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Abstract. We study classical lattice systems, in particular real spin glasses with
Ruderman-Kittel interactions and dipole gases, with interactions of very long
(non-summable) range but variable sign. Using the Kac-Siegert representation
of such systems and Brascamp-Lieb inequalities we are able to establish
detailed properties of the high-temperature phase, such as decay of connected
correlations, for these systems.

0. Introduction

In this paper we study the equilibrium statistical mechanics of classical spin
systems with long-range exchange couplings of variable sign. A typical example of
a system we propose to consider is a real spin glass with exchange couplings of
Ruderman-Kittel (RKKY) type [1]. The Hamiltonian of such a system has the
following structure:

H=— 3% Y J¥notngt— Y hing}. (0.1)
i,j ab i
Here i and j are sites of a lattice I' (typically chosen to be Z¢, d=2,3,...);
o,=(dl,...,aY), N=1,2,3,..., is a classical spin variable at site i; n, is a random
variable taking the values O or 1 which indicates whether site i is occupied by a
magnetic atom or ion (n;=1) or by a non-magnetic one (n,=0). The exchange
couplings J} are of long range and can be ferromagnetic or antiferromagnetic. We
assume that they are the Fourier transforms of matrix-valued functions on the first

Brillouin zone that are bounded in norm. As an example, we shall consider

1 — kpli—j| coskgli—j|+sink |i—j|>
1_1{7:5ab F F L . 02
i |i—j|+?»< kyli—jP? 02

Such models describe alloys of magnetic atoms or ions in a nonmagnetic host
material, e.g. AuFe or CuMn.

* Permanent address: Institute of Theoretical Physics, University of Wroctaw, Wroclaw, Poland



666 J. Frohlich and B. Zegarlinski

In the study of the statistical propertics of such systems one is hampered by the
circumstance that N
Y Y | diverges. (0.3)
jel a=1
This property renders even the analysis of the paramagnetic high-temperature
phase rather difficult. Standard high-temperature series diverge at temperatures
much higher than a true transition temperature because of the presence of Griffiths
singularities [2]. In order to circumvent these difficulties, we shall rewrite spin
systems in the Kac representation [3]. In this representation, spin systems become
lattice field theories which satisfy Brascamp-Lieb inequalities [4]. It turns out that
Brascamp-Lieb inequalities provide a surprisingly powerful tool for the analysis of
lattice field theories in the single phase region. (Another related tool that is
sometimes available and useful is the Fortuin-Kasteleyn-Ginibre inequalities [ 5].)
We systematically explore these tools and find that they yield detailed information
about thermodynamic and correlation functions in the disordered phasc of not
only spin glasses, but other statistical systems with long-range interactions such as
dipole gases.

Unfortunately, our analysis is too soft to provide real insights into properties of
the phase diagram at low temperatures. It has recently been proven rigorously that
the Sherrington-Kirkpatrick mean-field spin glass models exhibit a genuine phase
transition in zero magnetic field, as the temperature is lowered [6,7]. There is
increasing numerical evidence that short-range Ising spin glasses without external
magnetic field exhibit an equilibrium phase transition in dimension three or higher
[8,9], and this is supported by analytical, but heuristic arguments [10]. If the
exchange couplings in a spin system are of finite range and have a strong
ferromagnetic bias, the existence of a phase transition and of spontaneous
magnetization at low temperatures can be proven with the help of a Peierls
argument. Phase transitions and ordered states at low temperatures in dipole
systems with hard-core exclusion have been rigorously exhibited in [12].

But for spin glasses we have no real mathematical understanding of the low-
temperature phase diagram or the system’s reaction to a weak external magnetic
field. The methods developed in this paper do not appear to enable us to make
decisive progress in that direction. They do, however, permit us to study the high-
temperature properties in detail and to prove meanfield type upper bounds on
transition temperatures.

Our paper is organized as follows. In Sect.1 we define the class of lattice
systems analyzed in this paper, introduce our notations and summarize our main
results in a mathematically precise form.

In Sect. 2 we prove that the thermodynamic limit of the pressure of a large class
of spin systems in zero magnetic field exists at arbitrary temperatures and is self-
averaging in the randomness. These results are then extended to systems in a non-
vanishing external field at sufficiently high temperatures.

In Sect. 3 we convert lattice spin systems to lattice field theories, with the help of
the Kac representation. We relate correlation functions of spin systems to
correlation functions of equivalent lattice field theories, using “integration-by-
parts” identities. We then review the Brascamp-Lieb inequalities and show how
they apply to our systems.
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In Sect. 4 we use the tools prepared in Sect. 3 to study the decay of connected
correlation functions. We prove bounds on a variety of quenched susceptibilities.

In Sect. 5 we consider ergodic averages of correlation functions. We show that,
at high temperature, the thermodynamic limits of these quantities exist and are
independent of boundary conditions and of the sample of magnetic impurities
chosen.  This implies, in particular, that, in zero magnetic field, the Edwards-
Anderson order parameter vanishes, independent of boundary conditions, if the
temperature is large enough.

In an Appendix, we prove some technical results concerning the class of
exchange interactions studied in this paper.

It is straightforward to extend our methods and results to other lattice systems
with long range interactions such as dipole gases.

