [12] proved for this case the existence of wave
operators W±:H->H such that

lim^ ± 0 0 1 | U(t)u-V(t)W±u | | = 0

for each weH, where U(t) is the unitary group on H corresponding to time evolution
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by the free equation and V(t) is the nonlinear group action corresponding to time
evolution by the interacting (λ>0) equation. In 1983 Brenner [5] proved
the invertibility of the W±

9 hence the existence of the scattering operator

s = (w+y1w-.
In the massless case, use of the Hubert space of finite-energy data is plagued

by "infrared divergences," i.e., by the fact that the spectrum of the free Hamiltonian
is not bounded away from zero. However, the massless case is conformally invariant,
and this additional symmetry makes natural the use of the "Einstein energy norm,"
the weakest norm dominating the Minkowski energy norm relative to which the
conformal group acts continuously on solutions of the free Eq. [8]. Wave
and scattering operators as transformations of the Hubert space of finite Einstein
energy data were recently proved to exist by Segal and the present authors [3].

The initial problem having been solved, it is now reasonable to study the
regularity properties of these wave and scattering operators, and determine for
example whether they are continuous, smooth, or even real-analytic, as functions
of the Cauchy datum or of the coupling constant λ. Some work along these lines
has already been done. In the massive case, Morawetz Strauss have proved that
the scattering operator is a diffeomorphism of a Banach space with norm stronger
than the energy norm, and have used certain analyticity properties of this map
[6,7]. These analyticity properties were expanded upon by Raczka and Strauss
[15]. Strauss has also proved that the wave and scattering operators are
homeomorphisms in a neighborhood of zero [13]. More recently, one of the present
authors proved for the massless case that the wave and scattering operators are
diffeomorphisms of the space of finite Einstein energy data [2].

Here we show that in the massive case the maps (Λ, u) i—• Wλ

 ± w, (λ, u) i—• (Wλ

 ±)"1 w,
and (λ9u)\-*Sλu are continuous from [0, o o ) x H to H, where H denotes the
space of finite-energy data. Moreover, they extend to real-analytic functions
from an open neighborhood of {0}xHu!Rx{0} in ίR x H to the space
H 1/2([R3) © H~ 1/2(IR3). For the massless case, taking H to denote the space of finite
Einstein energy data, the maps (/l,w)ι—•VΓλ

±u, (λ9u)\-*(Wλ

±)~1u9 and (λ,u)\-+Sλu
extend to real-analytic functions from an open neighborhood of [0, oo) x H c: (R x H
to H. Perhaps the most surprising aspect of these results is analyticity at λ = 0.

2. Analytic Nonlinear Semigroups

For the study of scattering, nonlinear wave equations are most conveniently
formulated in terms of groups of nonlinear time evolution operators on a Banach
space of initial data. We begin with a useful condition for a semigroup of nonlinear
operators to be analytic in the initial datum, or analytic in parameters such as
coupling constants. (Here and in what follows, "Banach space" means "real Banach
space" and "analytic" means "real-analytic" unless otherwise specified; also, all
function spaces are of real-valued functions.)

Let X and Y be Banach spaces, and suppose that Q £ X is open and f:Q -> Y.
We define / to be "smooth" if for all xeQ and all n ^ O the Frechet derivative
Dnf(x) of / at x exists; Dnf(x) is an element of L"(X, Y), the Banach space of
continuous multilinear maps from X to Y, with norm as in [4]. Given ZzeX, let
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Dnf(x; h) denote the result of evaluating Dnf(x) on the n-tuple (h,..., h). We define
/ to be "analytic" if / is smooth and for each xeQ there exists ε > 0 such that the
sum £ {ri)~1Dnf{x\h) converges to f(x + h) for all heX with | |ft | |<e. The

following is an analytic version of the implicit function theorem:

Lemma 1. Suppose that X,Y, and Z are Banach spaces and Q is an open
neighbourhood of the point (x, y)eX x Y. Suppose thatf: Q-+Zίs analytic, /(x, y) = 0,
and D2f{x,y):X^Z has a left inverse, where the subscript 2 indicates the derivative
in the second argument. Then for some open set P containing x there is a unique
analytic function g:P-+Y such that g(x) = y andf(x\g(x')) = 0 for all x'eP.

