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A Phase Cell Approach to Yang-Mills Theory

III. Local Stability, Modified Renormalization Group Transformation

Paul Federbush
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Abstract. In this paper the basic local stability result is obtained, in a form valid
in both small field and large field regions. To achieve this, some modifications
are made in both the action and the renormalization group transformation.
Though there is some sacrifice of elegance in these modifications, the
establishment of this local stability estimate yields the most basic ingredient of
the phase cell cluster expansion, good estimates for all the actions.

Incidental to the estimates of this paper we establish some results on "lattice
geometry," interesting in their own right. A bound on the "minimum area" of a

I2 ί \\
loop of length /, in d dimensions, is obtained as — I 1 — - I. This, a best possible

bound, was obtained for us by A. Blass. We also construct a "radial" maximal
tree for the lattice in d dimensions. We hope to stimulate someone to find a
better construction of "radial" trees.

Introduction

It is not far amiss to say that each machine in Constructive Quantum Field Theory
has two essential ingredients, a perturbative aspect (to handle renormalization
cancellations) and a positivity or stability aspect (the non-perturbative feature).
This latter occurs under different names in different programs: positivity of the
vacuum energy in the traditional cluster expansion; the bounds on partition
functions in the method of exact renormalization transformations; and
α-positivity and α-stability in the phase cell cluster expansion approach to boson
models. In this paper we establish essential stability results for our phase cell attack
on Yang-Mills theories. (This may have been the most difficult problem we have to
face.) The ideas in this paper may also be useful in other approaches to the study of
four dimensional gauge theories.

This work was supported in part by the National Science Foundation under Grant No. PHY
85-02074
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As we have argued in [3], we are not dealing with lattice approximations to a
Yang-Mills field. Rather we are dealing with a continuum Yang-Mills field. The
group elements we have assigned to bonds of our lattices (of different scales) are
variables associated to the continuum field, as the Fourier coefficients of a function
are associated to the function. This association is non-linear - but fiendishly clever
- to provide ready access to gauge invariance features of the theory.

To achieve the stability results of the present paper we make a number of
modifications in the formalism as presented in [3]. In particular we change the
block size from 24 to AT4, we change the averaging procedure, and we change the
form of the plaquette action. The two later changes have no effect in the small field
region. We have thus changed our choice of non-linear variables and our action.
We may alternatively say that we have changed our block spin renormalization
transform and our action. These changes are detailed in Sect. 3 and the Appendix.

We have started with the small field stability result of [3] and patterned our
treatment of the general situation on this limiting case. Section 2 presents the small
field result again, for notational reasons. Two of our modifications, of the block
size and of the averaging, have a very physical motivation. We want the non-
linearly associated variables assigned to large scale bonds to be minimally effected
by small scale lattice excitations beneath them. As the N4 lattice bonds are
averaged to get the non-linear variable at the next scale, bonds corresponding to
large excitations are suppressed in the averaging. We are not just speaking about
the ί/N4 factor occurring in the averaging, but we have added additional
suppression in how the averaging is performed. These ideas should be useful in
other approaches, where also treating the effects of large fields at small scales
coupling to the scales above them, is a basic difficulty of the four dimensional
theory.

We have one reservation in our satisfaction with the present treatment.
Perhaps the modifications we make are more drastic than necessary, only because
of our ignorance; much simpler modifications may yield similar stability bounds.
The averaging procedure, C) of Sect. 3 and the Appendix, is not complete, but
sufficiently specified to yield our present result.

In Sect. 1 we present some aesthetic properties of our average of group
elements (either before modification, or in small field regions where the modifi-
cation does not matter). Section 4 contains the basic stability results. These are
proved in Sect. 5. Section 5.1 is particularly basic and of general interest. The
results on "lattice geometry" are included in Sect. 5.4.

1. Pure Averages of Group Elements

In this section we discuss an averaging procedure different from the one studied in
[2]. We let G be a compact Lie Group and d( -, ) an invariant distance
constructed from an invariant metric on G. ε will denote the identity, and we
consider elements g = eA that are sufficiently close to the identity, with \A\
sufficiently small. For a collection of such elements {gί = eAi}i=1 ,...,„, we define an
average g

g = ex = ̂  = g; (1.1)
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as the element minimizing the expression

Σ d2(g,gί). (1.2)
i = l

We here collect some easy results.
We may normalize d to satisfy

Lemma 1.0.
= \A\2. (1.3)

(Note the definition of A2, for A in the Lie Algebra.)

