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Topological Quantum Field Theory
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Abstract. A twisted version of four dimensional supersymmetric gauge theory
is formulated. The model, which refines a nonrelativistic treatment by Atiyah,
appears to underlie many recent developments in topology of low dimensional
manifolds; the Donaldson polynomial invariants of four manifolds and the
Floer groups of three manifolds appear naturally. The model may also be
interesting from a physical viewpoint; it is in a sense a generally covariant
quantum field theory, albeit one in which general covariance is unbroken, there
are no gravitons, and the only excitations are topological.

1. Introduction

One of the dramatic developments in mathematics in recent years has been the
program initiated by Donaldson of studying the topology of low dimensional
manifolds via nonlinear classical field theory [1,2]. Donaldson's work uses
heavily the self-dual Yang-Mills equations, which were first introduced by
physicists [3], and depends on some important results originally obtained by
mathematical physicists, e.g. Taubes' theorem on existence of instantons on certain
smooth four manifolds [4] (as well as hard analysis of instanton moduli spaces
[5]). Thus there have been many conjectures that Donaldson's work may be
related to physical ideas in an intimate way. However, such a relation has not been
apparent in Donaldson's detailed constructions.

This picture has changed considerably because of the work of Floer on three
manifolds [6]. Floer's work involves tunneling amplitudes in 3 + 1 dimensions,
and has been interpreted by Atiyah [7] in terms of a modified version of
supersymmetric quantum gauge theory. (Floer theory has also been reviewed in
[8].) In this viewpoint, Floer theory can be seen as a generalization to infinite
dimensional function space of the supersymmetric approach to Morse theory [9].
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The Floer homology groups are then the ground states of a certain Hamiltonian H
which is closely related to physical quantum field theories. The Hamiltonian H,
which will be described later, contains anticommuting fields of integer spin. Since
H also acts in a Hubert space of positive metric, the spin-statistics theorem implies
that the theory must not be Lorentz invariant. It is easy to see that this is so (the
anticommuting fields do not form Lorentz multiplets, and there are no anti-
commuting gauge invariances).

Purely from the point of view of Floer theory, which is a theory of three
manifolds, a non-relativistic description is adequate. But one of the most beautiful
features of Floer theory is its connection with Donaldson's theory of four
manifolds. The Donaldson polynomial invariants of four manifolds were origin-
ally defined for a four manifold M without boundary. It has turned out that to
generalize Donaldson's original definitions to the case in which M has a non-
empty boundary B, one must define relative Donaldson invariants of M that take
values in the Floer groups of B. This connection between the Floer and Donaldson
theories has led Atiyah to conjecture that the "Morse theory" interpretation of
Floer homology must be an approximation to a relativistic quantum field theory.
That conjecture was the motivation for the present work. We will find a relativistic
formulation which turns out to require a not entirely trivial generalization of the
nonrelativistic treatment in [7]. This generalization is described in Sect. 2. In Sects.
3 and 4, we describe from this point of view the origin of the Donaldson
polynomials and their connection with Floer theory. In Sect. 5, some explicit
formulas are worked out. Finally, in Sect. 6, we will discuss the possible physical
interpretation of this work.

There are many results on instantons in the physical and mathematical
literature which are important background for the present work. Instantons were
used to solve the "U(l) problem" by fct Hooft [10] and were interpreted in terms of
tunneling in [11,12]. The formal theory of deformations of instantons, relevant in
Sect. 3 and later, was developed in [13]. In addition, many remarkable properties
of instantons in supersymmetric gauge theories have been uncovered in the physics
literature. In particular, the ideas of [14, 15] may well be important for future
developments in Floer and Donaldson theory, perhaps connected with the role of
the reducible connections. Our treatment of Donaldson polynomials in Sect. 3 has
a close formal similarity with the arguments given in [16] to determine certain
correlation functions in strongly coupled supersymmetric gauge theories. Finally,
it should be noted that many arguments in Sect. 3 and later will be quite
recognizable to string theorists. This analogy is in fact tantalizing and is further
pursued in Sect. 6. Introductions to the relevant string theory are [17-19].

2. Construction of the Lagrangian

Let us first recall the description of Floer theory in a non-relativistic quantum field
theory [7]. One begins with gauge fields A"(x) on a three manifold Y. Here i = 1... 3
labels the components of a tangent vector to M, a runs over the generators of a
gauge group G, and x labels a point in Y. Y is endowed with a metric tensor gtj. We
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wish to consider differential forms on the space si of all gauge connections on Y. *
A basis for the one forms would be the δA"(x).2 The δA?(x) can be regarded as
operators on the differential forms on si [if ω is a differential form on si, then
δAai(x) acts on ω by ω->W (x)Λ(ϋ]. Regarded thus as operators on differential
forms, the δA^(x) anticommute, {δA"(x),δA^(y)}=0. They thus correspond to
second quantized fermi fields. Following physical terminology, we will denote the
δAϊ(x) as ψΐ(x).

The exterior derivative on si is

Its adjoint is

where the χ"(x) [vector fields on si dual to the ψa

i(x)'\ obey {χ?(x), χbj(y)} = 0,
{χai(x%ψbj(y)}=Sijδabδ3(x — y). One then considers the Chern-Simons functional

\ ^ A / \ A A A ) as a Morse function on Y. Thus, as in finite
Y

dimensions [9], one introduces a real number t and defines dt = e~tWdetW,
d* = etWd*e~tW to be the "supersymmetry charges." They obey

df = O, d*2 = 0, dtdf + dfdt = 2H, (2.3)

where H, defined by the last equation, is the Hamiltonian of the nonrelativistic
theory. Explicitly,

^ i ( ^ ) 2 4 τ r ^ + ί ε,Tri/,w], (2-4)

with B—^SifrF*, Fij = diAj-djAi + [Ai9Aj'].3 In the first two terms of (2.4), we
recognize the Hamiltonian of conventional (Lorentz-invariant) bosonic Yang-
Mills theory. The last term is a Lorentz non-invariant coupling to fermions. (The
fermions have spin one, impossible if the coupling were Lorentz invariant.) As
described in [7], the ground states of (2.4) are the (rational) Floer groups of Y.
These groups are graded by an additive quantum number which we will call U,
with U =\ for ψ and U = — 1 for χ. (In finite dimensions, U would correspond to

1 The relation of differential forms in function space to quantum fields was described for sigma
models in [20], which may serve as useful background
2 That is, for each x, i, and α, we view A°(x) as a function or zero form on jrf, and oA"(x) is a one
form which is the exterior derivative of the zero form A°(x). The symbol δ simply denotes the
exterior derivative on the function space si
3 Our gauge theory conventions are that the covariant derivative of a charged field φ is
Diφ = dίφ + \_Ab φ~\. Under an infinitesimal gauge transformation with δφ = [ε, </>], the transforma-
tion of Ai is δAt= —Dfi. We regard the generator of the gauge group G as real, skew-symmetric
matrices in the adjoint representation, and any field φ with values in the adjoint representation,
when not described explicitly by components φa, is such a real skew-symmetric matrix. The
symbol "Tr" denotes the positive definite Cartan-Killing form on the Lie algebra of G
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the grading of the de Rham complex by dimension.) Because of instantons, U is
only conserved modulo a constant; for SU(2), the constant is 8.

2.1. Relativistic Generalization

In trying to find a relativistic version of this picture, our first problem is to decide
what the supersymmetry algebra will be. In (2.3), there appears the generator H of
time translations. There is a natural notion of time translations as long as we work
on Y x R1 (Y is "space" and R1 is "time"). However, the Donaldson theory applies
to a general (compact, smooth) four manifold. On a general four manifold, there is
no natural notion of "time translations," so one must work with a smaller
supersymmetry algebra in which H does not appear. This means that we cannot
keep both dt and df in the intrinsic, four dimensional, theory. We must keep just
one supersymmetry generator, say dt, which we will call β; it will obey simply
Q2 = 0. [We will see how to retrieve the algebra (2.3) if one specializes to a four
manifold Y x R1.] Obeying Q2 = 0, Q will be rather similar to a BRST charge, and
we will suppose that it plays a BRST-like role of identifying physical states;
physical states ψ will be states obeying Qψ = 0, modulo those of the form ψ = Qλ.4

It will turn out that the physical states in that sense are just the Floer groups. In this
way, the negative norm states that one might have expected in a Lorentz invariant
theory with anticommuting fields of integer spin will disappear.5 Despite this
BRST-like role of the supercharge β, I have no idea how to obtain the "BRST"
invariant Lagrangian considered below by gauge fixing of a gauge invariant
Lagrangian. It will be argued in Sect. 6 that such a Lagrangian would have to be a
generally covariant one of a new type.

Trying to extend (2.4) to a Lorentz invariant theory, the next problem is to put
the fields A", ψ", χ* into Lorentz multiplets. Clearly, the gauge field A* is in a four
dimensional picture part of a (Lie algebra valued) one form Aa

a, α = 1... 4. (Tangent
indices to a four manifold M will be denoted α, β, γ.) As for ψ and χ, we will take
these to be a one form \pa

a and a self-dual two form χa

aβ (thus χa

aβ = — χa

βa = \εaβyδχ
yδa).

Also, we will supplement these with a zero form ηa of U = — 1. The rationale behind
these choices is that the {η9ψa,χaβ) multiplet is known to play a role in four
dimensional instanton moduli problems analogous to the role of (ψi9 χf) in Floer
theory.6

Let us try to make a supersymmetric theory from these fields. The only
reasonable (scale invariant and U conserving) Lagrangian that we can write is

JΛβF**-iηD«ψ« + i(DaΨβ)χ^ . (2.5)

As for the supersymmetry transformation laws, the only reasonable try is

β β βγ (2.6)

with ε a constant anticommuting parameter.

4 BRST quantization of gauge theories was originated in [21,22]. The role of the BRST charge in
identifying physical states emerged in [23]
5 A similar phenomenon occurs in string theory in the no-ghost theorem. This aspect of the
analogy between Donaldson theory and string theory was suggested by D. Friedan
6 See [13, 2] for background; a brief sketch appears in Sect. 3 below
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One quickly sees that (2.5) is invariant under (2.6) if the gauge group is abelian,
but in the non-abelian case there is an uncancelled term of the form ε Tr η\jpa, ψ

a~\.
There is no way to avoid this except by adding more fields. Heuristically, we should
expect to have to add more bosons, because we have added new fermions (η and
ψ0) to the supersymmetric non-relativistic theory. (The addition of Ao to the non-
relativistic theory goes in the wrong direction, because it implies a constraint,
rather than being a physical propagating field.) To guess what new fields are
required, one may note that the propagating modes of Aa have helicities (1, —1),
while the propagating modes of (η,ψ,χ) have helicities (1, —1,0,0). Since the
supersymmetry parameter ε is to carry no spin, supersymmetry will require that
the propagating modes of commuting and anticommuting fields should have the
same helicities. Thus, we need two helicity zero commuting modes, and to
accommodate them we introduce two new spinless fields φ and λ (in the adjoint
representation of the gauge group).