Proof. We may extend / to a complex-analytic function / in a neighborhood Q
of (x, y)eCX x CY [1]. D2f(x, y) is the complex-linear extension of D2f(x9 y), hence
it has a left inverse. By the complex-analytic implicit function theorem [4], for
some neighborhood PUCX of x there exists a complex-analytic function g:P-^ CY
such that g(x) = y and /(x;, g{x')) = 0 for all x'eP. The restriction of g to P = Pn X
has the desired properties; uniqueness follows from the usual implicit function
theorem. •

Let X and Y be Banach spaces. Given /:X-> Y, we define / to be "boundedly
Lipschitzian" if for each bounded B a X there exists M > 0 such that

| | / (x)-/(x / ) I I^M| | x-x ' | | . (1)

holds for all x9x'eB. Given a set S and a function f:S x X-> Y, we write fλ for
the function f(λ9-):X->Y9 and say that the functions {fλ}λeS are "uniformly
boundedly Lipschitzian" if for each bounded ΰ c X there exists M > 0 such that
(1) holds for all x,x'eB for all the functions fλ.

Proposition 2. Suppose that X is a Banach space and U: [0, GO) X X -> X is a strongly
continuous semigroup of bounded linear operators on X. Suppose that S is an open
subset of a Banach space Z, the function N:S xX-+Xis analytic, and the functions
{Nλ}λeS are uniformly boundedly Lipschitzian. Then for each bounded open BaX
there exists ε > 0 such that given λeS, xeB there is a unique /eC([0, ε], X) satisfying:

fit) = U(t)x + ]ϋ{t- s)Nλ(f(s))ds. (2)
o

The map (λ,x)\-*f is analytic from S x B to C([0,ε],X).

Proof For small enough ε>0, the existence and uniqueness of /eC([0,ε],X)
satisfying (2) given any λeS, xeB is a basic result of the theory of nonlinear
semigroups [9]. Moreover, / is the unique fixed point of the contraction Tλx

mapping the open set

into itself, given by

(TλtXg)(t) = U(t)x + 1 l/(ί - s)Nλ(g(s))ds.

The hypotheses imply that the map T:S x B x C([0,ε],X)->C([0,ε],X) given by
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T(λ, x, g) = TλtXg is analytic. Since each map Tλx is a contraction, the Frechet
derivative D 3 T(λ, x, #) of T with respect to # has norm < 1 for all (λ, x, g). Defining
R.SxBx C([0,ε],X)->C([0,ε],X) by

R(λ,x,g)=T(λ,x,g)-g9

it follows that R is analytic and D3R(λ,x,g) has a left inverse for all (/L,x,#). By
Lemma 1 this implies that /eC([0,ε],X), which satisfies

depends analytically on (λ,x)eS x B. Π

Proposition 3. Assume the hypotheses of Proposition 2, and suppose /eC([0, T],X)
satisfies 2) for some (λ,x)εS xX. Then for every (λ',xf) in some neighborhood
QaS x X of (λ,x) there is a unique geC([0, T],X) satisfying

g(t) = 1/ίOx' + } U(t - s)Nλ,(g(s))ds (3)
o

and the map {λ\x')\-^g is analytic Q to C([0, T],X).

Proof. Choose δ > 0 such that the closed ball of radius δ about λ is contained in
S. Let r = s u p ί 6 [ 0 Γ ] || fit) \\ + 1 and let C = sup t e [ 0 > τ ] || V(t) ||. Choose M > 0 such that

\\NAy)-NAy')\\SM\\y-y'\\

for all y,y'eX with \\y\\, \\y'W^r and all λf with | | 2 r - i | | <<5. Choose ε >0 such
that εCe C M T < 1. Let

2 = {(^, V)eS x X: ||A' - A I) < 5, II xr - x II < ε}.