Lemma 1.1.
(1.4)

where
. (1.5)

Sketch of proof of Lemma 1.1. By in variance

d\eA, eB) = d2(ε, e ~ AeB) = C2, (1.6)

where
e~AeB = ec. (1.7)

By the Baker-Campbell-Hausdorff formula there is a convergent power series for

C = B-A + ±[B,A\ + .... (1.8)

In the expression for C2= — Tr(CC), the third order term vanishes since

Tr(M[M,JV]) = 0 (1.9)

for any M and N.

Lemma 1.2. With the notation above

x=-ΣAi+-ΣTi (1.10)

with

This result is obtained by differentiating (1.2) with respect to (components of) x.
The derivative of F in (1.4) may be estimated as (with y a component of A)

(1.11)

by the same arguments as in the proof of Lemma 1.1.

Lemma 1.3. x = 0 o ΣAt = 0.

This surprising result follows by noting that
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where E is a power series with non-zero powers of x all ^ 2. Again the Baker-
Campbell-Hausdorff formula and Eq. (1.9) yield this property.

2. Pure Small Field Stability

In this section we consider a "pure small field" situation. All bond assignments may
be chosen simultaneously to be elements "very close" to the identity, and we may
consider G to be an abelian group. Basically we recapitulate the discussion in
Sect. 1 of [3], with minor modification.

We work with a block size N4 instead of 24 as in [3]. We consider two levels r
and r+1, with plaquettes {Pt} at level r and {pj at level r-t-1. There are non-
negative numbers oφ'); such that (with gdP = eAdp)

AδP=Σ*(ί)jAdpj, (2.1)
j

with
(2.2)

and
Σ*(ί)j = N2. (2.3)
j

By convexity or by the Schwartz inequality it follows from (2.1) and (2.3) that

(^P/^N2Σα(θ^p,)
2, (2.4)

and from (2.2) that
Σ(AdP)

2^Σ(Adpf. (2.5)
ί j

In d dimensions ί/N2 in (2.2) would be replaced by l/Nd~2, and in (2.5) there
would be a factor N4~d on the right side of the inequality.

In this paper we understand a relation that holds in the "small field" region to
mean a relation that is true to linear order in deviations of Lie Algebra elements
from zero.

3. Modifications

We here describe the three modifications in the formalism, as differing from the
presentation in [3] and elsewhere.

A) Block size. As stated in Sect. 2 we will consider a block of size N4 instead of 24.
(N will be large.)

B) Action. The Wilson action of a plaquette, P, as a function of gdp is

~Re(Tr(/-l/(gaP))). (3.1)

Fig. 1 4 _
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gdp may be understood as gίg2g3g4ί g2g3g4gι> g3g4gιg2, or g4gιg2g3> with the gf the
group elements associated to the bonds in the plaquette. For many cases any of the
four choices give the same answer, as in Eq. (3.1) and e.g. (3.4). In other situations a
convenient choice is made. If we write

~ /^40p ίl 1\
gdP~e 9 (I'2)

where we choose AdP small if gdp is close to ε, we will choose the action to be

g ( p \ = f ζ λ \ (3 3\

where fs(A) = fs(\A\) is C°° and monotonic in |A|, and satisfies

Γ. x f |v4|2 if W l ^ α
fs(A)=l~n 2 .f , , 0 (3.4)

(3/2β it \A\^.2a.

(a will be small.) Graphically we sketch the Wilson action and the modified action
SM as a function of \A\.

I A I IAI

Wilson Action
Fig. 2

Modified Action
Fig. 3

For |^4|^α the two actions essentially agree.

C) Averaging. We modify d(eA

9 eB) to dM(eA, eB) also an invariant distance with

dM(ε,eA) = fd(\A\), (3.5)

where \A\ is chosen small for elements close to ε. We choose

\A\<cdN
2a

N2a) \A\>2cdN
2a ^

Fig. 4
c dN 2a 2c d N 2 a I A I

and require fd to be C°° with bounds on its derivatives

g will be chosen by minimizing the expression

(3.7)

(3.8)
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as a variation of (1.2). Notice (3.8) and (1.2) yield the same result when the gt are
sufficiently close together. In this paper we will not need to define g when the
minimization does not yield a unique result. We will obtain results independent of
the definition of g in these cases.