A little experimentation leads to the Lagrangian

*x Tr Γ * FaβF« + \ φDaD«λ - iηDaxp« + iDaΨβ

(2.7)

This Lagrangian is invariant under the fermionic symmetry

δAa = ίεψOi, δφ = O, δλ = 2iεη, δη = ^ε[φ,λ],
(2.8)

δψa = - εDaφ, δχaP = ε(Faβ + K ^ F * )

This action is also invariant under global scaling if the scaling dimensions of
(A,φ,λ,η,ψ,χ) are (1,0,2,2,1,2), and preserves the additive U symmetry if
the U assignments are (0,2, - 2 , - 2, - 1 , 1 , -1) .

Let us now work out the algebra obeyed by the fermionic symmetry. Let δE(Φ)
denote the variation of any field Φ under (2.8). Let Tσ(Φ) denote the variation of Φ
in a gauge transformation generated by an infinitesimal parameter σ (the gauge
field Aa transforms as Tσ(Aa) = — Daσ, and charged fields Φ transform as
Tσ(Φ) = [σ, Φ]). Then one can verify that for all Φ,

(δεδε,-δε,δε)(Φ)=Tρ(Φ), (2.9)

where

ρa=-2ίεε'-φa. (2.10)

So the commutator of two supersymmetry transformations is a gauge transfor-
mation with infinitesimal parameter ρa. In verifying (2.9) for Φ = A,φ,λ,η,ψ,
one need not use the equations of motion, but for Φ = χ the equations of motion
must be used.

The Lagrangian (2.7) is not quite uniquely determined by its symmetries. The
reason for this is as follows. Let us define a linear transformation {Q, } of the space
of all functional of the field variables as follows, {β, } is defined by saying that for
any functional &, the variation δ(9 of Θ under the fermionic symmetry (2.8) is

δΘ=-iε {Q9Θ}. (2.11)



358 E. Witten

[Here {Q, V) is simply a linear transformation on a suitable space of functionals of
A,φ,λ,η,ψ,χ. The rationale for writing this transformation as {Q, Θ} and not
merely as Q(Θ) is simply that in the Hamiltonian framework, this transformation
really corresponds to the graded commutator of Θ with the supercharge Q defined
later.] Insofar as it is true that Q2 = 0, {Q, Θ) is Q invariant and can be added to the
Lagrangian without spoiling the fermionic symmetry. Actually, since the proof
that Q2 = 0 uses the χ equation of motion, we are only entitled to add {β, Θ) to the
Lagrangian if χ does not appear in Θ. Also, since Q2 is only zero up to a gauge
transformation, we must pick Θ to be gauge invariant. In practice, there is one
choice of Θ that respects all the symmetries, namely Θ = ̂ Tr([</>, λ~]η). This gives us
the possibility to add to the Lagrangian a new term

+ i [ < M ] 2 J (2.12)

with 5 an arbitrary parameter. Some of our later considerations will be simplified if
we add (2.12) with 5= — 1, and thus the Lagrangian we actually use for many
purposes will be

[j \ φDaD*λ - iηDaψ« + iDxΨβ • f»

(2.13)

The following remarks (though not strictly necessary for understanding this
paper) may be helpful for readers acquainted with conventional supersymmetric
gauge theories. The above construction of a four dimensional supersymmetric
Lagrangian, starting with the non-relativistic version, adding fields, and adjusting
couplings, undoubtedly seems rather ad hoc. There is, however, a simple way to
relate the output Lagrangian (2.13) to standard physical constructions. [The
argument will explain the form of the Lagrangian (2.13), but does not quite explain
why it is supersymmetric on an arbitrary four manifold.] Consider the usual N = 2
supersymmetric gauge theory in flat Euclidean space R*. The rotation group of R4

is SU(2)L x SU(2)R. The N = 2 Lagrangian has a global internal symmetry which
we will denote as SU(2)IxU(l)u. Under SU(2)LxSU(2)RxSU(2)IxU(l)u, the
fields oϊN = 2 supersymmetric Yang-Mills theory transform as follows. The gauge
fields are

(1/2,1/2,0)°, (2.14)

the spinless bosons are

(0,0,0)2θ(0,0,0Γ2, (2.15)

and the fermions are

(1/2,0,1/2)^(0,1/2,1/2Γ1. (2.16)

[Here the three numbers in parenthesis denote SU(2)L x SU(2)R x SU(2)j repre-
sentations, and the superscript is the U(ί) charge.] Suppose now that while
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remaining in flat four dimensional Euclidean space, we consider an exotic action of
the four dimensional rotation group, replacing SU(2)Lx SU(2)R by
SU(2)L x SU(2)'R9 where SU(2)'R is the diagonal sum ofSU(2)R and SU(2)I. It is easy
to see that under SU(2)L x SU(2)'R x ί/(l), the bosons transform as

(l/2?l/2)°Θ(0,0)2Θ(0,0)-2 (2.17)

and the fermions as

(lAl^eίαi)-1©^^)"1. (2.18)

These are precisely the fields appearing in (2.13). The fermions ψa, χaβ, and η
transform as (i,^)1, (0,1)~ \ and (0,0)~ί, respectively, while the bosons Aa9 φ, and λ
transform as (i,i)°, (0,0)2, and (0,0)~2. As long as the four manifold M is flat
Euclidean space, the Lagrangian (2.13) is simply the standard N = 2 Lagrangian
with an exotic action of the rotation group.

The global supersymmetries of the standard N = 2 model transform under
SU(2)LxSU(2)RxSU(2)IxU{l)u as (hθΛ)~ι®ΦΛΛ)+1- S o t h e y transform
under SU{2)ι®SU{2)R as φ i ) ~ * 0(0,1)10(0,0)1. The Lorentz singlet supercharge
that we have considered is simply the (0,0)* component.

Thus, from this standpoint, it is obvious that (2.13) is supersymmetric if M is R*
with flat metric. It is crucial and less obvious that (2.13) is supersymmetric for M an
arbitrary orientable Riemannian four manifold. In verifying supersymmetry, one
sometimes meets commutators of covariant derivatives, and the Riemann tensor
might appear. However, in verifying supersymmetry of (2.13), there is only one
point at which one meets the commutator of covariant derivatives. This is in
computing δ(Jr(Daψβ χaβ)) = $εTr([Da9Dβ]φ'χaβ). Since the commutator of
covariant derivatives is here acting on the spin zero field φ, the Riemann tensor
does not appear, and all is well. I do not know whether twisted versions of other
N ̂  2 supersymmetric field theories will similarly be supersymmetric on a general
four manifold.

2.2. Some Useful Formulas

We conclude this section by working out certain formulas that will be useful in
later sections of this paper. First, we would like the formula for the supersymmetry
current which, according to Noether's theorem, generates the fermionic symmetry
(2.8). The recipe for finding the supersymmetry current is standard. One considers
a transformation of the form (2.8) with ε an anticommuting parameter that is not
necessarily constant. Since the variation of the Lagrangian would be zero if ε is
constant, it must be proportional to the derivative of ε, and so has the general form

δ£e= ί<9αε /α (2.19)
M

for some Ja. In the case at hand one computes

r = Tr [(F«e + F«β)ψβ - ηD«φ - Dβφ χ^ - ±ψ«[λ, φj\ (2.20)

with

. (2.21)
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Now, the variation of the Lagrangian (2.13) under (2.8) has the form (2.19)
regardless of the behavior of the fields (A, φ, λ, η, ψ, χ). If, however, the Euler-
Lagrange field equations are obeyed, then if is stationary under arbitrary
(compactly supported) variations of the fields and in particular under (2.19). Thus,
the Euler-Lagrange equations imply vanishing of (2.19) for arbitrary compactly
supported ε; this must mean that the Euler-Lagrange equations imply that

Dar = 0, (2.22)

as one can verify directly. This enables us to construct a conserved charge. Given a
homology three cycle Y in M, the integral

(2-23)

or equivalently Qγ = \*J, with * J the closed three form dual to the current Jμ\γ J
depends only on the homology class of Y.

Now, we would like to compute the energy-momentum tensor of the theory.
This is defined in terms of the variation of the Lagrangian under a change in the
metric tensor gaβ of M. The definition of Taβ is that under an infinitesimal change of
the metric gaβ-+gaβ+ δgaβ, the action changes by

TaP. (2.24)

There is one subtlety that must be noted here. The antisymmetric tensor χaβ is
subject to a self-duality constraint

χ«β = iε«βysgyrgδd'χrs' (2-25)

which must be preserved when computing the variation of the Lagrangian with
respect to gaβ. To preserve this condition, an arbitrary change δgaβ in the metric
must be accompanied by

δXaβ = ̂ yS^'g^Xy'S' ~ U^garKβySg7''g^Xy'5' (2-26)

It is then straightforward, although slightly tedious, to compute the energy-
momentum tensor. One finds

Txβ = Tr I ( FaσFf - X- gaβFστF°Λ + l- \(DaΨrτ - DσΨx)χβ" + (DβΨσ - DσΨβ)χΛ°

βλ + DβφDaλ-gaβDσφD°λ)

/ A w " ) - 2i ί λψaψβ - - gaβλψσψ
σ)

(2.27)

The single most important property of Taβ is, of course, that it is conserved (in the
covariant sense) if the equations of motion are obeyed:

DJ«β = 0. (2.28)
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Equation (2.28) follows by a formal argument similar to that which gives (2.22).
Under a coordinate transformation δxa = uα, with xa coordinates on M and ua an
infinitesimal vector field, the metric changes by δgaβ = — {Dauβ + Dβucc). This
coordinate transformation induces some change in {A, φ, λ, η, ψ, χ). If the Euler-
Lagrange equations are valid, the action will be invariant to lowest order. The
change of the action is in fact δϊ£ = ̂ ]/g(δgaβ)Taβ = -jS]/g(Dauβ + Dβua)Taβ. This
vanishes for arbitrary compactly supported ua if and only if (2.28) is obeyed.