Suppose that (λ\ x')eQ; we claim that there exists a unique #eC([0, T], X) satisfying
(3). The uniqueness of g follows directly from Proposition 2. To prove existence it
suffices by Proposition 2 to show that given T0<T and #eC([0, Γ0],X) satisfying
(3), we have:

SUpfe[O,Γo] II 0(0 II ̂ r

The proof is by contradiction. Suppose that for some £e[0, Γ o ] we have
|| g(t) || > r, and let τ = inf {te[0, T o ] : || #(ί) || > r}. By the continuity of ft || ̂ r(τ) || = r.
On the other hand, 2) and 3) imply that for all £e[0,τ],

|| g(t) - f{t) || ^ Cε + CM J || g(s) - f(s) \\ ds,
o

so by GronwalΓs inequality and our choice of ε it follows that

| | 0 ( τ ) - / ( τ ) | | ^ ε C e C M τ < l ,
hence

Il0(τ)ll<ll/(τ)|| + l^r .

Finally, to prove that geC([0, T],X) is analytic as a function of (λ',x')eQ, it
suffices to make repeated application of Proposition 2, using the semigroup
property of the nonlinear time evolution. •
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3. The Massless Case

Because of its conformal invariance, scattering for the equation

V = 0 μ^O) (4)

may be treated using the universal cover of conformally compactified Minkowski
space. We begin by recalling the essential aspects of this method, as developed in
[2,3].

In addition to the usual "Minkowski energy norm" on the Cauchy data space

we define the "Einstein energy norm":

Though not immediately obvious from this definition, || | | £ is indeed a norm, and
in fact || u || £ ^ | |u | | M for all M G C O 0 0 ^ 3 ) © ^ 0 0 ^ 3 ) [8]. Let Hdenote the completion
of C Q 0 0 ^ 3 ) © Co°°(R3) with respect to || \\E;U is a real Hubert space. For equation
(4) with λ = 0, the time evolution of Cauchy data (φ, dtφ)eH is given by the action
of a strongly continuous group U(t) of bounded linear operators on H.

Given ueH there is a unique global distributional solution φ of 4) on M o with
u = (φ9dtφ)\t=Ό, and for all SEU the restriction {φ,dtφ)\t=s is well-defined as an
element of H. Letting V(s)u = (φ,dtφ)\t=s9V is a strongly continuous group of
diffeomorphisms of H, and for any weH there exist w+,w_eH such that

limt^±oo\\U(t)u-V(t)u±\\M = 0.

We define wave operators W±:H-^H such that W±(u) = u±. These wave
operators are diffeomorphisms, so there exists a smooth scattering operator
S = (W+)~~1W~:H->H. When we wish to make explicit the dependence of W±

and S on the coupling constant λ we write them as W^ and Sλ. We caution the
reader that the wave operators as defined here are the inverses of those in [2,3],

The existence of these operators is proved via the following correspondence.
Let M denote the universal cover of the conformal compactification of M o ,
which may be identified with the "Einstein universe," that is, U x S3 given
the metric dt2 — ds2, where t denotes the [R-valued coordinate on M (the "Einstein
time") and ds2 denotes the Riemannian metric on the unit sphere S3 a M4. Let
H(5) = HX{S3)®L2{S3)9 with norm given by

Let A be the skew-adjoint operator on H(S) given by

A(uuu2) = (u2,-(Δ+l)u1)

on the domain H 2 ( S 3 ) 0 H 1 ( S 3 ) , and let JVA:H(S)->H(S) be the map given by



14 J. C. Baez and Z.-F Zhou

Given ueH(S) and λ^O there exists a unique continuous function /:R-*H(S)
such that

f(t) = eAtu + \eA«-*Nλ(f(s))ds. (5)
o

Given weH(S), let f(t) = (fι(t\f2(ή% and let φ be the function defined a.e. on M by