We will later give conditions on N, α, cd.
In C) we have so far modified the averaging by changing how the average of

elements, g:, is defined. The gf to be averaged arise as group elements associated to
contours [see the discussion before and after Eq. (5.11) for example]. We will
modify the procedure of [1] for defining the contours to be picked. In particular
the choice of contours connecting two points on the lattice (and whose associated
group elements are to be averaged) will vary with the field in the large field region.
We leave details to the Appendix. As unattractive as modifications in C) may be,
they preserve gauge invariance; they have no effect in the purely small field region;
and they have the physically desirable effect of suppressing the effects of small scale
large field excitations on the large scale fields above them. It is best to read the
Appendix after reading Sect. 4.

4. Local Stability Statements

A plaquette p is s.f. if \Adp\ < a (more properly, \gdp\ < a, with definition at beginning
of Sect. 5) and l.f. if \Aδp\ ^ a. Each vertex of a plaquette p at level s is contained in
one JV4 size block, a vertex in the level 5 — 1 lattice; it is said to hit this vertex. A
plaquette p at level s is said to hit a bond or plaquette of the 5 — 1 lattice if it hits a
vertex of this bond or plaquette. A plaquette p at level s is S.F. if it is not hit by any
l.f. plaquettes (of level 5 + 1), and otherwise is L. F. If one half the action, ̂ α2, of a l.f.
plaquette is distributed equally among all the plaquettes it hits, A l f ( p ) is the action
associated to p by this process.

We now specialize to two levels r and r + 1, and consider a single plaquette P in
the r level. We also consider exactly those plaquettes {pjίep in the level r+ 1 all of
whose vertices lie in the four N4 size blocks, vertices of the plaquette P. This is a
smaller set of pt than hit P. We distinguish three regimes:

Regime 1. All the pt (pt with ieP) are s.f..
Regime 2. Some of the pt are l.f., but Alf(P)<3a2.
Regimes. A

We note there is an absolute number rί such that if more than rv pt are l.f., we are in
Regime 3.

We now use the definitions of Sect. 2 for oίj(Pi = P)9 and Sect. 3 for SM. In
studying stability it is natural to seek lower bounds for AS(P) defined by

AS(P) = N2Σ α7.SM(Pj) - SM(P) . (4.1)
j

(See [3, Sect. 2.4].). With the redistribution of the actions of l.f. plaquettes as above
it is appropriate for us to study the slightly different quantity 2S(P),

AS(P) = AU.(P) + N2 Σ ajSM(Pj}-SM(P). (4.2)
jφ l . f .

The sum in (4.2) is over plaquettes PJ that are s.f.
We now present the stability theorem, divided into results for the three regimes.
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Local Stability Theorem 4.1. In Regime 3,

AS(P)^a2. (4.3)

This theorem is immediate from the definitions of SM, α,-, and Regime 3; it
requires no proof.

Local Stability Theorem 4.2. There is a number /i > 0 such that in Regime 2,

AS(P)^f1a
2. (4.4)

Local Stability Theorem 4.3. There is a number f2 such that in Regime 1,

j\
2)W. (4.5)

All these results will hold for suitable fixed N, cd, /1? /2, and α0, where a must
satisfy a < α0. Equation (5.25) below is actually a stronger form of Local Stability
Theorem 4.3 that is needed for applications.

5. Proofs

5.1. Preliminaries

We define |g| = d(ε,g).

Lemma 5.0.

Igιg2 1 l = d(gι,g2) (5-1)

by ίnvarίance of the metric.

Lemma 5.1.

Proof.
d(ε, glg2) ̂  d(ε, gl) + d(gl, glg2) ̂  d(ε, gl) + d(e, g2) , (5.3)

since
d(gι,gιg2) = d(β,g2) (5-4)

by invariance of the metric.

Lemma 5.2.

\eA\^\A\. (5.5)

Proof. This follows from Lemma 5.1 and Lemma 1.0.

Lemma 5.3.
|g| = |g~Ί (5-6)

Proof. This follows since g^ g"1 is an isometric mapping.

We now let R be a rectangle made up of M x N plaquettes {pi}ieR in a lattice, to
whose oriented bonds we have group elements assigned. There is naturally defined
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95

96

Fig. 5

97 93

9ι

For the figure picturing a 1 x 2 rectangle R,

8dκ = 81828384 ^

Lemma 5.4.