Now we wish to discuss scale and conformal invariances. For the trace of the
energy-momentum tensor one finds

gaβTaβ = Ίx[_Dσφ - Dσλ-2ίDση ψσ + 2W[φσ, ψ
σ] + 2iφlη, η\ + ±[<k ̂ ] 2 ]

(2.29)

This does not vanish, so the Lagrangian (2.13) is not conformally invariant - it is
not invariant under δgaβ = w(x)gaβ with w(x) an arbitrary real function on M.
However, the trace of the energy-momentum tensor can (using the equations of
motion) be written as a total divergence,

g«βTaβ = DaR\ (2.30)

with

RΛ = Ίτ\_λDaφ-2iηψ«]. (2.31)

The fact that the trace of the stress-tensor is a total divergence means that the
Lagrangian is invariant under a global rescaling of the metric; that is, if δg*β = wgaβ,

with w constant, then δ&= \ J \Γgδg«βTaβ= ~ J ]/ggaβTaβ= ~ f ]/gDaR« = 0. A
AM I M AM

closely related statement is as follows. Take M to be R4 with the usual flat metric,
and with Euclidean coordinates xa. Then the scaling transformation δxa = wx* of
Euclidean space (w an infinitesimal parameter) is generated by the conserved
current

Sa=Taβxβ-R\ (2.32)

Conservation of Sa follows immediately from (2.30). Sa generates the scale
in variance of (2.13) that is visible to the naked eye, with scaling dimensions

{ί9092,29ί,2)foτ(A9φ,λ,η9ψ,χ).7

Now we come to a point which - as we will see in the next section - is of utmost
importance in understanding Donaldson theory. An operator which can be
written as {Q, G) for some Θ is known in string theory as a "BRST commutator."
[The operator {Q, } was introduced in (2.11).] The correlation functions of BRST
commutators are subject to powerful restrictions [17], which we will review in
Sect. 3. In understanding Donaldson theory, it will turn out that one of the most
important facts is that the energy-momentum tensor is a BRST commutator. One
finds

Taβ = {Q,λaβ} (2-33)
7 Note, in particular, that (2.13) is a counterexample to some frequent mis-statements of the
relation between scale and conformal invariance. For an elucidation of these issues see [24]
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with

Kβ = ί Tr (Faσχβ

σ + Fβσχa

σ - h^F^)

+ i Tv(ΨaDβλ + V / ϊDβλ - gβ/,Vσ0σλ) + h«β Tr fa [0, A]). (2.34)

Now, one might guess from (2.28) and (2.33) that Daλ
aβ would vanish. Rather

one finds

= 0, (2.35)

with £/α/? = — Uβct an antisymmetric tensor defined by

Uaβ=-\ Tr \_(Faβ - Faβ)η] + ±ε«βyδ TrψyDδλ + \ Tr ([0, A]χα/*). (2.36)

Equations (2.28), (2.35), and (2.36) together imply that

0 = DaT*β = Da({Q, λ«β}) = {β, Daλ«β}

= -{Q,DaU«β}=-Da({Q, U*β}), (2.37)

so {β, £/α/?} must be conserved, even though Uaβ is not. It is easy to check this; in
fact

{Q,UΛβ} = ±ε*WDyRδ (2.38)

with Rδ defined in (2.31). [I do not know why precisely the same object Rδ appears
in both (2.30) and (2.38).] From (2.38) it follows that Dα({β, Uaβ}) = 0, as expected.

As preparation for the next section, we will require one more formula of a
similar nature. Let

β , λ]). (2.39)

Then one computes (with the aid of the χ equation of motion) that

{Q,V}=<e\ (2.40)

where

^' = ̂  + ϊ\γgΊτFxβF^. (2.41)
M

Here i f is the Lagrangian of Eq. (2.13), and the second term ίwhich equals

I J ΎrF A F\ is a topological invariant, which measures the first Pontryagin class

of the vector bundle on which Aa is a connection and Faβ a curvature tensor.
Adding this topological invariant to the Lagrangian would not disturb any of our
previous considerations, since the new term, being a topological invariant, is
certainly invariant under all of the infinitesimal transformations that we consi-
dered earlier. Because of Eq. (2.40), if' is in many ways a more convenient choice of
Lagrangian than JS?, as we will see in the next section.

Before tackling the quantum theory (and the Donaldson polynomials), a few
more points should be noted. The bosonic part of the Lagrangian contains the
Yang-Mills action and certain scalar couplings. Although the Yang-Mills action is
positive definite, the (φ, λ) kinetic energy is indefinite, so the Tr \_φ, λ] 2 term in (2.13)
has the wrong sign. These facts might appear to make problematical the Feynman



Topological Quantum Field Theory 363

path integral formalism which we will use in the next section. There are several
points of view one might adopt.

One point of view is to go back to the form (2.7) of the Lagrangian, perhaps
with the addition of the topological charge term. [Recall that (2.7) and (2.13) are
equivalent, differing only by a BRST commutator. We have introduced (2.13) only
because of its more obvious relation to N = 2 supersymmetry and the higher
symmetry it has when M = Y x R1 see Sect. 2.4.] In this version, the scalars only
appear quadratically; they can be integrated out by Gaussian integration, and the
indefiniteness of the kinetic energy does no harm.

Another possible viewpoint is that instead of regarding φ and λ as independent
real fields, one can view λ as a complex field and set φ = — A*. Then the (φ, λ) terms
in (2.13) become positive definite. This is what one would get if one takes twisted
N = 2 supersymmetry literally. All of the formulas given above still go through in
this viewpoint.8 The drawback of this approach is that if λ is complex and
φ = — λ*, the Lagrangian is not real, and it is not obvious that the Donaldson
invariants will come out to be real numbers.

In Floer and Donaldson theory, reducible connections (that is, gauge fields
which are invariant under a non-trivial subgroup of the gauge group) are well
known to cause many difficulties. In the present framework, these problems show
up in zero modes of the (φ, λ) system for reducible connections. [In other words, for
reducible connections, the Laplacian — DaD

a, which is the kinetic operator for the
(φ, λ) system in the linearized approximation, has a non-trivial kernel.] The proper
treatment of the (φ, λ) system, which is not yet clear, is bound to interact in a non-
trivial way with the proper treatment of reducible connections in Floer and
Donaldson theory.

3. Path Integral Representation of Donaldson Polynomials

In the last section, we formulated a version of supersymmetric Yang-Mills theory
that possesses some fermionic symmetry on an arbitrary smooth orientable four
manifold M. This makes it possible to use techniques of quantum field theory to
describe invariants of four manifolds. As we will see, a natural description of the
Donaldson invariants will emerge.

In this section, we will see what can be obtained by formal manipulations of
Feynman path integrals. Of course, a rigorous framework for four dimensional
quantum gauge theory has not yet been developed to a sufficient extent to justify
all of our considerations. Perhaps the connection we will uncover between
quantum field theory and Donaldson theory may serve to broaden the interest in
constructive field theory, or even stimulate the development of new approaches to
that subject. Though our considerations in this section and the next one will be
purely formal, we will see in Sect. 2.5 that even without having a rigorous
construction of the quantum field theory, one can extract from it concrete and

8 It is not necessary to worry about whether the variation (2.8) is compatible with φ = — λ*. The
supercurrent (2.20) is still conserved by virtue of the equations of motion if λ is complex and
φ= — λ*, and this is what counts
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rigorous formulas that are relevant to Donaldson theory, together with a recipe for
proving some of the main properties of those formulas.

Proceeding formally, we will find path integral representations for certain
topological invariants.8a The integrals considered will be integrals over all
the fields (A,φ,λ,η,ψ,χ) considered in Sect. 2. The integration measure
3>A'g>φ Θλ'9iη 3>ψ 2iχ will be abbreviated as (9X).9 The integrals we
consider will be of the form

Z(W)= j(^X)exp(-J27e2)- W, (3.1)

where <£' is the Lagrangian of Eq. (2.41) (with a topological term included), e is a
real number usually known as the "gauge coupling constant," and W will usually
be a polynomial in the integration variables. The integral in (3.1) is known as the
(unnormalized) expectation value of W, and denoted (Wy.

Recall from Sect. 2 that the variation of any field Θ (by a "field" we simply mean
a functional of the integration variables A,φ,λ,η,ψ,χ) under the fermionic
transformation (2.8) is denoted as {Q,Θ}. The most important property of
Feynman path integration in the supersymmetric theory under discussion here is
that <{β,0}> = O for any Θ. This holds for the following reason. Because the
integration measure (βX) is invariant under supersymmetry, the integral

Ze(O) = J (βX) exp(εβ) {exp( - Se'/e2) Θ) (3.2)

is independent of the infinitesimal parameter ε. Expanding this out, and using the
fact that the action is supersymmetric ({β, eS?'} = 0), we see that

Ze(0) = j {βX) exp( - &'/e2)(Θ + ε{β, Θ}). (3.3)

The assertion that Zε{&) is independent of ε thus means that

) {Q,Θ}. (3.4)

A corollary which perhaps should be stated explicitly is this. If {Q,A}= 0, then
(A{Q,B}) = 0 for any B, since {Q,A}=0 implies A{Q,B} = {β, AB} so that

<A{Q,B}y = <{Q9AB}} = 0. (3.5)

Now we are ready to define topological invariants. We pick a smooth four
manifold M, a compact gauge group G, and a G bundle E on which the gauge field
Aa

a is to be a connection. Our simplest topological invariant is simply the partition

). (3.6)

Why is Z a topological invariant? To define the Lagrangian if', one needs to pick a
Riemannian metric gaβ on M. To show that (3.6) is a topological invariant, it is
necessary and sufficient to show that Z is invariant under an infinitesimal change
in the metric. We recall from Sect. 2 that the change of j£f' under a change in g is by
definition the energy-momentum tensor:

(3-7)

8 a What we will loosely call topological invariants are really "smooth invariants", that is, they
depend on the smooth structure but not on the metric of M
9 As is usual in gauge theories, we really intend here an integration over orbits of the gauge group -
that is, over fields modulo gauge transformations
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Also, recall that the energy-momentum tensor is a BRST commutator:

T«, = {βΛ,} (3-8)

with λaβ defined in Eq. (2.34). Therefore, the change in Z under a change in metric is

δZ=S(@X)[exp{-&'ι

1
cP'le2)' \0 f

= 0. (3.9)

This shows that Z is a topological invariant.10

Before trying to evaluate this invariant, let us observe that it is for similar
reasons independent of the gauge coupling e. Indeed, the variation of Z with
respect to e2 is

δZ = δ\ [βX) exp( - JT/e2) = δ Γ - -1 j J iβX) eχP - (&'/e2) JS?'