1. Notation and Results

Let # be the family of bounded sets in Z%. Let #,= {4, € Z },n be an increasing
sequence — called a countable base of & — satisfying the following property: For
any A€ %, there is keN s.t. 41CA, for all K’=k. A countable base is called
exponential, and is denoted by #,., iff for any ke N

exp?

Agyr= U Ag) (1.1)
1=1

with some LeN, L>1;
AP=lieZ" i—xed}, [|=1,...,L, (1.2)
where x,€Z* are chosen so that
APAAD =0 if [+ (1.3)

The volume, | 4|, of some region A € # is, by definition the number of elements in A.
By assumptions (1)—(3), the volume of 4, , € #,,,, satisfies

[ A1l =14, (1.4)

If not stated otherwise, a countable base, %,, is assumed to be a van-Hove
sequence. We define Sy to be equal to the set {—1,1}, for N=1, and to the unit
sphere SN "'CIRY, for N>2. A classical spin at site ieZ? is a vector o,=(c?:
a=1,...,N)eSy. Our space of spin configurations is Q=(Sy)*’, with elements
0=(0,);cz+ Let X denote a g-algebra of subsets in Q, generated by the Tychonov
topology. For A€ %, let X, C X be the og-algebra generated by the spins in 4. The
“free measure,” u,, is a probability measure on (£, X) defined as the product of
uniform probability measures on Sy. Let po) , = po), -

Let u be a probability measure on (Q, X). For a measurable function F, its
expectation in the measure u is denoted by w(F). We set w(F,F)=u(FF’)

— u(F)u(F").
We consider a spin system with a Hamilton function of the following form:

=— Y Jlch— Y hict. (1.5)

e B
J
a.b
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The exchange couplings JUE(J‘”’ a,b=1,...,N), i, je Z* are defined by

ijo

JP=1n,Gn,, (1.6)
with n;e[0,1], and
1 NN
ab — iq(i— Jj) fjab .
ij (27I)d (—nj,ﬂ:)d ddqe G (q)> (1 7)

where G*(q) is a positive definite N x N matrix. Furthermore, we assume that (in

the sense of quadratic forms) -
G(g)= Co* (1.8)

with a constant 0< C < oo independent of ge(—mn,7)". We denote by |G| the
smallest value of C for which (1.8) holds, i.e.

|Gl|=min{C: (1.8) holds} . (1.9)

The external magnetic field h,=(h*:a=1, ..., N), i€ Zis given by h;=n;h;, for some
h=h:eR, a=1,...,N);ieZ"

It is assumed that (n;, i € Z°), and (h;, i € Z*), are independent random variables.
A translation invariant probability measure, E, on I=[0,1]% (respectively ¢ on
Ih =(IRM)?%) describes the distribution of the n-variables (the one of the external
magnetic field variables, h, respectively). We restrict our attention to measures g
with o(h?) < co.

Note that the class J, of interactions (J;;) defined by (1.6)-(1.8) contains all the
classical short range interactions, i.e. interactions for which

Y JPl<oo, (1.10)
jezZd
as well as long range interactions which do not satisfy (1.10), but which satisfy
Y, J# <, E-—ae. (1.11)
jezZd

In particular, the class J, contains the interactions of RKKY type for which (1.11)
is fulfilled, but (1.10) does not hold, E —a.e.. In dimension d = 3, these interactions
are given by

’ 1 <kF|i—j| CoskF|i.—j.| +sinkF|i—j|> (1.12)
li—jl+2 kli —jI°
for some constants 0 <k, A< o0, and a positive definite matrix g*. (For other
examples see Appendix 1).

Note that if an interaction J=(J;), given by G=(G®), is in J, then also the
interactions J' defined by

ab.__ _ab
Giji=g

(G =(|G| + C)s® — G (1.13)
for any 0 < C < o0, belong to J,,.
An interaction J e J, is called weakly ferromagnetic iff

Y J¥>0, (1.14)

jeZd|i

for all ieZ% a,b=1,..., N (see Appendix 1 for examples).
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The finite-volume pressure p,, A€ %, is defined by

1 i
pA(B,nh):= il Inpge™ s, (1.15)

with BeR*, nell and heh
Our first result is the following:

Proposition 1. Let E and ¢ be translation invariant probability measures on 1, Th,
respectively, with

o(h?) < 0. (1.16a)

Then, for any interaction JeJ, and any =0, the thermodynamic limit for the
pressure in zero magnetic field

p(B,n,0)= 1lim p,(B,n,0) (1.16b)
Fo
exists and is independent of nell, E—a.e. The same holds for a nonzero magnetic
field h=(h;), o—a.e., if, in addition, one assumes that
0<plGl<1. (1.17)
The limit p(f, n, h) is then also independent of h, p—a.e. []

For Ae#, a finite-volume measure u with boundary condition 6@ is

defined by .
()= Tim 5, <MA_)> (1.18)
A'eFo :u0|A(e ﬁHA,)
where, for A'€ %,
Hy=— ¥ Jfoioi— ¥ hio}, (1.19)
a,b=1....,N a=1,..., N
i,jed’ ied

and o; is the point measure concentrated at 6. We note that the set

Q= () {6eQ:Viea|Y J& & <oo} (1.20)
Fo jeAc

is not empty, E—a.e., and therefore the family
E=6B, I, h={1: e F,6eQ)} (1.21)

is well defined (and in fact forms a “local specification”). We also consider finite
volume measures u (4 € %) with adiabatic boundary conditions given by

_ .Uo(e_ﬂHA *)

)= . 1.22
ma )= (1.22)
Let 4 be a limit of {u%}, i.e.
(= lim 42, (1.23)
o

for a countable base #,. By weak compactness of the space of probability measures
on (2, 2), the infinite volume measure y is well defined (however, in general, may
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depend on %;). Similarly, one can find an infinite volume measure as an
accumulation point of the sequence {u ;A€ %,}. The set of all infinite volume
measures corresponding to a given & =&(f, J, h) is denoted by 9(&). For Ae 7, let
N(4) be a multiplicity function which, for any i€ A, associates a sequence
(Niyan‘L,a:L ..., N)different from O=(N, ,=0,a=1, ..., N) and, for all i € A", it
is the zero sequence O.

