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A Note and Erratum Concerning "Min-Max Theory
for the Yang-Mills-Higgs Equations"*
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Abstract. An error in an argument which was used to prove the existence of
non-minimal solutions to the SU(2) Yang-Mills-Higgs equations has been
shown to the author. A revised proof is presented here to establish the existence
of infinitely many non-minimal solutions to the afore-mentioned equations.

1. Introduction

In [Tl], I described the topology of the configuration space of finite action pairs
(A, Φ) of connection on the principal bundle IR3 x SU(2) and section of the
associated vector bundle (R3 x Lie Alg SU(2). The action functional which defines
the topology is the Yang-Mills-Higgs action in the Prasad Sommerfield limit. The
space of all finite action pairs, modulo the action of the gauge group C°°(IR3; 517(2)),
was denoted by £; and I proved that B was homotopy equivalent to the Λ2(S2)/S1,
where Ω2(S2) is the space of smooth maps from S2 to S2 which take the north
pole to itself and the group S1 acts by rotating the image S2 about the equator.

Associated to each configuration (A, Φ) is a Dirac operator coupled to the
vector bundle IR2 x C2, and I showed that the assignment to each (A9 Φ) of this
Dirac operator defines a continuous map, δ, from B into the space of Fredholm
operators. Proposition C3.1 of [Tl] asserts that this map δ is homotopically
non-trivial and pulls back non-zero cohomology of arbitrarily high degree from
the space of Fredholm operators. Ralph Cohen has shown me an error in the proof
of Proposition C3.1, and in fact, he has thrown considerable doubt onto its veracity.

Proposition C3.1 now sits unproved because Lemma C3.2 is erroneous. This
lemma claims to construct an embedding of the configuration space Cn of unordered
n-tuples of distinct points of (R3 into the monopole number n component, Bn, of
B. In fact, the construction in Definition C4.2 provides only an embedding of a
fiber bundle over Cn, the fiber being (xnS

1)/S1, where S1 acts on the n-torus
diagonally. This fiber bundle has no continuous sections—the proof of Lemma
C2.1 errs in assuming the existence of a section. This bundle is described for the
interested reader at the end of this note.
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With Proposition C3.1 unproved, Theorem A 1.2 stands unproved, and thus so
does Theorem A1.3 in [T2] which asserts that the full Yang-Mills-Higgs
equations in the Prasad-Sommerfeld limit have an infinite set of gauge inequivalent
solutions in each component Bn of B which have action greater than any fixed
value. The main purpose of this note is to give a proof of Theorem A1.2 of [Tl], and
thus of Theorem A1.3 of [T2].

2. The Hessian Proof

To prove Theorem A1.3 of [T2], the Dirac operator in the erroneous proof of the
theorem will be replaced by another elliptic operator, namely, the hessian operator
for the Yang-Mills-Higgs functional which was introduced in [T3]. Using the
hessian operator, one can make an argument which is similar, at least in outline,
as the failed argument which used the Dirac operator.

For this new argument, introduce from [Tl] the space B' which admits an S1

action whose orbit space is B. The space B' is homotopy equivalent to Ω2(S2). On
the one hand, we know from Sect. C.2 of [Tl] and from [T3] that the value of
the Yang-Mills-Higgs functional on B' determines a bound on the number of
eigenvectors of the hessian with small eigenvalue. On the other hand, we have,
from topology, that the cohomology of a path component of Ω2(S2) and hence
of Bf is non-trivial in infinitely many dimensions [M]. Morse theory relates the
hessian of a function to the topology of the space, and once a suitable Morse
theory has been established for the Yang-Mills-Higgs functional, the preceding
two facts give Theorem A 1.3.

The point of [T2] was to establish a min-max theory for the Yang-Mills-Higgs
functional. The step from min-max theory to Morse theory is a technical one
which involves, mostly, the establishment of an appropriate manifold structure on
B'.

To begin, let B'k be the component of B' with monopole number k. We know
from [G] that the action functional, a maps B'k into [4π | fe|, oo), and we know from
[T4] that Mk = a~1(4π\k\)r^Bk is non-empty. Fix E>0 and let B'kE denote the
subspace of Bk on which the a has value no more than E. From [T2], we can deduce

Proposition 1. (1) The set of critical points of a with critical values in (4π|/c|,£] is
a compact set. (2) There exists E>4π\k\ and a smooth, a-nonincr easing retraction
of B'kE onto Mk.

Here, the term α-nonincreasing means that the retraction r:[0,1] x B'kE-+BkE

is such that for fixed c in BkE,a(r( ,c)) is a non-increasing function on [0,1].
Now, recall that the main theorem in [T2] asserts that min-max converges

for the functional a. Indeed, if we let F denote a homotopy invariant family of
compact subsets of Bk, and if we let E denote the infimum over the subsets of F
of the supremum of a on the subset, then we can deduce from [T2]

Theorem 2. Given an open set N which contains the set of critical points of a in B'kE,
there exists δ>0 and a set U in the family F with the property that U <= BkE + δ and
that Ur\(B'kE+δ-B'kE_δ) lies in N.

By definition, the gradient of a vanishes at a critical point, so that a is then
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approximated in a neighborhood by the higher order terms of its Taylor's expansion
about the critical point. The second order term is its hessian, so the hessian, if not too
degenerate, can be used to study the topology of B'kE+δ — B'kE_δ. This is, of course,
the heart of Morse theory.