(3.10)

where we are borrowing from Eq. (2.40) the fact that ££' = {β, V}. This shows that
Z is independent of e2 as long as e2 φ 0.11

Therefore, we can evaluate Z by going to the limit of very small e2, whereupon
the path integral is dominated by classical minima. To find these minima, note that
the gauge field terms in if' are

= 1 J ]/gΎr(Faβ + Fxβ)(F^ + F««). (3.11)

M

This is positive semidefinite, and vanishes if and only if

F«β=-Fxβ, (3.12)
that is if and only if the gauge field is anti-self-dual. Therefore, the evaluation of Z
depends on expansion around solutions of (3.12), known as instantons. (It would

1 0 We ignored in (45) a possible dependence of the measure {βX) on the metric g. Taking account
of this dependence is really the problem of showing that the crucial equation Taβ = {Q, λaβ} is true
quantum mechanically. Making this completely rigorous is one of the tasks of constructive
quantum field theory. In this paper we will restrict ourselves to essentially classical considerations
1 1 An attempt to go to e2 = 0, by writing the whole factor exp( —if'/e2) as a BRST commutator,
fails for two reasons. First, without the exp( — £"/e2) convergence factor, the integration by parts
in function space used to prove that <{g,&}} = 0 for any Θ would not be valid. Second, the
verification that if' = {Q, V} used the χ equation of motion, and this can be justified in correlation
functions only with use of the exp( — 5£'je2) factor
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be tiresome to call them anti-instantons; solutions of the opposite equation
Faβ = -f Faβ will play no role in this section.)

Let us therefore make a few remarks about instantons. Depending on the
choice of the manifold M and the bundle E, instantons may or may not exist. If they
do exist, then (for a generic choice of metric g) the instantons have a moduli space
Jί (smooth except for some relatively mild singularities) whose "formal"
dimension d(Jί) is given by a certain topological formula [13, 2 ] . l 2 If the gauge
group G is SU(2)9 this formula is

d{Jί) = SPl(E) - MM) + σ(M)), (3.13)

where Pι(E) is the first Pont ry agin number of the bundle E, and χ(M) and σ(M) are
the Euler characteristic and signature of M.

If we do manage to find an instanton gauge field A, we can look for a nearby
instanton A + δA. The condition for A + δA to obey (3.12) is

O = DΛδAβ-DpδAa + εaβγάD'δAδ. (3.14)

In addition, we are interested in requiring δA to be orthogonal to the variations in
A that can be obtained purely by a gauge transformation. This is conveniently
achieved by imposing the gauge condition

0 = DaδAa. (3.15)

Let n be the number of solutions of (3.14), (3.15). These solutions describe
infinitesimal instanton moduli, so at a generic point in moduli space, n = d(M) (at
least if conditions are such that the formal dimension equals the actual dimension).

Now let us look at fermion zero modes in the instanton field. The χ equation
gives

D*ψβ ~ DβW* + eaβySDV = 0, (3.16)

while the η equation gives

Daψ« = 0. (3.17)

These are the equations we have just seen, so the number of ψ zero modes is the
number we have called n. (This relation between the fermion equations and the
instanton moduli problem was the motivation for introducing precisely this
collection of fermions in Sect. 2.)

For a generic SU(2) instanton, there are no (η, χ) zero modes. This is so precisely
when n = d(Ji). The general statement, governed by an index theorem, is that the
number of ψ zero modes minus the number of (η, χ) zero modes is equal to d(M\

Recall that the Lagrangian (2.13) has a global symmetry U at the classical level.
ψ has U= + 1 , and η, χ have U= — 1. As in [10], the number of ψ zero modes
minus the number of η, χ zero modes is the net violation of U by the instanton at
the quantum level; we will call this number AU. Thus

(3.18)

1 2 The formal dimension equals the actual dimension under certain conditions noted later
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(The meaning of this statement is that the integration measure @X is not invariant
under U but transforms with a definite weight — A U.) Equation (3.18) holds for any
gauge group G; of course, d(Ji) must be computed using the appropriate
generalization of (3.13). It must be borne in mind, though, that the appropriate
d(Jί) is the "formal" dimension of the instanton moduli space, which equals the
actual dimension only if G and E are such that the generic instanton is not
invariant under any subgroup of G; if G is larger than SU(2), this is only so under
certain restrictions on E.

Let us now go back to our problem of computing Z. Z vanishes unless M, G,
and E are such that d(Jί) — 0. Otherwise, ΔU + 0, and the partition function
vanishes because of the fermion zero modes.

To further simplify the discussion, we will suppose that in addition to the
formal dimension d(Jί) of the instanton moduli space vanishing, the actual
dimension also vanishes. In fact, we will assume that the moduli space consists of
discrete, isolated instantons. (Standard quantum field theory methods could,
however, be used to deal with a more general situation.) In expanding around an
isolated instanton, it is enough in the weak coupling limit to keep only quadratic
terms in the bose fields Φ = (A,φ,λ) and fermi fields Ψ = (η,ψ,χ). (The weak
coupling limit is adequate because we have seen that Z is independent of coupling.)
The quadratic terms are of the general form,

ί
M

= ί ]/g(ΦABΦ + iΨDFΨ)9 (3.19)
M

where ΔB and DF are certain second and first order operators, respectively.13 The
operator DF is a real, skew-symmetric operator. The Gaussian integral over AB and
DF gives

Pfaff(DF)
(3.20)

Here Pfaff denotes the Pfaffian of the real, skew-symmetric operator DF. (Recall
that, up to sign, the Pfaffian is the same as the square root of the determinant.)

The important point now is that DF and ΔB are related by supersymmetry. A
look back to Eq. (2.8) shows that a classical field configuration in which
Faβ + Faβ = 0 and φ,λ,η,ψ,χ vanish is invariant under supersymmetry (the
requirement Faβ + Faβ = 0 is needed to ensure δχaβ = 0). Therefore, supersymmetry
relates the bosonic and fermionic excitations about such a field configuration. To
be precise, for every eigenvalue of DF

ίDFΨ = λΨ (3.21)

with λή=0, there is a corresponding eigenvalue of AB,

ABΦ = λ2Φ. (3.22)

(More exactly, as DF is a skew symmetric operator, its eigenvalues occur in
complex conjugate pairs. Each such pair corresponds to an eigenvalue of AB) At
least for M = S4, this relation between bosonic and fermionic eigenvalues is a

' AB is an elliptic operator acting in the directions in field space transverse to the gauge orbits
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standard result in the theory of instantons [25]. For the particular supersymmetric
theory we are considering, the argument goes through for general M in the same
way (since we have arranged so that supersymmetry holds for general M).

The ratio of determinants in (3.20) is thus formally

= + Π ^ (3.23)

with the product running over all non-zero eigenvalues of AB (or equivalently, over
all non-zero eigenvalue pairs of DF). The reason for the uncertain sign on the right-
hand side of (3.23) is that although up to sign the Pfaffian is the square root of the
determinant, the sign depends on a choice of orientation, which we must now
discuss.

In fact, for any given gauge field A, there is no natural way to determine the sign
of Pfaff DF, since there is no natural way to pick an orientation (or equivalently, to
fix the sign of the fermion measure). One may as well pick a particular gauge field
A = A0, and declare Pfaff DF(A = Ao) > 0. Once this is done, there is a natural way
to determine the sign of Pfaff DF(A = A') for any other gauge field A' (with Ao and
A' being connections on the same bundle). One simply interpolates from Ao to A\
via (say) the one parameter family of gauge fields At = tA0 + (1 — t)A\ 0 ̂  t ̂  1, and
requires that the sign of Pfaff DF(At) changes sign whenever DF has a zero
eigenvalue for A = At. This uniquely determines the sign of Pfaff DF(A), but one
must still ask whether the assignment is consistent - whether the sign that one will
obtain this way depends on the choice of an interpolation from Ao to A'. It is
equivalent to ask whether Pfaff DF will change sign when followed continuously
around a non-contractible loop in the space stfjΉ of gauge fields modulo gauge
transformations. Physically, this is the question of whether the theory we are trying
to discuss has a global anomaly, in the sense of [26]. If so, the theory under
investigation is inconsistent, in the usual sense of quantum field theory, and one
cannot expect to learn anything of interest by studying it.

A priori, the Pfaffian of DF must be regarded not as a function on stfjΉ but as a
section of a certain real line bundle λ, which we may call the Pfaffian line bundle.
The issue is whether the Pfaffian line bundle is trivial (orientable). Precisely this
question has arisen in Donaldson's work. For Donaldson, it was important to
know whether instanton moduli space Jί is orientable. If we denote the highest
exterior power of the tangent bundle of Jί as ε, then for Donaldson the issue was
whether the real line bundle ε was orientable. The two questions are related
because, thinking of Jί as a subspace of J / / ^ , the restriction of λ to Jt is
canonically isomorphic to ε, at least if conditions are such that the formal and
actual dimensions of Jί are equal. (This is so because the kernel of DF corresponds,
under such conditions, to the tangent space of moduli space.) Donaldson actually
proved orientability of Jί by using index theory and certain topological
arguments to prove that λ is always orientable, and thus his results show that there
is never a global anomaly that would prevent a consistent determination of the
sign of Pfaff DF.

In our problem, we simply pick one instanton and declare that (3.23) is +1 for
this instanton. Once this is done, there is a well defined way to evaluate (3.23) for
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any other instanton; for the /th instanton it equals (— I)"1, where wf = 0 or 1
according to the outcome of the process sketched above. The contribution of the ith

instanton to Z being (— 1)% we have finally

Z=Σ(-Ψ- (3-24)
ί

This is a familiar formula, originally introduced by Donaldson (who motivated
the definition of the ni in a slightly different but equivalent way). Donaldson
showed on topological grounds that if M, G, and E are such that d(Ji) = 0, then the
right-hand side of (3.24) is a topological invariant. We have argued for the same
conclusion by using the equation Taβ = {Q,λaβ} to prove that Z is a topological
invariant, and then evaluating Z to arrive at (3.24).