With a slight abuse of notation we set

04=0(N(4))= FL (af)ee, (1.24)
and, for jeZ*,
Gaes= 1 (0", (1.25)
For ue%(&) we define the following generalized susceptibilities:
o1
X(l)(A: W=lim — Y (044 O'A+j))l (1.26)
7o || ijea
with [=1,2.
Proposition 2. Let JeJ, and heh. If

0<pIGI <1 (1.27)

then, for any infinite volume measure ue 4(&) with & =&(p, J, h), the susceptibilities
x (A, ) are finite. [

We define a generalized order parameter by
. 1 5
g6, A= 1lim — ¥ (u7(0,44:)*. (1.28)
Fo || ica

In particular, we are interested in the case where h¢ =0 (ie Z%,a=1, ..., N) and the
set Ais odd, i.e. the volume of the set {ie A: N; , odd} is an odd number. A special
case is the Edwards-Anderson order parameter which, for an Ising spin glass, reads

. o1 _
qp-4(6)=lim — Y (150)*. (1.29)
Fo |A| ied

Let %, be a Fisher sequence.

Proposition 3. Let JeJ, and he h. If

021G <1
then, for all functions o, and 1=1,2, the limits
o1
<O'A>(Z)E lim — 3 (HAUAH)”) (1.30)
Fo |A| ieA

exist and are independent of nell and helh, E®g —a.e.. Moreover,

o1 A
im —— > (u5(044) —pa0,44)) =0, (1.31)

Fo |A| ied
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for u—a.a. e Q and any ue %(&(B,J, h)). In particular, if h=0 then, for any odd A,
q(6,A)=0, u—ae.. J (1.32)

Propositions 1--3 provide a complete description of spin glass systems in the
high temperature region.

The case where the measure E is concentrated on the set I,={0,1}*" is of
special interest. Then E describes the density of magnetic atoms (e.g. Fe, Ma)
inserted in a host nonmagnetic material (e.g. Au, Cu). The above propositions state
that, above some temperature f, ' determined by the interaction JeJ,, a spin
system stays in the disordered phase and its thermodynamic behaviour is
independent of the sample, n, of magnetic atoms chosen. Note that , ' = ||G|| is
just the mean field critical temperature, for standard examples of ferromagnetic
spin systems.

The proofs of our propositions are essentially the same for any choice of the
number, N, of spin components. Therefore, to simplify our notation, we shall only
consider the Ising models, i.e. ;= +1 and G, defining an interaction J, is just a
positive, bounded function on (—r, 7)?. Without loss of generality, we can and do
assume Athat 0<e<G(g), for some constant &>0. We also note that
G =TGN,

2. The Thermodynamic Limit of the Pressure

In this section we prove Proposition 1. Using the assumption that

i Jdaae " 7Glq), (2.1)

m)
with
1G] < o0, (2.2)

our Hamilton function for a system in a region A €% can be written as follows:

1
H,=—= Y Gnnoo,— > hngo;
21]eA J / i ied
1
= df d,qG(q) Z eng|*— Y hngo;. (2.3)
2( ) jea ied
This yields the bound
1.4
H, =< | < |G ]
| A1_<2 61+ o % |h|> 4
which implies
0spibah= e ez D61 4p Ly g @3)
! ) MHoe = 16 |A|,e o '

(The lower bound follows from symmetry of the product free measure p, and
Jensen’s inequality.)
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By assumption, (h;, i € Z°) are independent random variables with translation
invariant distribution ¢ satisfying

o(h}) < 0. (2.6)

Therefore, by the law of large numbers,

|/1| Z Ihil =2 olhol, e¢—ae., (2.7)
and so the right-hand side of (2.5) is uniformly bounded in 4 € #,, (0 —a.¢.). Hence
we can always select a convergent subsequence {p,(f,J,h): A€ F;

Now we set h=0 and show that, for any %, the sequence
0B, J,0): A€ F,,,; converges E—a.c. to a nonrandom limit. By Jensen's
inequality, we have, for any 4, € /exp,

pAkH(ﬁs J> O)g E Z p/ﬂ”(ﬁa Ja 0) (28)
1=1,...,L4 k
The definition of an exponential sequence #,,, implies that AP A =0, for [+,
and since by our assumptions {n;:ieZ‘} are independent and identically dis-
tributed, so are {p,p:l=1,. ., [!} independent, identically distributed random
variables. This, together w1th (2 8), shows that the sequence {Ep ,(f,J,0): 4 € Z,,,}
is increasing and our bound (2.5) assures its convergence. (In particular, we obtain
convergence of the sequence of finite volume pressures for a translation-invariant
interaction J;;=G;; and zero external magnetic field, h.)