φ(£,x) = /1(t)(x). (6)

Let C + = (p ± t = π) c M, where p denotes the arclength from the point (1,0,0,0)eS3.
Let H(C+) denote the Sobolev spaces H1(C+\ defined using the identifications of
C+ with S3 arising from the projection M->S3, with norm

IMI2 = H ( V κ ) 2 + w

2.
S3

Then the restrictions φ\C± are well-defined as elements of H(C+); moreover, the
maps ( ίy ± )- 1 :H->H(C ± ) given by

are diffeomorphisms. When we wish to make explicit the dependence of these
operators on the coupling constant λ we shall write them as {Wλ

±)~1. Finally, for
certain orthogonal isomorphisms U:H ->H(S), U+ :H ->H(C±) (independent of A),
there is a commutative diagram:

H —^-> H

U (6)

The analyticity properties of the wave and scattering operators are given by:

Theorem 4. The functions (λ,u)\-^Wλ

±u, (λ,u)h-^(Wλ

±)~1u, and (λ,u)\-+Sλu extend
to analytic functions from an open neighborhood of [0, oo) x H a U x H to H.

Proof We begin by extending the function (λ, u) ι-> (Wλ

+) ~1 u to an analytic function
on an open neighborhood of [0, oo) x H(S). If λ < 0, there may not be a global
solution of Eq. (5). Note, however, that N\U x H(S)-• H(S) is analytic, and the
functions {Nλ} are uniformly boundedly Lipschitzian as λ ranges over any bounded
set in IR (these follow immediately from the Sobolev inequalities and the fact that
all derivatives of N above the fourth vanish). Thus by Proposition 3, there exists
an open set P a U x H(S) containing [0, oo) x H(S) such that for each (1, u)eP there
is a unique /eC([0,π],H(S)) satisfying (5), and the map (λ,u)\-^f is analytic from
PtoC([0,π],H(S)).

Let R denote the region in M defined by {0 < τ < π — p). As in Theorem 5 of
[2], there is a bounded linear operator W:H(S)®L2{R)-+H(C+) such that

(Wλ

+Γ1u=W(u,-λφ3\R\

where φ is defined by (6). Since (λ, W)H^/ is analytic from P to C([0,π],H(iS)), the
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Sobolev inequalities imply that (λ,u)\-> — λφ3\R is analytic from P to L2(R). It
follows that the map F:P-»H(C+) defined by

F(λ,u)=W(u,-λφ3\R)

is analytic, and extends the map (λ,u)t-+(Wλ

+)~ιu.
Next we extend the function (λ9u)\-*Wλ

+u to an analytic function on an open
neighborhood of [0, oo) x H(C+). Wλ

+ is an orthogonal linear operator for λ = 0
[3]. This implies that there is an open set Q^P containing [0,oo) x H(S) such
that for each (λ,u)eQ with λ<0 the Frechet derivative DFλ(u) satisfies

One can choose Q such that each "slice" Q n {λ = c] for c < 0 is convex. We now
restrict F to Q, still denoting this restriction as F.

We claim that for each λ, Fλ is a difϊeomorphism onto its open range. For
λ > 0 this follows from Fλ = (Wλ

+)~1. For λ < 0, the inverse function theorem, the
inequality (7), and the fact that (Wo

+)~1 is orthogonal imply that the range of Fλ

is open. It thus suffices to show that Fλ is one-to-one for λ < 0. Suppose that λ < 0
and W,Z;GH(5) are in the domain of Fλ, a convex subset of H(5). Then by (7),

\\Fλ(u)-Fλ(v)\\

so Fλ is one-to-one.
Defining G:Q-+Ux H(C+) by

it follows that G is analytic and a diffeomorphism onto its open range. By an
analytic version of the inverse function theorem (a corollary of Lemma 1) the
function G~ * is analytic from Ran G to Q. Since G~\λ> u) = (λ9 Fλ~\u)\ the function
(λ,u)\-^Fλ~

1(u) is analytic from RanG to H(5). It is easy to check that the
map (λ,u)\-^Fλ~

1(u) extends the map (λ9u)\-+Wλ

+u to an open set containing
[0,oo)xH(C + ).