Equation (3.24) is only the first of Donaldson's invariants. More generally,
when d(Jί)>0, Donaldson defines certain more subtle analogues of (3.24), which
have had rather dramatic implications for the study of smooth four manifolds. We
would like to bring these within the framework of quantum field theory.

When d(Ji) > 0, the non-vanishing path integrals will be of the form

Z{0) = J (βX) exp( - 5£'le2) 0, (3.25)

where & must carry a U quantum number equal to d(Ji\ so as to absorb the
fermion zero modes. Let us determine the conditions on Θ for (3.25) to be a
topological invariant.

The variation of (3.25) under a change in the metric is

δZ(&) = I (SIX) exp ( - £"/e2) • [ - -^- -Θ + δg&

(3.26)

where δgΘ is the variation of Θ with respect to gaβ (if gaβ appears explicitly in the
definition of Θ\ and / = jSf'/e2.

The first term on the right-hand side of (3.26) vanishes if {Q, $} = 0, for then

- 0 . (3.27)

[Notice that we are using (3.5).] The second term in (3.26) vanishes if Θ has no
explicit dependence on gΛβ, or more generally if δΘ = {Q, ρ} for some ρ.

lϊΘ obeys these conditions, then Z(G) is a topological invariant. However, Z(Θ)
will vanish if Θ = {Q, ρ] for some ρ, since then

Z(Θ) = ({Q,ρ}) = 0. (3.28)

Thus, topological invariants will come from operators Θ such that {Q, Θ}=0,
modulo those of the form (9 = {Q, ρ}, and with Θ obeying the extra condition
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δg& = {Q,ρ} (δgΘ being the change in Θ under a change in gaβ). In our actual
examples, we will always have δgΘ = 0.

Looking back to the supersymmetry variations in (2.8), it is easy to find
operators that obey these criteria. The spin zero field φ is BRST invariant, does not
depend explicitly on the metric, and (being the only local field of scaling dimension
zero) cannot be written as {Q, ρ}. Of course, φ itself is not gauge invariant, but
invariant polynomials in φ such as Trφ2, Tr</>4, etc., are gauge invariant as well as
obeying our other criteria. The number of independent invariant polynomials is
equal to the rank of G; they correspond to the independent Casimir operators. For
G = Sl/(2), there is only one, which we may take to be

W0(P) = ±Ίτφ2(P). (3.29)

Here P denotes a point in M; we are emphasizing by the notation that Wo is a local
operator that depends on the choice of a point P. Note that Wo has (7 = 4.

We can now define some new topological invariants. Let the manifold M and
the bundle E be such that d(Jί) = Ak. Pick k points P l 5 ...,P f c on M, and define

Z{k)=\{βX)e-1 Π W0(J\) = < W i ) " . W0(PJ). (3.30)
ί = 1

Then Z(k) is independent of the choice of metric on M by virtue of the discussion
above. It is also independent of the choice of points P l 5 . . . , Pfe, since the choice of k
points has no intrinsic significance independent of a choice of metric.

While this argument shows that Z(k) is a topological invariant, it is very
illuminating to check more explicitly that Z(k) is independent of the choice of
points P l 3 . . . , Pk. To this aim we differentiate W0(P) with respect to the coordinates
xa of P, and find

^ ( 1 ) . (3.31)

Thus, although Wo is not a BRST commutator, its derivative is. It follows from
(3.31) that

p fiw ( p Λ
W0(P) - W0(P') = { —°dχ« = / β, J ^ , (3.32)

P' OX I P' )

where Wί is the operator valued 1 form Wί =Ύv(φψa) dxa. We now see that

(W0(P)-W0(Pf))'Y\W0(PJ)\ = (IQJJW^YlWoiPj^ =0. (3.33)

Here, of course, we have used the fact that {Q, Wo} =0, and we have again used
(3.5).

The key equations so far have been

= i{β, Wo}, dWo = i{Q, Wγ) (3.34)

ero form and one form on M, res]
ization. One finds recursively

dW1 = i{Q, W2}, dW2 = ί{Q, W3},

with Wo and Wγ being a zero form and one form on M, respectively. This process
has an important generalization. One finds recursively
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with
W2=Tτ&ψΛψ + iφΛF),

(3.36)
W3 = iττ(ψΛF), W^-\Ίτ{F ΛF).

In these formulas, φ, ψ, and F are regarded as zero, one, and two forms on M. Wk

for 0 ^ k ^ 4 is a k form. Notice that Wk has U = 4 — k.
If y is a /c dimensional homology cycle on M, consider the integral

I(γ)=\Wk. (3.37)
y

This integral is BRST invariant, since

1=O. (3.38)

In addition, up to a BRST commutator, / depends only on the homology class of y.
For if y is a boundary, say y = dβ, then

( 3 3 9 )

This formula is to be seen as the generalization of (3.32) from zero cycles (points P
and P) to k cycles. It says that if y is trivial in homology, then I(y) is trivial in the
BRST sense.

Now we are ready to propose quantum field theory formulas for the general
Donaldson invariants. Let M, G, and E be such that d(Jί)^0. Pick homology
cycles γί... yr of dimensions kί... kr, such that

Σ
ί = 1

This formula ensures that γ\ W{ has U = d{Jί). Then let

Z(γu...,γr)= \(@X)exp(-J?f/e2)- Π J Wk = I Π J ̂ Λ . (3.40)

This integral is a topological invariant by virtue of our standard arguments
[including a use of (3.5), (3.38), and (3.40) to show that (3.40) depends only on the
homology classes of the yj. Of course, if the group G is other than St/(2), we can
write similar formulas beginning with W^Ύrφ4 or other invariant polynomials
in φ. This corresponds precisely to the fact that a vector bundle with a rank r gauge
group has r essentially independent characteristic classes, each of which can be
used in principle in constructing Donaldson invariants, though so far the
interesting applications have come from the second Chern class. In Sect. 5 we will
extract from the quantum field theory viewpoint some explicit formulas for the
Donaldson invariants as integrals over the instanton moduli space.

4. Hamiltonian Treatment and Floer Theory

In the last section, we worked on an arbitrary four manifold M, with no preferred
"time" direction. As a result, there was no natural Hamiltonian formalism, and we
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have used Feynman path integral techniques, manipulating the BRST charge Q in
a way that is familiar in string theory. In this section we will specialize to the case
M=YxR1, with Y a three manifold and Rι corresponding to "time." In this
situation, we will discuss the Hamiltonian formalism. We will in the process see
how to recover the results anticipated in the nonrelativistic treatment of [7]. 1 4

In the Hamiltonian formalism, one constructs a Hubert space H, a, Hamil-
tonian H, and a fermionic charge Q obeying β 2 = 0, [<2,#] = 0. One of the main
interests is to study the Q cohomology groups, that is the kernel of Q modulo its
image (a Q cohomology class is an equivalence class of states ψ such that Qψ = 0,
the equivalence relation being that ψ ~ ψ + Qλ for any λ). The cohomology groups
are the quantum ground states and are precisely the Floer groups. These groups
are graded by the global quantum number U introduced in Sect. 2. We recall that
[[/, Q] = + Q and that U is conserved modulo a constant; for SU(2) this constant is
8, corresponding to the mod 8 grading of the Floer groups.

The assertion that the Q cohomology groups are finite dimensional and consist
only of the quantum ground states may at first surprise string theorists. In string
theory, the cohomology of the more or less analogous operator βB R S T consists of
the whole infinite spectrum of physical states. The difference is that in string theory
8BRST

 a c ^ s nonlinearly on the fields. [In fact, 2BRST *s cubic in oscillators; if c, b are
the conformal ghosts and X the matter field then QBRSΎ~cdcb + c(dX)2.~] On the
other hand, in the twisted supersymmetric theory that we are considering,15 Q acts
linearly on the fields (i.e., it acts in a nondegenerate fashion even in a linearized
approximation). At non-zero momentum every field has a superpartner, as is usual
in supersymmetric theories, and they cancel out upon constructing the coho-
mology, leaving only the quantum ground states.

One way to prove that the cohomology groups correspond to the ground states
involves an analogue of "Hodge theory." For M= Y x R1, we will find, in addition
to the supercharge Q, a second operator β obeying

{Q,Q} = 2H. (4.1)

β will also obey (β)2 = 0. From (4.1), a standard argument, which we will discuss
later, shows that the cohomology consists of the ground states.

The key to finding β is the equation that played a central role in Sect. 3, namely

Txβ = {Q,λJ- (4.2)

For M=YxR1, the Hamiltonian is defined as

H=id3xT00. (4.3)

1 4 In discussing the Hamiltonian formalism, we will use the form (2.13) of the Lagrangian. It is true
that adding J T Γ F Λ F with a very precise coefficient [as in (2.41)], so as to cancel the classical
instanton action, makes the path integral treatment of the last section more elegant. However, this
term with the coefficient in (2.41) would be very embarrassing in a Hamiltonian treatment (it
corresponds in physical terms to an imaginary θ angle, θ~ 1/e2). Floer theory definitely seems to
correspond to quantization of (2.13), not (2.41)
1 5 Recall from Sect. 2 that for M = R4, Q reduces to one of the eight supercharges in aniV = 2
supersymmetric gauge theory
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Evidently then, we can find an operator β obeying {β, β} = 2H simply by choosing

Q = 2$d3xλ00. (4.4)

Let us now show that [if, β ] = 0. We recall from Sect. 2 that Daλ
aβ = -Da(U)aβ

with (Uγβ=-(U)βCί. So

- i[H, β ] = ψ = 2 j d3x ^ - = - 2 f d^D^A01" - l/Oi) - 0. (4.5)
at Y dt Y

Here we are using the fact that U00 = 0 (since £/α/? = - Uβa) and that the integral of a
total divergence over the compact manifold Y is zero.