To study this hessian, we require a nice local coordinate chart around each critical
point; and such a chart is provided in the next proposition. In this proposition,
F-» R3 denotes the vector bundle (Γ*IR3 0 0) x su(2) and, for ceBf, HC(V) (with the
inner product < >c) is the Hubert space of sections of V which is defined in Sect.
B6 of [Tl]. Let TC(V) denote the (closed) subspace of HC(V) which consists of pairs
(a, φ) which obey the generalized divergence condition *dA*a + [Φ, φ] = 0.

Proposition 3. Let c = \_A, Φ] c B'k be a critical point of the Yang-Mills-Higgs
functional. There exists ε > 0 and a neighborhood N of c and a homeomorphism of
N onto the open ball {φ = (α, φ)eC°°(F)n TC(V): \\ ψ \\c < ε}.

A generalization of this proposition is proved by Floer in [F], but with the
a priori estimates of Sect. C of [T2], the proof is much easier than Floer's
generalization. Mostly, the proof is a fairly straightforward modification of the
local slice argument that is used in Yang-Mills theories on compact manifolds
(cf. [F-U]). However, to start, one must know an obscure fact: When an L2 -function
/ on [R3 is given, there exists a unique, continuous function u on IR3 which obeys

M(0) = 0, ί/weL6(Γ*R3), VdueL2 and the Laplace equation d*du = f.
Proposition 3 allows us to use the results of [T3] to analyze the hessian, ha,

oίa as a bilinear form on TC(V). When ceB'k is a critical point of α, say that ψeTc(V)
is an eigenvector of the hessian if there exists a real number λ (the eigenvalue) such
that ha (ψ9η) = λ (ψ9ηyc for all ηeTc(V). For λ<l, elliptic regularity insures that
these eigenvectors are a priori smooth. One can deduce from [T3] that:

Proposition 4. Suppose that ceB'k is a critical point of a and that λ<\. The number
of eigenvectors of ha\c with eigenvalue in (— oo,/l] is bounded a priori from a(c}.
Furthermore, if ι//ETc(V) is orthogonal to the span of these eigenvectors, then

The next proposition is also an immediate corollary of [T3] (it is also proved
in [F]):

Proposition 5. The space Mk is a manifold of dimension 4 | fc | .
With Proposition A.4.3. of [T2], we now have enough data to establish

Theorem A.1.3 of [T2]:

Proof of Theorem A.I .3. Fix E; then using the coordinate system in Proposition
3, it is not hard to perturb a on B'kE to a functional a' which agrees with α in a
neighbourhood of the minimal manifold Mk, but whose non-minimal critical set
is a finite set of discrete, non-degenerate critical points, all with Morse index
bounded a priori by E. (This follows from Proposition 4). Indeed, given an open
set which contains the non-minimal critical points of α, one can require that a'
agree with a on the compliment of this set.

Now, with this understood, and with Theorem 2, the usual Morse theory
arguments can be applied to a' to show that B'kE has the homotopy type of a cell
complex with an ^-dependent, apriori bound on the dimension of the cells. Hence
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Hp(B'kE) vanishes for p sufficiently large, and so there can be no retraction of B'k
onto B'kE. Now, Theorem A.1.2 of [T2] yields immediately Theorem A.I.3.

3. The Parameter Space

I will end this note with a description of the parameter space of approximately
self-dual monopole configurations. To understand this space, introduce the space
Tk of distinct fc-tuples of points in 1R3; Tk = ®fclR

3 — Δ9 where Δ is the set of fc-tuples
of points which are not distinct. For example, Γ2 = (R3 x((R3 —{0}), with the
identification sending (xι,x2) to (xί +x 2 ,Xι — x2) Remark that the symmetric
group on fe-letters, Σk9 acts freely on Tk.

Note that H2(T2) = Z as T2 retracts onto a 2-sphere. Fix a complex line bundle
L->T2 whose first Chern class generates H2(T2). The generator of Σ2πZ/2-Z
pulls L back to L"1.

One can readily check that H2(Tk)^Zk(k~1)/2. Generators are had by intro-
ducing, for each pair of indices (ί9j)9 the map tij:Tk^T2 which sends (x l 5...,x f c)
to (xi9Xj)'9 then H2(Tk) is generated freely by (t^c^L)}^. For i φ], introduce the
line bundle Ltj = ίy*L -> Tk and note that Lβ = Ly *.

For each index i, define the line bundle Lt -» Tk to be L{ = Θ^jLy and introduce
the square, L?. Next, introduce the unit circle bundle, S^aL2, an S1 principle
bundle over Tk. Observe that the transposition, x^Xj in the symmetric group
acts by pull back to interchange St and Sj. With this understood, let T = ̂ S^ Tk

denote the (S^S1 bundle. Pull back defines a lifting of the action of Σk on Tk to an
action of Σk on T. This action commutes with the diagonal action of S1 on T and
so one can consider the quotients Nk = J/Σk and N fc = J/(Σk x S1).

Careful consideration of Definition C4.2 in [Tl] provides

Proposition 6. There is α generalization of Definition C4.2 which defines a smooth,
S1 equivariant embedding ofN!

k into B!

k. There is a smooth, isotopy of this embedding
to an embedding o f N k into an open subset of Mk.

The extra circle parameters are not explicit in Definition C4.2. To see them,
note that the definition required the choice of a polar coordinate system, (rt, θ^χ^
centered at each component point xt of the fe-tuple (x1,...,xΛ)eTk. There is a
circle's worth of choices for the ray (Θi9χι) = (π/2,0) and this ambiguity constitutes
the circle in the fiber of St—the circle fiber in St can be identified with the circle
fc-^i + afor αe[0,2π].

The isotopy in the proposition refers to the deformation to the self-dual space
which is constructed by the author in [T4].
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