By symmetry, analogous arguments prove the existence of analytic maps with
open domains extending the maps (λ,u)\-+Wλ~u and (λ9u)\->(Wλ~)~1u. The
statement of the theorem follows from diagram (6) and the definition of Sλ.

4. The Massive Case

Scattering for the massive φ 4 theory,

( • + m2)φ + λφ3 = 0 m > 0, λ :> 0, (8)

presents problems of greater technical subtlety than the massless case. We begin
by briefly reviewing the relevant results of [5, 9, 12]. The Hubert space of
finite-energy Cauchy data, H, is defined to be iί1([R3)0L2([R3) with norm given by:
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Time evolution of finite-energy Cauchy data for the free equation is given by a
strongly continuous group of orthogonal operators U(t) acting on H. Given ueH
there is a unique distributional solution φ of (8) on M o with u — (φ,dtφ)\t=sQ, and
for all seU the restriction (φ,dtφ)\t=s is well-defined as an element of H. Letting
Vλ(s)u = (φ,d tφ)\ t=s, Vλ is a strongly continuous group of diffeomorphisms of H,
and for any weH there exist u + ,u_eH such that

lim \\U(t)u-Vλ(t)u±\\=0.
f->±oo

Wave operators PF λ

±:H->H may thus be defined such that Wλ

±(u) = u±. These
wave operators are one-to-one and onto, so there exists a scattering operator
Si = (Wk+riWlr:H-+K.

We now prove a continuity result for the wave and scattering operators:

Theorems. The functions (λ^u^W^u, {λ,u)\-^{Wλ

±)~1u, and (λ,u)t->Sλu are
continuous from [0, oo) x H to H.

Proof The proof will be divided into a sequence of lemmas; Lemma 6 proves the
continuity of (/l,w)ι—•(WΛ~~)~1u, and Lemma 10 proves it for (λ,u)\->W\~u.
Analogous arguments imply corresponding continuity results for Wλ

+ and (Wλ

+)~1

and the continuity of (λ,u)\-+Sλu follows.
We begin with some definitions and facts. Define Nλ on pairs of measurable

functions on 1R3 by Nλ{uί9u2) = {0, — λu^\ The function (λ,uί,u2)\-^Nλ(u1,u2) is
analytic from (R x H to H, since the Sobolev and Holder inequalities imply it is
smooth, and all derivatives above the fourth vanish. Also, the functions {Nλ} are
uniformly boundedly Lipschitzian from U x H to H as λ ranges over bounded
subsets of R. The nonlinear time evolution group Vλ(t) satisfies

Vλ(t)u = U(t)u + ]u(t- s)Nλ(Vλ(s)u)ds. (9)
o

Let the "potential energy," Gλ:H-»lR, be the continuous function given by

Gλ(uuu2) = ϊλ$uS. (10)
R3

The following conservation of energy results hold [12]: given weH and λ > 0, for
allί,

II Vλ(t)u | | H

2 + Gλ(Vλ(t)u) = || u | | H 2 + Gλ(u) = || W f ) ' *u | | 2

H

Lemma 6. The function (λ, u)\-^(Wλ~)~1u is continuous from [0, oo) x H to H.