With H = ^{Q, β}, the fact that [if, Q]=0 means that [β, β 2 ] = 0. It is actually
true in the case at hand that β 2 = 0. To see this in the most transparent way, let us
write out the Lagrangian of Eq. (2.13) (without the topological term) in a 3 + 1
dimensional language. Thus, with M= Y x R1, we have

JS?= \dt f d3xl/£

~ΦlXiad- ~λ[ψi9ψj- -λ[ψ09ψ0]- -φ[η,η]- -[φ,λ]2 . (4.6)
Z Z Z Z J

,η]- -[φ,λ]2 .
o J

Here ί (parametrizing R1) is "time," "0" denotes the time direction, z j , fc = 1,2,3 run
over a basis of the tangent space to Y, χi==χoi, and FOi = ^εijkF

jk. We have taken
7 x # x with signature ( + + + + ) in writing the above. It is easy to see that (4.6) has
a symmetry under ί-> — t together with

φ-+λ, λ^φ, Ψi^Xi,
(4.7)

Let us denote this operation as T. It is easy to see that T2 = (— 1)F (the latter being
the operation that changes the sign of all anticommuting fields).

Since T (mapping ί-> — ί) is a time reversal symmetry, it will be realized in
quantum field theory as an anti-unitary operation. This means that the Floer
groups, rather than just being complex vector spaces, have a real structure. (Of
course, they actually have an integral structure, but this is not evident from the
quantum field theory viewpoint that we are developing here.)

Now, the explicit formulas for Q and β may be determined from β = J J°,
_ Y

Q = 2$ λ00 (with Jμ the conserved supercurrent found in Sect. 2). One finds
y

β = ί Tr [(FOi + FOi)Ψi - ηDoφ - Drfx, - Ψo[λ, 0]/2],
Ύ . (4-8)

Q = J Tr [(F Oi - FOi)Xi + ΨoDoλ - ΨtDtλ + ηίφ, λ]/2].
Y

We see that under Γ,

Therefore, the fact that β 2 = 0 implies that also β 2 = 0.
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Before discussing the Q cohomology, a few comments are in order. In the best
of worlds, a quantum field theory has a Hamiltonian that is bounded below and a
Hubert space with a Lorentz invariant and positive metric. In the case at hand
these properties do not hold. The indefΐniteness of the (φ, λ) kinetic energy means
that the Hamiltonian will not be bounded below. The Hubert space inner product
will be indefinite because of the indefmiteness of the ηDoψo and D0\pi χt terms16.
The former of these problems was already discussed at the end of Sect. 2, where it
was pointed out that it can be avoided if one sets φ = — 2*, and for the present
purposes we will accept this.

Let us temporarily postpone worrying about the positivity of the norm and
review the standard Hodge theory argument relating the cohomology to the
ground states of the Hamiltonian (which is positive semi-definite since we are
setting φ = — λ*). Since [β, i/] = 0, we can represent the cohomology classes by H
eigenstates. Given such a class (Qψ = 0), if Hψ = λψ with λ + 0, then since

H = \{Q,Q] we get ψ = Q\^Qψ) so ψ is trivial in cohomology. Hence the
\2λ )

cohomology classes are zero eigenstates of H. Conversely, if Hψ = 0, then
0 = Kψ\H\ψ} = i\Q\ψ>\2 + ϊ\Q\ψ>\\ so Q\ψ) = Q\ψ} = 0. In particular,
ψ represents a Q cohomology class. And if ψ + 0, this class is not zero. For as
[H, Q] = 0, if ψ can be written as Qoc we can assume Hoc = 0, but as we have seen
Ha = 0 implies Qa = 0 and so ψ = 0.

Clearly, the proof that cohomology classes give quantum ground states does
not depend on positivity of the scalar product, but the proof that quantum ground
states are annihilated by Q and Q does. Since in the theory of interest, the natural
Lorentz invariant scalar product is not positive definite, some discussion of the
validity of the above argument is required. Let us first describe the computation of
the space of quantum ground states for small coupling.

For small coupling, the quantum Hubert space is straightforwardly construc-
ted by expanding around the classical minima of the potential. Because of a term
ΎvFijFij in the energy, a classical minimum corresponds to 7^ = 0, that is, to a flat
connection. Once we pick a flat connection, we must choose φ and λ so Dtφ = Dtλ
= [(/>,λ] = 0, to set the scalar contribution to the energy to zero.

If we pick a flat connection that is "irreducible" (there is no subgroup of the
gauge group G that leaves it invariant), the conditions in the last sentence require
φ = λ = 0. If, in addition, the flat connection is "isolated" (no zero modes oϊA"), life
is very simple. There being no bosonic zero modes (and, by supersymmetry, no
fermionic ones), the quantization will give rise to a unique quantum ground state
for each isolated, irreducible flat connection. The value of U for this state (and thus
its "dimension" in Floer theory) must be determined by computing the fermion
normal ordering constant. Perturbative corrections cannot give this mode a non-
zero energy, since this would violate the invariance of the Euler characteristic [or
Tr(—1)F]. Instanton corrections lead precisely to Floer's considerations.
1 6 The reason is as follows. Consider a general Lagrangian with real anticommuting fields α,
whose time derivatives enter the Lagrangian only via a term £PF = J dtiMijOCiDoOCj, with M(j a
constant symmetric matrix. Quantization will give the anticommutation relations
{<xv (χj}=(M~1)ij, and this permits the αf to be Hermitian operators in a Hubert space of positive
metric only if the matrix MtJ is positive definite
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For connections that are not isolated and irreducible there are bosonic (and
fermionic) zero modes, and it will be a more subtle problem to determine the
quantum ground states. This is the counterpart in the present framework of the
well known problems in Floer theory with reducible and non-isolated flat
connections. Roughly speaking, for flat connections that are irreducible but not
isolated, there are zero modes of At but not of φ and λ. The flat connections will
then form a moduli space of positive dimension, and just as in finite dimensional
degenerate Morse theory, the evaluation of the Floer groups will involve the
cohomology of the space of flat connections. But for reducible connections, there
are φ and λ zero modes, and one will meet new phenomena, perhaps of a subtle
quantum field theoretic nature.

The important question is now whether the quantum ground states are really
annihilated by g, as would follow from the Hodge theory argument if the scalar
product on the quantum Hubert space were positive definite. In fact, it is quite
straightforward to see in perturbation theory that this is so. An isolated fiat
connection is annihilated by Q classically [since the right-hand side of (2.8) is zero
if the connection is flat and all other fields are zero]. Expanding around an isolated
flat connection, Q is quadratic (plus higher orders) in oscillators, and certainly
annihilates the ground state. The structure is just as predicted by Hodge theory,
even though the Lorentz invariant inner product is not positive definite.

A natural way to explain this seems to be that one can define a modified inner
product which is positive definite but not Lorentz invariant and which perhaps is
the appropriate one to consider in the "Hodge theory" argument.17 If (| )L is the
Lorentz invariant scalar product on the quantum field theory Hubert space Jf7,
one can define a new inner product (|)+ by saying that for u,

(u\υ)+=(u\Tv)L, (4.10)

where T is the time reversal operation which was introduced in Eq. (4.7). The idea
behind (4.10) is that while η, for example, is self-adjoint in the sense of (| )L, its
adjoint in the sense of (|)+ is —ψo = Tη. Quantization of the Lagrangian (2.13)
shows that the canonical conjugate of η is — ψ0, so that a positive metric on Jf
must be one in which — ψ0 is the adjoint of?/. Notice that in the sense of ( |) + , Q and
Q are adjoints of one another, as the Hodge theory argument requires [in the sense
of (I )L, β, and Q are each self-adjoint]. Thus, it may well be that (|)+ is the proper
structure for use in the Hodge theory argument. It might even be appropriate to
turn this argument around in the following sense. In showing that the nonlinear
quantum field theory under study really does exist, the positive definite inner
product may be the right one to use. One would then introduce the Lorentz
invariant one via (4.10) at the end of the construction in order to achieve Lorentz
invariance.

4.1. Relation of Donaldson and Floer Theory

The next issue that we should discuss is the connection of Floer and Donaldson
theory. According to [7], to define Donaldson invariants of a four manifold M

1 7 Such a situation has also arisen recently in work by D. Olive on a Hodge theoretic
interpretation of the "no ghost" theorem of string theory
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with boundary B one must specify a state in the Floer homology of B. (As explained
in the introduction, this fact was really the motivation for the present paper.) In the
context of quantum field theory, the relation of Donaldson invariants to Floer
homology has the following interpretation (which was anticipated by Atiyah).

In quantum field theory on a closed four manifold M, the nicest path integrals
are of the form

Z(Θ)= \{9X)e~I -G (4.11)

with / the action, and G a product of local fields (usually polynomials). "X" is an
abbreviation for the whole collection of integration variables. It is well known,
though, that if M has a non-empty boundary B, the path integral requires a
"boundary condition" on B. Such a boundary condition may consist simply of
specifying the values of the field on B. More generally, one picks an arbitrary state
in the Hubert space Jf of the quantum theory formulated on B (or more exactly,
the theory formulated on B x R1 as in our above discussion). If X\B represents the
restriction of the whole collection of integration variables to B, then Jf is a certain
space of functional of the X\B, and a state in Jf corresponds to a functional Ψ(XB).
The path integral "with boundary conditions determined by Ψ" is just

Z(G, Φ) = J (βX) exp ( - £"/e2) G Ψ(XB). (4.12)

Now we can ask, For what Θ and Ψ is (4.12) a topological invariant? The
arguments of Sect. 3 show that we need QG = 0~QΨ. Thus Ψ represents a Floer
cohomology class. Moreover, with QG = 0, the arguments in Sect. 3 show that
(4.12) is zero if Ψ = QΛ for some A; therefore, (4.12) depends only on the Floer
cohomology class represented by Ψ. On the other hand, the interesting choices for
G are precisely the ones that we considered in the case that M had no boundary,
namely

Θ=\[\Wkι. (4.13)

Here yt are certain cohomology classes on M, and the Wkι were constructed in
Sect. 3. Thus, in (4.12) we obtain Donaldson polynomials with values in (the dual
of) the Floer groups of B.

As an example (described to me by Atiyah and part of the inspiration behind
the present paper), let B consist of several connected components Bt Choose the
Floer classes on the Bt so that one may take G = \. The connected components of B
can be considered roughly as incoming and outgoing "three-branes" (higher
dimensional generalizations of strings). In this situation, (4.12) can thus be
considered roughly as a "three-brane scattering amplitude." Further thoughts
along these lines are one route to certain speculations about the physical
interpretation of Donaldson theory which can be found in Sect. 6.