By iteration of (2.8) and application of the subadditive ergodic theorem, we
conclude as in [13] that:

p(p,J,0)= hm EpA(8,J,0), (2.9)
exists, and
p(B,J,0)= hrn p4(f,J,0), E-—ae.. (2.10)

The simple arguments involving Jensen’s inequality allow us to extend (2.9) and
(2.10) to more general sequences, %,. This completes the proof of the first claim of
Proposition 1.

To include an arbitrary external magnetic field, let us note that, for any 1€ &

PPN =pBI O+ [dt S B o). @11

where the measure 14 . is given by (1.22), with magnetic field (¢ - ;), instead of (h;). It
follows from the arguments in the proof of (1.30) in Proposition 3 (see Sect. 4) that if

0=B]G| <1 (2.12)

and o(h?)< oo then, for any t€[0, 1], the sequence

{IAI L hnips,do )1/16970}
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converges to a nonrandom limit. This together with (2.9) and (2.10) concludes the
proof of Proposition 1.

Remarks. a) Note that the positivity of the molecular field for spin systems, i.e.

ta (0], 3, oot hi]) (213)
implies the bound
p(ﬁ:Ja h)ép(ﬁa‘ja h)'{n.-E 1} - (214)

b) We remark that the existence of a nonrandom infinite-volume pressure,
p(B,J,0), can also be proven for interactions, J, in a class J, defined by
1
(2n)’

Gy=— [ G(dg)ei =7, (2.15)

where G(dq) is an arbitrary finite non-negative measure. Then the minus sign in
(2.15) assures the trivial bound from above,

paB,J, 00 =1, (2.16)

whereas the symmetry of y, 4, together with Jensen’s inequality, yields the lower
bound

1 A
—B @ [Gdg)=pAB,J,0). (2.17)

The same arguments, based on Jensen’s inequality and the subadditive ergodic
theorem, as before, prove our claim. Note that the class J, contains interactions
which do not decay at infinity, e.g.

G;;j= —cos(qo(i—))). (2.18)

For such an interaction, one can expect that thermodynamics is full of pathologies,
therefore we shall only consider interactions from class J,,.
¢) It is possible to extend our results to quantum spin systems.

3. A Field Picture of Spin Systems

Let ¢=(¢,cR:icZ% be a random field on a probability space (ug, R*, A),
where pg is a Gaussian measure with mean zero and covariance

1 A
= iqi—)@G 3.1
ij (zn)d (—1!17:)!1 ddqe (q) ’ ( )

and % denotes the Borel o-algebra in IRZ". It is assumed that

0<e<G(@ =Gl <0, (3.2)

G

for some constant ¢>0. Therefore G(q) ! is a well defined (positive and bounded)
function, and its Fourier transform, G~ !, belongs to [,(Z%). For any function
f=(fieR:ieZ%el,(Z* we define

o= 3 o (33)
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By our assumptions, exp(¢(f)) € L,(u¢) for 1 <p<co. In particular this holds for
fi)=6;"
The following identity (due to M. Kac [3]) will play an important role: For

AeF . s
ﬂGeBI/Z . eAd)i"to'x — e(l/z)ﬂ ijeA Gy jninjoio, . (3’4)

We define a probability measure x% on (RZ, %) x (2, X ,) by

K= uG®u0[ A (3.5)
where Z% is a normalization factor and
h=h,+ Z Gijh6;=h;+h(G). (3.6)
Using (3.4) we see that, for AgA,
N A(e—BHA(c)G )
Hx(04)=0; <#O,th(,le_—w"(0)A . (3.7
On the other hand
i eVaF
e Figy = P T9) (8)
Hge
where
Uu¢)= Y Inch(B"*p;+ B hn). (3.9

ied

The measure formally obtained from (3.5) by putting {n;=0: je A} is denoted by
i, The lemma proven below shows that the expectations (3.8), for F(-) an
arbitrary polynomial, uniquely determines the expectations (3.7).

Lemma 3.1. For any A, BC A N
I (ll1 (G} 1)) = X K¢ <; [ ¢>(G,71)) B2 nuio,), (3.10)

xCA je A\x

and

# (L G, I 90620 = 3 (1 I] #(Gi) (ke I] 9(G)Y)
x Bwn N0 0,)
+ ,EA MG( s (G, Jeﬂy o(G;. )

X B ? nxny:ui(a-xo-y) O

The proof is a straightforward application of integration by parts in the
Gaussian measure . In particular, for |A|, |B|=1, we get

:Bl/zni:ufl(o-i)zufld)(Gi_' 1) (3.12)
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and
Brinpi(oy, 0) = pi(H(G ), $(G;. 1)) — G;'. O (3.13)

Remark. Note that if n;e {0,1} one can omit n, from the formulas (3.10)-(3.13).
Let m?=0 be such that

0=m?|G| <1. (3.14)
Define
Gr:=(1Fm*G)"'G, (3.15)

and define G* to be the Fourier transform of G*. Let y;. be the Gaussian measure
on (R% %) with mean zero and covariance G*. For some measurable real
functions {U{(-)};cz« and A€ Z define