Proof For convenience let F(λ,u) = (Wλ~)~1u. Suppose that λ'-+λ in [0,2) and
u' -> u in H. Let/(ί) = Vλ(ήu and let f\t) = Vλ\t)u'. Given 0eCo°°([R3) Θ C0°°([R

3) c H,
then by (9) and the definition of the wave operator:

\= lim
t-+ - 0 0

ί \<U(s)g,Nλ(f(s))-Nλ.(f'{s))>\ds.
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The first term goes to zero as u' -* w, and the Sobolev and Holder inequalities imply
that for some constant fc,

ί KU(s)g,Nλ(f(s))~NAf'(s))}\ds
— oo

g k(λ + λ') ] II(U(s)g)21| J | | / ( 5 ) | | H + ιι/',S)iιH)21| f(s) -f'(s)\\Hds.

By an L00 decay estimate for solutions of the free Klein-Gordon equation with
Co°° Cauchy data [10], for some constant c>0,

This function of s is integrable. By Proposition 3, | | / (s)-/ ' (s) | | H ->0 for all seU.
Moreover, (11) implies the bound

(II f(s) IIH + II f'(s) IIH) 2 II f(s) - f'(s) | |H < K

for all seR and all u,u\λ,λ' in given bounded sets. By the dominated convergence
theorem, the integral above approaches zero. It follows that (g,F(λ,u)) is a
continuous function of (A, u) for all geCo^iU3) © C0°°(R3). Since CO°°(1R3) 0 C0°°(R3)
is dense in H and F(λ,u) is locally bounded by (11), this implies that (g,F(λ,u)}
is a continuous function of (λ,u) for all geH.

To prove that F is continuous from [0, oo) x H to H it thus suffices to show
that | |F(A',W')IIH^ \\F(λ,u)\\u. This follows from (11), as

|| F(λ, u) | | H

2 = || u | |H 2 + GA(u), || F(λ\ u') | | H

2 = || v! | | H

2 + Gλ\u\

and Gλ(u) is continuous as a function of (λ9 W)G[0, OO) X H. Π

The techniques of the rest of the proof are based on ideas of Strauss [12, 13].
We introduce the additional spaces X = L4(1R3) © L 4 ' " \U3) and Y = {0} © L4/3(ίR3).
The function (λ,uί9u2)t-+Nλ(uί,u2) is analytic from U x X to Y, since the Holder
inequalities imply it is smooth, and all derivatives above the fourth vanish. The
space H is dense and compactly embedded in X, and the potential energy as defined
in (10) is continuous as a function of (Λ,u)e[0, oo) x X. Note that H n Y is dense
in Y; as shown in [12], each U(t) with t > 0 extends uniquely to a continuous map
from Y to X, also denoted U(t\ which satisfies

|| U(t)x | | x ^ cΓ1'21| x | | γ . (12)

Lemma 7. Let I g U be an interval. Given λeU and / G L 4 ( / , X ) , the function

M(λJ)(t)= J U(t-s)Nλ(f(s))ds

also belongs to L4(/,X). Moreover, M:Ux L4(/, X) -• L4(/, X) is analytic.

Proof. Our proof follows that of Lemma 1 to [12]. Suppose that/eL4(J,X). Since
(λ, u)\-±Nλ{u) is analytic from R x X to Y and satisfies || Nλ{x) \\γ = λ \\ x | | x

3 , the map
(λ, f)t->Nλ°f is analytic from R x L4(/, X) to L4/3(/, Y). It thus suffices to show that
the map from g to the function
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h{i) = J U(t-s)g(s)ds
In{s^t}

is bounded from L4/3(/,Y) to L4(/,X) This follows from (12) and the fact that
convolution with \t\~1/2 is bounded from L4/3((R) to L4(R) [11]. Q

Lemma8. For each open ball B about the origin o/IRxH, there exists TeU such
that given (λ,u)eB9 there is a unique /eL4(/,X) with

f(t)=U(t)u+ \ U(t-s)Nλ(f(s))ds
— oo

where I = ( - oo, T]. The map (λ, u)i->/ is analytic from B to L\l, X). If λ^O, f
satisfies

f(t)=Vλ(t)Wλ-(u).