There is a slight modification of (4.12) which is also significant (and related to a
recent axiomatization of conformal field theory [27]). Let us group the connected
components of B into "incoming three-branes" Bt and "outgoing three-branes" Bj.
Suppose we are given a functional Ψ(X\B) of the boundary values of the fields on
the Bt. Then the path integral can be used to compute a functional of the fields on
the Bj9 by

Ψ{X')= j (®X)exp(-J?'/e2) Ψ(X\Bι). (4.14)
( X \ X f )
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[This formula requires some explanation. The integral in (4.14) is carried out over
all fields X whose restriction to the Bj is equal to some given field X'. The
dependence of the integral on X' gives a functional of X' which we are calling *F.]
Moreover, QΨ = 0 if QΨ = 0; in fact, if QΨ = 0, then everything on the right-hand
side of (4.14) is g-invariant. Thus, Ψ-+ Ψ is a morphism of the tensor product of the
Floer groups of the Bt to that of the Bj.

A specialization of this gives what is perhaps the nicest way, within the
framework of the present paper, to show that the Floer groups are topological
invariants (and depend, that is, on the three manifold Y but not on a choice of
metric). Let M=YxR, with R denoting the real line, parametrized by a "time"
variable t, with — oo < t < + oo. Pick on M a metric of the form

ds2 = dt2 + gij(x\ t) dxιdxj, (4.15)

with xk being coordinates on Y.
If we are given a metric g on Y, let HF*(Y;g) denote the Floer groups of Y

computed with this particular metric. Suppose we are given two metrics g (1) and
g(2), and we wish to compare the corresponding Floer groups //F*(Y;g(1)) and
#F*(Y;g ( 2 )). To do so, pick on M=YxR a metric of the form (4.15), with the
additional requirement that gij(xk, t) goes over to g (1) for ί ^ 0 and to g (2) for ί^>0.
For every Ψ in HF*{Y; g(1)), (4.14) computes a corresponding Ψ in # F * ( Y; g(2)). Let
us denote this linear transformation from //F*(Y;g(1)) to HF*(Y;g{2)) as
W(g{2\ g(1)). Our standard arguments (using the fact that Tα/? = {g, λαβ] for some λ)
show that P^is independent of the detailed choice of the t dependence of the metric
in (4.15).

The W's may readily be seen to obey some formal properties which imply that
they are isomorphisms. If g (1) = g(2), we have

W(g^2\g^) = \. (4.16)

For if g(2) = g(1), then W can be computed by picking a time independent metric in
(4.15). W is then equal to e~H\ with ί->oo. But we know that H annihilates the
Floer groups, so W—\ in cohomology.

And given three metrics g(1), g(2), and g(3), the product W(g{3\ g(2)) W(g(2), g(1))
can be evaluated simply by modifying the t dependence of the metric in (4.15). One
simply chooses gl7(xk, t) in (4.15) to equal g(1) for ί-> — oo, g(2) for t ~0, and g(3) for
ί-> + oo. This gives a path integral recipe for computing the two step transition
Mg ( 3 ),g ( 2 )) ^(g ( 2 ),g ( 1 )), but it also is clearly the definition of W(g{3\ g(1)). We
therefore have

( 3 ) U ) (3\{2) (2),g(1)) (4.17)

Equations (4.16) and (4.17) imply [on picking g(3) = g (1)] that
ί = W(gil\gi2))'W(gi2\gil))9 so that the W's are invertible and therefore are
isomorphisms. Equation (4.17) means then that the Floer groups are independent
of metric up to the canonical isomorphisms given by the W's.

5. Differential Forms on Instanton Moduli Space

In Sect. 3, we saw how to represent the Donaldson polynomial invariants of a four
manifold M as correlation functions in quantum field theory. At the end of Sect. 4,
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we observed that this picture has a generalization when M has a non-trivial
boundary B. To make the quantum field theory viewpoint mathematically
rigorous is of course a formidable undertaking. However, we will see in this section
that one can extract from the quantum field theory viewpoint concrete formulas
for differential forms on the moduli space of instantons whose integrals over
instanton moduli space are the Donaldson invariants. Though inspired by
quantum field theory, these are perfectly rigorous, classical formulas, whose key
properties can be verified by classical manipulations. (One can extract from the
quantum field theory a prescription for the requisite manipulations; I will indicate
this but not carry it out in detail.) From the topological point of view, the formulas
presented here are presumably just a way of reexpressing Donaldson's ideas. From
an analytical point of view, however, they may be useful in overcoming some of the
technical problems in Donaldson theory. In this discussion, we will ignore the
singularities of instanton moduli space. Thus, our discussion will not be
complete. In general, the singularities make additional contributions to the
BRST invariant correlators, and quantum field theory should give a prescription
for evaluating these.

We choose on M a vector bundle E such that d(Ji\ the formal dimension of the
instanton moduli space Jί, is positive. We write n = d(Jί). For simplicity, we will
consider only the case that at a generic point in instanton moduli space the
instantons have no symmetries, and the formal dimension of instanton moduli
space equals the actual dimension. These assumptions [which are readily obeyed
for G = SU(2)~] mean that there are no (φ, λ) zero modes; the only zero modes of the
gauge field Aa are the tangents to Jί\ and the only fermion zero modes are the ψa

zero modes which (related by supersymmetry to zero modes of Aa) also represent
tangents to Jί.

Now, because of the \pa zero modes, the partition function

£?'/e2) (5.1)

is zero. Non-zero path integrals are of the form

Z{G) = J i β X ) e x p ( - JSf f/e2) -G, (5.2)

where & has U = d{Jί\ so as to be able to absorb the fermion zero modes.
In the weak coupling approximation (adequate because we are evaluating

topological invariants), (βX) reduces (after integrating out the non-zero modes) to

dμ = da1 ...dandψ1 ...dψn, (5.3)

where abψpi,j=ί ... n are the boson and fermion zero modes. It is important to
note that there is a canonical measure dμ because dψi transforms oppositely to dat

under any change of basis. In the weak coupling limit, exp( — ££'/e2) reduces to one,
and the functional integral over the non-zero modes equals + 1 , as we noted in
Sect. 3 it can be discarded if Jί is connected.

We now must study the functional G. In general, non-zero modes as well as zero
modes may be present in G. If non-zero modes are present, we must "integrate them
out" to get an effective functional G' only depending on the zero modes. It is of the
general form

0' = Φί l..^>*)V1..Vn. (5 4)
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Φ is an antisymmetric tensor with n indices - otherwise known as an rc-form - on
the ^-dimensional manifold Jί. Replacing (9 by 0' and inserting (5.3) and (5.4) in
(5.2), we get

\dai...dandxpι...dWnΦh^...xpi» = \Φ. (5.5)

Thus, computing a correlation function Z(&) in the weak coupling limit amounts
to integrating the non-zero modes out of Θ so as to get an rc-form Φ on instanton
moduli space.

Now suppose that Θ is a product,

Θ = Θ1 Θ2 ... βk (5.6)

with Θk having U = nk, and £ nk = n. By integrating out the non-zero modes from
k

any of the Θr, one gets an object

Θ'r = ΦΪ1\..inrΨ
h...ψi". (5.7)

Here Φ^ in can be interpreted as an nr form on Jί. The process leading from Θr to
&r is just analogous to that leading from Θ to &. Naively, we might hope that

G' = Θ\Ό'2-...-O'k. (5.8)

In general, there is no reason for (5.8) to be true, because in integrating the non-
zero modes out of the product &ί Θ2 ...-&k> one might need to make Wick
contractions between Θt and Θj for i Φj. However, it will often be the case that (5.8)
is valid to lowest order in e2, and this is all we need topologically. In the situation
under study here, fortune smiles and (5.8) is valid.

Equation (5.8) is equivalent to the statement that the differential forms Φ and
Φ ( ι ) described above are related by

When (5.8) is valid for all products of interesting operators Θa, a particularly simple
prescription can be given for computing integrals

)Θai Θa2... GΛa. (5.10)

One extracts from each Θα (by integrating out the non-zero modes) a differential
form Φ(α) (of appropriate degree) on Jί. Then

Z(Θα ... 0 α ) = J Φ ( α i ) Λ Φ ( α 2 ) Λ ... Λ ΦM. (5.11)
ji

In our study of Donaldson theory in Sect. 3, the interesting operators were

Θ^=\WkΎ. (5.12)
y

Here γ is a homology cycle on M, of dimension kγ, and the Wky for ky = 0, ...,4
are differential forms on M of degree ky defined as follows:

(5.13)
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Wk has U = 4 — k, so with each Θiy) we should associate a 4 — ky form Φ ( y ) on ^ .
Equation (5.8) is valid for arbitrary products of the Θiy\ so the Donaldson
invariants are simply

Z(Θ{n)... Θ{ys)) = J Φin) Λ ... Λ Φ{ys). (5.14)

To obtain "explicit formulas for Donaldson theory," we need only integrate the
non-zero modes out of the W\

This is easily done. Whenever F appears in (5.13), we may, to lowest order in e2,
simply replace it by the classical instanton field. Whenever ψ appears in (5.13), we
simply replace it by zero mode wave functions.18 Therefore, all that needs to be
done is to integrate out φ from the W's.

In doing this, the relevant terms in the action are

~ = ̂ xγg\^-2ΊΐφDaD«λ-~λlψx,ψ«-}+ . . . ] . (5.15)

"Integrating out φ" means computing the integral

(φa(x)) = $@φ@λGxp-(£"/e2) φa(x)

= f SφSλ exP [ - ^2 ί l/g W ™

x0βM ί Λ τ r λ [ φ β , V

β ] + . . . . (5.16)

(We have expanded exp [ — (i/2e2) J Ύrλ[_ψ, ψj] to extract the term linear in λ, which
is the only one that survives after integrating over φ and λ. The + ... on the right of
(5.16) is irrelevant to lowest order in e2) The φ and λ dependence reduces to the
Gaussian integral

- ^ f |/g φDaD«λJ φ\x) λ\y) (5.17)

which we will denote as (φa(x)λb(y)}.19 According to the rules of Gaussian
integration,

<φa{x)λb(y)}=-2e2Gάb{x9y), (5.18)

where Gab(x, y) is the Green's function of the Laplacian A = DJ)*. G is defined as the
unique solution of

A Gab(x, y) = δabδ4(x -y). (5.19)

1 8 To be more precise, pick a basis %)α%x)... uin)a

a(x) of classical zero mode wave functions. Then
let ψa{x) = X; ψιU(i)a

a{x), where ψι are the fermion zero mode coordinates that appear in (5.3). The
same substitution ψa

a(x) = £i ψιu^(x) is to be understood in subsequent formulas. The choice of
the u{i) does not matter because (using the same basis of Aa zero modes) it cancels out of
άμ — άaγ... dandψ 1... dψn
1 9 We ignore the (φ,λ) determinant, which we know will cancel other determinants of fields
not written in (5.17)
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Substituting (5.18) in (5.16), we learn that

(φa(x)} = - i I d*y]/gGab(x, y) [_ψM Ψ*(y)]b (5.20)
M

Note that the factors of e2 have cancelled out, a crucial test. Equation (5.20), with
ψa replaced by its zero modes, is the required formula expressing φa in terms of zero
modes.