Uap)= ZA Ud¢). (3.16)
Lemma 3.2 (Brascamp-Lieb inequalities [4]). If the functions
ViR ()= £im?y* + U y) (3.17)
are convex/concave then, for any fel,(Z% and any ke N,
eUA ) k
o 80ts P I sy g O a1
G
Proof. By assumption the function
_ 1
Vil@)=—3 m? ZA ¢+ U44) (3.19)
is concave, for any A€ #, A'e F, A'2 A. Introducing a Gaussian measure
+m—2 L 92
_ Hgle 2
O (3.20)
He(e 2 ="Y)
one can write
Ua@) L (VA
fgle ) _ K¢ e ) (3.21)

uole ) pg ()

Since, by our assumptions, e”4? is alog concave function, it follows from the
Brascamp-Lieb inequalities [4] that, for any fel,(Z% and ke N,

uge’ “Plp(f)*

pgeU @ St aleNIE (3.22)

Now, using the fact that ug. , converges to ug+,as A' 1 Z% we arrive at the second
inequality in (3.18). The proof of the lower bound in (3.18) is similar.

Lemma 3.2 is our main technical tool for what follows. As an immediate
consequence it yields the following
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Corollary 3.3. Let fel,(Z% and ke N.

a) If
Ui(y)=Inch(B2(y+ B"/*hn;) (3.23)
and
0<pIG| <1, (3.24)
then, for
Gt=(1—-pG)"1G, (3.25)
held(r < 90 2 g (326)
pge’s
b) If
Ui(y)=4cosp'?y (3.27)
and
0<48|Gll <1, (3.28)
then, for
G*=(1F186)"'G, (3.29)

the inequalities (3.18) hold. [

4. Cluster Properties of Spin Systems at High Temperature
We begin with the following general fact which is model-independent.

Proposition 4.1. Suppose that
> ffﬂA 28, h= of 'aaj)§CZfi2 4.1)

i,jed

for some constant 0 < C < oo independent of Ae F,6eQ, neland f cl,(Z%. Then,
for any Ae F

Y SiiHap0arn0ar )SCA) Y P (4.2)
i,j:A+icA itA+ica
A+jcA

for some constant 0<C(A)<oo independent of AeZF, 6e€Q, nel and
fel,(ZY. O

Proof. For g, 6,€{—1,1}, [eZ* define
q=%0,+6), p=3(c,—3d). (4.3)
We note that
p+0 iff ¢,=0. (4.4)
For Ae %, we set q,= Hq,andpA_ I1 ps

ied



Spin Glasses and Lattice Systems with Long Range Interactions 677

Then, for any fel,(Z%, and Ae %, we have that

) fifjﬂi®ﬁi(q,4 +i94 +jpipj)
A+ica
A+jcA

=u5® 5 A+ZcA fiCIA+ifj‘1A+jMA(Pin!Zq) > (4.5)
A +}CA

where % = u% and M 4(-|X,) denotes the conditional expectation, associated with

the measure uf ® iy, with respect to the o-algebra, 2, generated by {g;} variables.

This conditional expectation is independent of &€ (2, and, using (4.4) for any

BC A, one gets:
(e_ 2BH a(o| q)O-B)

Maps|2)= T ey (46)
with
Hiolo=—3 3 Glanfaes,. @)
where ‘
0= {5 i @

We note that the measure on the right-hand side of (4.6) is just i, 55 -0, With a
given {ny(q)}. Therefore, using our assumption (4.1), we have that

> B (fida+?) (fj‘ZA +j)MA(Pin | Zq)

atica
=C ¥ fizfﬁni§c ) fi2~ (4.9)
A+icA A+icAa
The inequality (4.9), together with (4.5), implies that
Z fif;’:u&A®ﬂ?1(qA+iqA +pip) = C(A) > R (4.10)
A+icA A+ica
A+jcAa

Now, (4.2) follows from (4.10) by the same arguments as in [14] (see proof of
Theorem 1).

Returning to the old variables, g;, ,, on the left-hand side of (4.10) and
observing that the result can be written as a sum of products of the form

ﬂi(aBl +i»0B, +j)ﬂ§1(‘733 +i50B, +j)
or of the form
ﬂi(“m +i>0B, +j)ﬂfx(033 +i),uf1(0'34 +j) s

forsome By, ..., B, C 4, we may use induction in the volume |4, and (4.2) follows by
an application of the Schwarz inequality for positive definite forms defined as
products of p5(-,-), see [14].

Remark. In our case the measure % is not translation-invariant, so we need a
simple modification of the arguments in [14] which are based on uniform bounds
on spin expectations; see also Lemma 4.4, below.
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Next, we establish a slight generalization of (4.1).