Proof. The first statement follows from Theorem 1 of [12], as does the expression
for / for λ ̂  0. Define R: R x H x L4(/, X) -» L4(/, X) by

R(λ,u,f)(t)=U(t)u+ } C/(ί-s)iVλ(/(S))d5.
— oo

There is a bounded linear operator from ueH to L/( )MGL4(/,X) [14]. By this fact
and Lemma 7 it follows that R is analytic.

Let B be an open ball about the origin of (R x H. As shown in the proof of
Lemma 2 of [12], there exists Tsuch that for all (λ,u)eB the map R(λ,u,) is a
contraction on

B' = {gsL\hX): II9 IIL^X) < 2II U(-)u ||L4(/>X)}.

Let feB' be the unique element such that R(λ, w, /) = /; it is clear that this definition
of/ agrees with that in the statement of the lemma. By Lemma 1, the map (A, w)r->/
is analytic from B to L4{I,X). •

Lemma 9. Wiί/i ί/ze same notation as in Lemma 8, given (λ9u)eB with λ^O, then
/ G C ( / , H ) . Moreover, the map (λ,u)\-^f is continuous from Bn{λ^0} to C(/,H)
with its weak~* topology.

Proof. Lemma 8 implies that /eC(/,H) if (λ,u)eB and λ^tO. Suppose that
(λi^u^^u) in Bn{λ^0} and fιeC(I,H) are defined as in Lemma 8. Then by
(11), {/f} is a bounded sequence in C(/,H). Moreover any weak""* accumulation
point of {fi}6C(/,H) must equal/, since f{->/in L4(/,X) by Lemma 8, and H c X .
It follows that ft ->/ in the weak - * topology of C{I, H). •

Lemma 10. The function (λ,u)\-+Wλ~u is continuous from [0, oo) x H to H.

Proof. We shall show that for each open ball B about the origin in (R x H the
map (λ9u)\-+f{T), where/is as in Lemmas 8 and 9, is continuous from Bn{λ^0}
to H. The lemma then follows from continuity result for time evolution over a
finite interval given by Proposition 3.

Suppose that (λhUi)^(λ,u) in Bn{λ^0} and / { G C ( / , H ) are defined as in
Lemma 8. By Lemma 9, /, (T)->/(T) weakly in H, so it suffices to prove that
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and

Gλi(fi(T))=\\ui\\\ui\\H

so it suffices to prove that GΛ.(/ ί(T))->Gλ(/(T)). This follows from the facts that
fi(T)-+f(T) weakly in H, H is compactly embedded in X, and Gλ(u) is continuous
as a function of (λ, u)e[0, oo) x X. •

Corollary 11. Let B(U,H) denote the space of bounded continuous functions from U
to H. Given (λ, w)e[0, oo) x H and defining f by f(t) = Vλ(t)Wλ~(u), then the map
(λ,u)\-+ is continuous from [0, oo) x H to B(U9Ή) with the topology of uniform
convergence on compact sets.

Proof This is a consequence of Proposition 3 and Theorem 5. •

Lemma 8 gives a sense in which the solution as a function on space-time (in
the far past) depends analytically on λ and the datum at t = — oo. We conclude
with a related result on the analyticity of the wave and scattering operators for
small values of λ or the datum. We define the Hubert space of Cauchy data
H _ x = iί1 / 2([R3)0fί r~1 / 2(IR3); this space is of importance because regarded as a
space of solutions of the free equation it has a Poincare-invariant norm.

Theorem 12. The functions (λ, w)ι-> Wλ

±u, (λ, u)\-*{Wλ

±)~ V and (λ, u)\-+Sλu extend
to analytic functions from an open neighborhood of {0} x H u IR x {0} c U x H to

Proof We first prove this for Sλ. Taking the interval / to be IR, the map
M: IR x L4(/, X) -> L4(7, X) given in Lemma 7 has || D2M || < ^ in a neighborhood of
the set of {0} x L4(/,X)u U x {0}, since on this set D2M = 0. We may choose this
neighborhood, say P, such that each slice Pn {λ = c] is an open ball of radius r(c)
about the origin of L4(/,X), with r(0) = oo.