Replacing φ in (5.13) by (φ) whenever it appears, we get our desired formulas
for differential forms Φ ( y ) on Jί corresponding to homology cycles y on M. If y is a
zero cycle, say a point P, then

(5.21)

If y is a one cycle, then

> . (5-22)

For a two cycle

Mi F ) . (5.23)

For a three cycle,

). (5.24)

And if y is a four cycle, say a multiple s of the fundamental class [M] of M, Φy is just
a constant function (that is, a closed zero form) on Jt. The constant is equal to
— s/2 J ΎrF AF. In general a fc cycle on M gives an operator of U = 4 — k,

M

corresponding to Donaldson's map Hk(M)^>H4~k(Jί).
Some readers may have considered the reasoning in Sects. 3 and 4 to lack the

precision of mathematics. However, we have arrived at perfectly concrete formulas
for differential forms Φ ( y ) on instanton moduli space.

At this point, one may wonder what is involved in proving that the Φiγ) have the
necessary properties so that the

Z(γu ..., yr) = J Φ ( y i ) Λ Φiy2) Λ ... Λ Φ{yr) (5.25)
jt

are topological invariants. There are really four steps.
(a) One must show that the Φ ω are closed. This is not self-evident, but it can be

checked by a completely classical computation; there is no need for input from
quantum field theory.

(b) We must show that Φiγ) changes by an exact form if we change y in its
homology class. It is enough to show that if y is a boundary, say y = dβ, then
Φ{y) = dύβ) for some differential form tiβ) on Jί.

Here we actually get some useful insight from quantum field theory. If t{β) sμch
that Φ ( r ) = dtiβ) exists, there are many such tiβ\ and we would like a "best" choice, so
as to be able to push Donaldson theory to its limits and deal with the singularities
and non-compactness of Jί to the extent possible. Quantum field theory actually
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gives a canonical but not entirely obvious formula for t{β\ If y = dβ, then

(5.26)

In the small e2 limit, G{y) reduces to our differential form Φ{y\ Q reduces to the
exterior derivative d on Ji, and Wkγ + 1 reduces (using the same formulas given
above) to a differential form t{β) on Jί. Equation (5.26) is the desired formula

(c) One must show that under a change in the metric gaβ of M, the Z(y 1? ...,yr)
are invariant. Here again quantum field theory gives canonical formulas that are
not completely obvious. Before writing formulas, let us express the problem
precisely. Consider a family of metrics on M parametrized by a parameter space S.
Let X = M x S be the total space of the family. Denote the fiber of X above a point
5 G S as Ms. Each Ms has a metric gs. The differential forms Φ ( y ) are defined on each
fiber; let us denote them as Φ{y\s). To show that the Z(yu ...,yr) are independent of
metric, we must exhibit closed differential forms Φ ( y ) on X whose restrictions to the
Ms coincide with the Φ{y\s). This can immediately be done in a canonical way using
our standard formulas. Under a displacement oϊseS, the metric of M changes. Let
δgaβ(P) denote the change of the components gaβ(P) of the metric of M at a point
PEM and in some basis of the tangent space to M at P. The δgaβ(P) are closed one
forms on S.

From our general formulas, under a change in the metric of M, the change in
is

—δφM= ( J Wkv τrϊ \ ]/gdgaPTxli) , (5.27)

where < ) is an instruction to integrate out the non-zero modes. Using our favorite
formula TΛβ = {Q,λ<χβ}, we can rewrite (5.27) in the form

j= jβ, [\Wkγ- ± j. \Γg δg^λaβ^j. (5.28)

Somewhat naively, (5.28) asserts that δΦiy\ which is the change of Φ ( y ) under a
change in metric, is a BRST commutator, corresponding to a closed differential
form on moduli space which will not contribute in (5.25). This is the conclusion we
want, and the argument is essentially correct, but the above description is not a
very canonical way to express things, because as the metric changes the moduli
space also varies (that is, there is no canonical connection on the fiber bundle X). A
better description is as follows. On X = M x S, an n form can be decomposed as a
sum of what we might call (fe, n — k) forms (a k form on M times ann — k form on S).
Φ(y) is in this sense an (n, 0) form on X, for some n. On the other hand,

(5.29)
M '

can be understood as an (n — 1,1) form. [Recall that δg is a one form on S or in
other words a (0,1) form.] The exterior derivative in the fibers of X = M x S is what
we have denoted —iQ, while δ is the exterior derivative from the base S. The
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exterior derivative on the total space X is d = δ — iQ. Equation (5.28), together with
{Q, Φ{y)} = 0 and δP = 0 (which can be verified using the form of λ given in Sect. 2),
means that the differential form Φ{y) = Φ(y) — iP is annihilated by d, and this is the
desired closed form on X whose restriction to the fibers gives back Φ{y\

(d) Finally, of course, to make rigorous assertions about integrals

j φ(vi)Λφ(V2)Λ _ Aφ(yr) (530)
Jί

one must know that the instanton moduli space exists, has singularities that are
not too bad, and behaves not too badly under a change in metric. Such questions
involve hard analysis [4, 5]. On these questions the viewpoint of this section offers
no new insight, except the hope that analysis of the above formulas near
singularities of Jt may give a new insight about the necessary criterion in "not too
bad." Such a hope is supported by experience of physicists with instantons.

In principle, in Sect. 3 we gave formulas for Donaldson invariants - as
correlation functions in quantum field theory - which are valid regardless of
whether instanton moduli space exists and what properties it has. From that more
fundamental point of view, the considerations of this section are just a recipe to
evaluate the correlation functions under favorable circumstances. But to make
that fundamental point of view rigorous will indeed require considerable progress
in constructive quantum field theory.

6. Physical Interpretation

In this concluding section, I would like to discuss the possible physical meaning of
the present work. Here lie many of the most intriguing questions.

The fermionic symmetry that we have used is very reminiscent of BRST
symmetry. Its use is quite similar to the use of BRST symmetry in string theory. So
it is natural to think that in a suitable framework, this symmetry arises upon BRST
gauge fixing of an underlying gauge invariant theory.

If so, that theory is of a very unusual kind. The single most important equation
of this paper is the assertion that the stress tensor is a "BRST" commutator

TΛβ = {Q,λaβ}. (6.1)

This assertion does not hold in ordinary BRST gauge fixing of ordinary gauge
theories. It does hold in BRST gauge fixing of string theory, because in that case the
starting point is the Nambu action, which is generally covariant in a two
dimensional sense. This general covariance leads directly to (6.1). The lesson here is
that (6.1) is a signal of general co variance. The "topological quantum field theory"
that has been studied in this paper is very similar to a BRST gauge fixed version of
an underlying generally covariant quantum field theory. To be more blunt about
it, what we have been discussing should be viewed as a renormalizable, unitary (in
the BRST sense) generally covariant quantum field theory in four dimensions.

The reader may be surprised at attributing the property of general covariance
to a theory without gravitons. The following comments may thus be illuminating.
In general relativity, one begins with the gravitational field gα)3 and a generally
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covariant action. Then one expands around some classical field. One meets the fact
that any metric (except gaβ = 0, usually considered unlawful) is not invariant under
diffeomorphisms. One usually expands around gaβ = ηaβ (the Minkowski metric),
and this breaks general covariance down to the Poincare symmetry. Morally
speaking (not in any technical sense), the massless graviton should then be viewed
as a Goldstone boson of spontaneously broken (local) general covariance. In a
similar spirit, massless gauge bosons in gauge theories reflect the breaking of the
local gauge invariance down to a global symmetry. If the local symmetry is
unbroken, as in QCD, there are no massless gauge mesons.

Since the emergence of the concept of color confinement in QCD, it has been
natural to wonder if in general relativity there could be an analogous phase in
which general covariance is confined and unbroken.20 At first sight, this concept
seems paradoxical. For unbroken general covariance, there must be no metric
tensor (or at least, it must have zero expectation value). Without a metric, one does
not know how signals should propagate, so it seems that there can be no physics.

It seems that we have here stumbled upon a resolution of these paradoxes.
With unbroken general covariance, there can indeed be no signal propagation and
no local physics. Therefore, in quantization on a three manifold Y, the physical
Hubert spaces (in the BRST sense) come out to be global topological objects, the
Floer groups, and the only observables that can be computed are global
topological invariants, the Donaldson invariants (discussed in Sect. 3), and the
relative Donaldson invariants (discussed in Sect. 4). (Recall from the end of Sect. 4
that the latter even include "three-brane scattering.")

Once it is accepted that the theory discussed in this paper is generally
covariant, it is clear that there may be other more or less similar theories. It is
indeed possible to find a version with explicit gravitational fields [29]. Perhaps
there exists a version with spontaneous breaking of general covariance and
dynamical gravitons.

One of the real mysteries is how to exhibit a manifestly generally covariant
theory whose BRST gauge fixing (at least in some approximation) gives the
"topological quantum field theory" we have considered. This is reminiscent of the
situation in string theory, where the origin of space-time general covariance is
rather obscure. It is rather clear that the theory considered here will not arise in
BRST gauge fixing of a conventional generally covariant field theory with a finite
number of fields. It would not be too surprising if it arises instead as a low energy
approximation to some version of string field theory, in a phase in which general
covariance is unbroken. (This possibility is supported to some extent by the
existence [30] of 1 +1 dimensional sigma models with a BRST-like fermionic
symmetry, and with the property that the graviton vertex operator is a BRST
commutator. These sigma models may correspond to a realization of unbroken
general covariance in string theory.) The proper incorporation of general
covariance in string theory may have some unusual features that are reflected in
the proper implementation of general covariance even in the low energy world, and

2 0 This question has been considered over the years by many physicists, though there do not seem
to be many published references. The possibility of unbroken general covariance in the context of
string field theory has been considered in [28]
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these features may be relevant to observable physics, perhaps to the vanishing of
the cosmological constant.
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