Lemma 4.2. For any Ae %, 6eQ and nell, if

0BGl <1, (4.11)
then, for any fel,(Z*),
Y [ifwi (e $)S Y fiG ;- (4.12)
As a consequence, v v
Y fifnni(o, o) <(1—BlIGI) 1ie2}/‘];‘2' O (4.13)

i,jed
Proof. We have
Z;f:f,#ﬁ(‘lsn ¢)= Z AAYAGED;
i, i,J

=#i®/ji’1 Z fiijZ(ﬂi"]j | 25), (4.14)
where
&= 7= ($i+ )
l/ 4.15)
1 _

= ﬁ (Pi—y)

and M Ztt( | 2,) is the conditional expectation, associated with the (field) measure
AT with respect to the o-algebra X, generated by the {&;} variables.
Since u§ =i’ is given by (3.8) and (3.9),

( Ualihr €+ ) +Ua(p =)

M(-129)= i l‘yeU Al €+ )+ Ua(byE )

Now we observe that the functions

Vo)

1 1 2
) p <ﬁ (fﬁ)’))

1/2 1_ ) > 1/25) }
+lnch[ﬁ <<ﬂ(él+y) +B%h; |

1

1 2
) B (ﬁ (fi—y)>
+inch [ﬂ“z ((% (@—y)) +/3”2E> nl]

1 2 1 1 127
—— 5 By*+Inch [ﬁ & <ﬁ E+y)+ /2h,-) ]

+Inch [ﬁ”z <% (éi—y)—f-ﬁ”zﬁi) ni] — % BE? (4.17)
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are concave. Therefore, for 0= f satisfying (4.11), an application of Lemma 3.2
gives

éZJff, a2 éijiGJf,-- (4.18)
From (4.12) we get, using (3.13) and definition (3.15) of G* with m*=,
Z fifipninjps(os,a;)
< Y MAUGTIGTGTY; Gt

i,jed

—ﬁZﬂ"foG

ijed

<B(1—PBIGl ) Z fE. (4.19)

This ends the proof of (4.13) and hence of the lemma.

Remark. Considering the square terms in (4.17), multiplied by n; one can see that,
in fact (4.13) remains true without factors n;n; on its right-hand side for general
n;€[0,1]. (This is of course true if n,e {0,1}.)
For Ae # and a multiplicity function N(A4) we define
da= [1 ¢M. (4.20)
icAd

Using Lemma 4.2 and ideas of [14], one can prove the following analogue of
Proposition 4.1 for the “field” variables, ¢.

Proposition 4.3. For any Ae F,6eQ and nell, if

0BG, <1, (4.21)
then, for any Ae F and fel,(Z°,
_Zj ftf;ﬂji((bA NN +j) =C(4) Z fi2 > (4.22)

where C(A) is a positive, finite constant only depending on B G|| ,, and the norm of the
multiplicity function [N(A)|= Y. N{(A).
ieZd

Remark. The same result holds for any measure /i , defined as a perturbation of the
Gaussian measure ug considered in Lemma 3.2 and Corollary 3.3, and it holds for

any infinite volume measure u= lim fi,, where %, is a countable base.
Fo
Since, contrary to [14], we deal with nontranslation-invariant measures, we

have to use, in the proofs of Propositions 4.1 and 4.3, the following lemma which is
of independent interest.

Lemma 4.4. If, for AcF
Z Jifit(0 41504 +)SCye ) > (4.23)
i,j: :

A+icA
A+jcA
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for some constant 0 < C, < oo independent of Ae F,6€Q, nel and f €l,(Z°), then,
for any Be #

.Z fifjﬂi(a,qﬁ, 04 +j)l‘f1(0'3+i7 UB+j) <C, Z fiz 4.24)
1] i

and
Z. S0 44504 +j),“?10'3+iﬂ§10'3 +;=C3 Z 12 (4.25)
LJ i

Here C, and C; are constants, with 0<C,, C5< o0, independent of AeZF,
6eQ,nell and fel,(Z%), and the summation in (4.24) and (4.25) is restricted by the
requirement that A+i, A+j, B+i, B+jCA. Moreover, the same results hold for
“fields” ¢ if, in addition, for any £/ €N

papi'<Cy, (4.25a)

for a constant 0< C,;< oo independent of i€ Z* and all other parameters. (In this
case we don’t need to restrict the summation over i,j.) []

Remark. Under the assumptions of Lemma 3.2, the condition (4.25a) is fullfilled.
Proof. Since

‘Z fifj.ui(o',q +i04 +j)/v‘f1(03 +i0B +j)

iJ
1 _ _
2 /‘A@#A (Z flogsi— 0'B+i)fj(‘713+j_0'3+j)

X #Z(@Hia 0A+j)>

1 5 o -5 _
=C, ) sup HA® (05 +i—0p4) by 1 (4.26)

and
1 a bl = 2
¢, 2 sup ua®u4(0p+;—0p+)
=C, quzﬂi(6123+ )<C, (4.27)
with 0 < C, < o independent of 4, 6, n and of f, (4.24) follows. The proof of (4.25) is
trivial. The proof in the ¢-variables is similar.

Applications of Lemma 4.2, Lemma 4.4 and Proposition 4.1 yield the following
bounds on generalized susceptibilities.

Proposition 4.5. If O§ﬂ||G|I <1 then, for any ACA, AeF, 68 and nell,
0= 7 Z o, o) <(1—-BIGI) ! (4.28)
and

éﬁ Ze (Koo, a)))* <201 =BG (4.29)
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Moreover, if 0228 G| <1, then for 1=1,2,

0S 7 L UBEaoa ) SCA) (430

A+i,A+jcA
for some constant 0 < C(A)< oo independent of ACA, AcF,6eQ and nel. The
same results hold for

- hm /'LA H
Zo

where F, is a countable base, G Q or G=0.