Let k be the norm of the bounded operator mapping ueH to L/( )weL4(/,X)
[14]. Define g<= U x H by requiring that the slice Qn{λ = c} is an open ball
of radius ^fc-1r(c) about the origin of H. Q is an open neighborhood of
{0} x H u l R x {0}, and we shall show that (λ,u)\->Sλu extends to an analytic
function F from Q to H ^ .

Define Λ J x H x L4(7, X) -> L4(/, X) by

We claim that for (λ, u)eQ, the map R(λ, u, •) is an analytic contraction of the open
ball of radius r(λ) about the origin of L4(/, X). The map R is analytic by the same
argument as in Lemma 8, and i f / G L 4 ( / , X ) has | | / | | <r(λ\ then:

|| R(λ, u, /) || < \r{λ) + JII D2M(K tf; f) \\ dt < r(λ).

Similarly, if/,#eL4(/,X) have | | / | | , \\g\\<r(λ)9 then:
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\\R(λ,u,f)- R(λ,u,g)\\^]\\D2M(λ,g

It follows that for (λ,u)eQ,R(λ,u, •) has a unique fixed point / in the ball of
radius r(λ) about the origin of L4(/,X), and as in Lemma 8 the map (/l,w)ι—•/ is
analytic from Q to L4(/, X). By Lemma 8, if λ ^ 0 then / satisfies/(ί) = Vλ{t)Wλ~{u\
hence

Sλ(u) = u+ lim U(-ή\ U(t-s)Nλ(f(s))ds, (13)

with the limit being taken in H, but the integral taken in X.
Note that we may identify the dual of H_! with the space Hx = H3/2(U3)®

H1I2(U3) via the formula for the inner product < , >H. We claim that for all (λ, u)eQ
oo

and geH1 the integral j (U(s)g,Nλ(f(s))}Hds is absolutely convergent, that
— oo

00

0 ^ < 0 , W > H + ί <U(s)g,Nλ(f(s))}wds (14)
— oo

defines an element F(λ9u) of H^ ^H_l9 and that F:Q-^H_1 is analytic. Given
these, it is easily checked using (13) that F(λ9u) = Sλu for all (λ,u)eQ with λ^.0
and ueC0

0O(U3)@C0

co{U3), hence by continuity for all {λ,u)eQ with λ^O. F is
thus the desired extension of (λ,u)\->Sλu.

To show absolute convergence of the integral it suffices to note that
NλofeL4/3(I9Y) and (U(')g)2eL4(I,L4(U3)% where the subscript 2 denotes the
second component. The latter follows from the result of Stricharz [14] that the
linear operator g*-+(U(')g)2 is bounded from Hx to L4(/,L4((R3)). The observations
also imply that (14) defines an element F(λ,u) of H ^ . Since ΛίA°/eL4/3(/,Y)
depends analytically on (λ,u)eQ, the function F:Q-^H_1 is analytic.

Taking / to be (— oo, 0], a completely analogous argument proves the existence
of the desired extension of (λ, w)h-> Wλ~u, and taking / to be [0, oo), we can similarly
treat {Wλ

+)'1. The other cases follow by symmetry. •

5. Conclusions

A number of interesting questions about the massive case remain open. One might
boldly ask if the functions {λ,u)\-^Wλ

±u or (λ,u)\-^(Wλ

±y1u extend to analytic
functions from an open neighborhood of [0, oo) x H to H. More modestly, it is
still not known whether these functions are locally Lipschitzian, either in λ or in
u. In particular, for Sλ to be locally Lipschitzian would be an interesting stability
property.

It is also natural to investigate the map from the data ueH at t = — oo to the
solution feB(M,H), as given in Corollary 11. It is not known if this map is
continuous when B(U, H) is given the topology of uniform convergence.
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