5. The Thermodynamic Limit for Order Parameters

We begin with showing that the thermodynamic limit of correlations of physical
observables is independent of boundary conditions in the high temperature region.
The assumptions on the interaction J are the same as in Sects. 3 and 4. For A€ &,
Ge @, 1=1,2, we define

1 _
o01,:= 111? . A;C (U0 44+)) (5.1)
and
1
(o= hm m ) (/"A(0'A+i))l~ (5.2)
itA+icAa

Proposition 5.1. Let %, be a Fisher countable base. Let

016, <1, (5.3)
for |A|=1, and
0=28|G| ., <1, (5.3)
for |A| =2, then
KO 015=X04)1, p-a.e. (5.4)
and
lim Y (o) —udoa ) =0, wace, (53

Fo IAl itA+icA
for any ue %&).

Proof. For Ae %, 6e@ and te[0,1], we define a measure x'(-) as in (3.5), but,
instead of /;, the magnetic field is given by

F,-(t) =h;+th{(d), (5.6)
where

hy(6)= Z G;jn6;. (5.7)
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Then, for

f/(11)(t) |A| . A;l (WH (0 44— 140 449) (5.8)
we have

dt Al)( )_ ml Agch ]Z .uA(O-A+v j)n (&) (59)

An application of the Schwarz inequality for the positive definite form (-, )
yields the bound

12
fzgl)( )‘ <|A| 123 | ﬂf(UAH’UAﬂ))
< (i 2, momennions)) (5.10)

Since Proposition 4.5 and Lemma 4.2 also hold for the measures 1%, (5.10) can be
bounded by

=C(4) < 2 h (6)2>1/2 (5.11)

4] iea

for some constant 0< C(4)< oo independent of A€ %, e, nell and te[0,1].
This implies

d
\E 500

1
’m i:A;iCA Hilo )= 4] & A;zCA Halo4)
1 1/2
=C(4) <— ) hi(&)2> . (5.12)
IAl ied
Consider now
2= m Z.C (150 44 = (al04 1)) (5.13)

Using Holder’s inequality, with respect to—— Y. (-)and the fact that |[ufo ., | <1,
we get |/1| ica

1 B 1/2
|f(2) t)|<21/2 ( DI 7(0'A+i)_ﬂA(°'A+i))2) 521/2(g/1(t))1/2~ (5.14)

|A| itA+icA
For the function g ,(t) we have
d 1
— t 2 —
dt gA() |A! i: A;tCA jed
(#A (044 —paloy +i))ﬂt/1&(0A +i> aj)njhj(&) . (5.15)

Hence, applying the Schwarz inequality, Proposition4.5 and Lemma 4.2 for
the measure u'(-), we conclude that

— g4(0)

1/2
Z h (a)2> (5.16)

< Clg.(0)"" <, )
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for some constant 0 < C < co independent of A€ F, 6eQ, neland te[0,1]. This
yields the following integral inequality:

1/2 /¢ 1/2
0=g,0=C <|A[ Z h{(6) ) (I dt/gA(t’)> : (5.17)
ie 0
Applying the same inequality to g,(t), and iterating the bound, we find that
1 a 2 <
mi:A;icA (HAT A +i— AT 4+)" = {A| l; hi(6)*. (5.18)

Now the proof of our proposition follows from (5.12), (5.14), and (5.18) and
Lemma 5.2 proven below. []

Lemma 5.2. If 0<B|G| <1, then, for any measure pe Y(&),

lim I/TI L h(67=0 (5.19)

for some Fisher countable base F,. []

Proof. 1t is sufficient to show that, for some Fisher sequence %,

11m u— 3 ho)= (5.20)
|A| ied
where
h{c)= lim Y  G;njo;. (5.21)
A'eFo jednA’
By definition of ue % &), we have
u= lim u%, (5.22)

Fo

for some &€ Q. Therefore application of Lemma 3.1 [see also (3.13)] yields

ﬁ:uhi(o-)z Z GUGU ﬂn ’Au(o-jo.j’)

= T GG (GG~ G
—u[¥ GG ez Z GUGHIG (5.23)

From this identity and the Brascamp-Lieb inequalities for the measures u (i.e.
Lemma 3.2, supplemented by some limiting arguments), we get

uhioP B Y GGG 1G Gy =Gyt

j.j'ea

< 30 ( %, GiGu(Gy)

J.j'eae

<(-pIGH™" ZA G . (5.24)
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Therefore the proof of (5.20), and hence the proof of our lemma, follow from the
fact that
1m — Y. G}=0, (5.25)

lA] ied jedc

for a Fisher countable base .
From Proposition 5.1, we derive the following corollary.

Corollary 5.3. Let 0< |G|l <1 and
p= lim p%,
Fo

for some Ge @, {h,=0, ieZ*} and a countable base F,. Then

n, A| T wo=0. O (5.26)

Proof. One can see that the measures

dg-4= 11m

py= lim il
A'eFo

define the conditional expectations associated with g, for u-a.a. 6 € Q. Using this
fact we conclude that

Z(ff)2

e i Z o)y

i B v o

and an application of Proposition 5.1 completes the proof. [

Using the ideas in the proof of Proposition 5.1 we now show the existence of the
thermodynamic limit for the physical quantities (5.1) and (5.2). This will complete
the proof of Proposition 3 in Sect. 1.

Proposition 5.4. Let 0< |G| <1, for |A|=1, and 0<2p||G| <1, for |A|=2. Then,
for 1=1,2 and any Fisher sequence %,

1
{oppn= hm SV A;C (10447 (5.28)

exists and is independent of nell and heh, EQg-a.c.

Proof. Let Z,,, be a Fisher exponential base of #. Then for Ae# and
A(N+N0)efexp, N,NyeN, we have that

1 1
= {W Z Z (®)
L™ x=1, 7 Lav Ay | i 44748

X [(tav+ nof(@a+0) — (Mg (0 4+ )]

+ 1 5 1
N =% pay [An,| i:a+inoal)+0
1 1
) — L 5.2
X (LA + N T 4 +1)) } + o L, Z Lv g i A+lch(k) (:uANO(O-A+1)) (5.28a)
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We argue that the right-hand side of (5.28) consists of a “small” term, in the curly
bracket, and of the sum of uniformly bounded, identically distributed random
variables 1

!
Ay i~A+;:A§ff’ (/'LA(I\’%(O-A-H)) .
0 * 0

(Note that, by definition of Z,,,,, we have that A§)A$) =0, for k+k’, and by our
assumptions, the measures E and g are translation-invariant product probability

measures.)
First, we observe that
1 1 oAy, | _
N k—lz Lav Ay | ia+i Z@A(k) 0 ('uA(NJrNO)(JAH))léC —ﬁ e, (529)
=1,..., ol it iNndAN °

for constants 0 < C’, C < oo independent of NgeNN, (and of nell and heh).
Moreover, for [=1, 2, we use the Schwarz and the Hoélder inequalities, to
conclude that

Loy «ummwm+i>>’—(uAg<:,(aA+,-))’)|

!ANOI itA+iCcAng

1 . 1/2
§2< > o ﬂA(N+N0)(ﬂif\;‘g(0’A+i)‘“ﬂA§\’,‘é(0A+i))2> s (5.30)

[ Aol i:a+Tcaly

where /‘i‘z’v"o () denotes the conditional expectation with respect to ' ,¢o e associ-
ated with the measure p sy, The considerations in the proofs of
Proposition 5.1 and of Lemma 5.2 show that

)IEEDY G?,-)UZ. (5.31)

[Ang| ieTyy jeCtngre

(5.30)<2 (

Therefore, setting

DD G?j>1/2 , (5.32)

[Anlic Tgie(ng)

S(No)=e Noy2 (
we get that

: S
AN T N)| 1iasicTnsng FAN+N

L Z LaN <‘1—“ Z (k) (#AE\’;(),(O-A+£))I>’ éé(No) (533)

HN k=1,..., IANol itA+icANng

(o i))l

Since, for a Fisher base #,,,, we have that §(N,)—0, as Ny— oo, the law of large
numbers permits us to conclude that the limit

im Y (uaoaed)

Foxp |AN] i:4+TcAn

= lim lim 1— > . (L x . (MAS‘)(UAH))I) (5.34)

N
Foxp Nooo L k=1, [Aol i:a+7c A%
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exists and is independent of nel and helh, EQg-a.e. By some simple arguments
one can show that our statement remains true for the more general Fisher
sequences &, (and, in fact, that the limit is independent of #,). This ends the proof
of Proposition 5.4. []

Appendix 1: Examples of Interactions

Example 1: (d=1). Let

~ 2n .
G(g)= e xgl=q0), with 0<gy<m. (A1)
0
Then
singy(i—j)
ij= ———(.) . (A.Z)
qo(i—j)

and application of the Poisson summation formula shows that

o
Ml (A3)
j*o 4o 29, 2m

Therefore, the translation-invariant interaction given by G in (A.1) is weakly
ferromagnetic.

Example 2: (d=3). Let

J(x)= (Si“q""">3. (A4)
qolx|

By explicit calculations we get

(2m)*J(q)= [ dyxe ™) (x)

7Z2

— for <
2Iq0|3 Iql lqOI
= [3|‘10| —Iql}
| ————| for <|q|£3 A5
4lq0'3 Iql IqOI_IqI_ Iq0| ( )
0 for |q|>3|q,l-
Formula (A.5) shows that JeJ,, since
1 n?
> o J -=—[——1], (A.6)
jezsoy 7 2n) | 2lgol?
2\ 1/3
for 0 <|qo| <m, the interaction (A.4) is weakly ferromagnetic if |g,| < <5> .
Example 3. (RKKY, d=3). First we note that for d=3 we have that
1 )
gllxN)= e T d3qx(lal <lgole'
0
—1qol Ix] cos|qo| |x] +sin|q,] | x|
_ —Mollxleoslaol X+ sinldol M _y 3 oggy ey a)

(g0l Ix])?
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for small |x|, and ge W, ,(IR?). Note also that, for /e €*(R),

) Lond—1
Af(xl)=f"(xD)+ f(Ix]) TR (A.8)
Using (A.7) and (A.8) one can show that the function
1 [ —Iqol x| cos|qql x| + sin|qo| |x]
J(x))= < A9
(D=1 (a0l ) (42

belongs to W, ,(IR?)and therefore, for d =3, its Fourier transform J(g) is in L,(R®).

Since { "
) = (j) dme ~me ™! (A.10)

and
2m

— A1
PR (A1)

Fle (@)=

we also see, using (A.7), that J(|x|) is positive definite. We only have to show that the
function
Gl@= Y Jlg+2n), qe(—nm) (A.12)
leZ3

fulfills
1G], <. (A13)

This follows from the monotonicity of the function J(|q|).
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