V P - V ,

ieR

then

(5.7)

(5.8)\gdR\ ^ Σ \gdPi\

/ We consider this gauge invariant problem in a gauge where bonds on the
bottom edge of the rectangle and all vertical bonds are assigned ε. Consider a single
plaquette p as figured below. We have

Fig. 6

This follows from

(5.9)

(5.10)

and Lemmas 5.1 and 5.3. Using Lemma 5.1 and (5.9) the result, Lemma 5.4, easily
follows.

We may consider a more general situation. To a contour, an oriented curve on
the lattice, made up of course of oriented line segments, we may associate a group
element.

Fig. 7

To the sketched contour Γ from a to b we have a group element associated

8r = 81828384- (5.H)

We consider two contours Γ1? Γ2 differing by a single plaquette p. The plaquette
provides an elementary homotopy between Γί and Γ2. In the figure
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E F

D , ,

Fig. 8 o -̂

The contours ABCF and ADEF differ by the plaquette BCED. In the figure each
contour contains two sides of the plaquette. In general Γ1 may contain m sides, and
Γ2 n sides, of the plaquette realizing the elementary homotopy, with
m,ne{0,l,2,3,4},

Lemma 5.5. // Γί and Γ2 are connected by a sequence of elementary homotopies

provided by plaquettes p^p2, • • >Pn > ̂ en

d(gΓl,8r2)^ Σ W (5-12)
i= 1

The proof is direct. Note that Lemma 5.5 includes Lemma 5.4.

5.2. Regime i

The group element assigned to a bond in P is an average of N4 group elements
associated with N4 contours as enter (in the Abelian case) in (1.8) of [1]. Γc_ x of
(1.8) contains ^ 4(ΛΓ — 1 ) bonds. If we consider x' so that Γc_ X,CΓC x with one less
bond, then the contours associated to x and x' are related by ^N elementary
homotopies. Thus any contour is related to the straight line contour <c_, c + > by
^4(N — 1)N elementary homotopies; and any two contours are related by
^8(ΛΓ— 1)N elementary homotopies.

Lemma 5.6. Let Γ1 and Γ2 be two contours whose associated group elements are
averaged (along with N4 — 2 others) to yield a group assignment to a bond of P.
Assume all pt are s.f. Then

(5.13)

We now specialize to the situation where all pt are s.f.

Parameter Conditions 5.7.

cd = 600. (5.14)

We here and elsewhere are vastly over-generous in choice of constants, to
accomodate worst case scenarios arising in estimates from Sects. 5.3 and 5.4.

Parameter Condition 5.8.

4000(JV-l)ΛΓα<fi1, (5.15)

where ε1 is sufficiently small so that the estimates in Sect. 1 hold and so that one has
the following proposition (using the notation of Sect. 1).

Proposition 5.9. Let gt be n elements of the group G, then

(5.16)
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It is an easy geometric exercise to show this holds for ε1 small enough.
We now work in a Balaban axial gauge. Three of the bonds in the plaquette P

are assigned the identity element. Each contour ΓCtX9 Γx(c^c+ in (1.8) of [1] is
assigned the identity element.

Our approach to stability has been of course to make the small field situation of
Sect. 2 dominate the picture. We now divide the small field proof into a sequence of
steps and then discuss the size of corrections to yield the stability theorem in
Regime 1. We let bl9 b2, b3, b4 be the four bonds in P and as noted bl9 b2, b3 are
assigned ε and b4 is assigned g

where the gΓ4ι are the group elements assigned to contours Γ4i and averaged to
yield g.

Step 1. i
—— Σ AT-
jV4 *" h 1 0 3 ^18^g$p— £ ' £ * £ * g : > £— e , /c—ι,z, j, (p.ioj

g = e**ΣAr« . (5.19)

Sίep 2.

gep = ̂ ΣMr"+^+^+^ ). (5.20)

Step 3.
^4 ,< v~ι Λ /r /^ /< \

Sίe/7 4. The Local Stability Theorem.
We proceed to discuss corrections to these steps. We begin with the most basic

ingredient. We note at the small field limit, the relation between Abχ and Adpi, where
gbα = eAb* is group element assigned to bond ba of the r +1 lattice (the portion we
are considering)

A — V λ/f A ίS. ΊΊΛ
dpi — Lt 1V1 iα^-bα (J.ZZ)

a,

The right side is the first term in a power series convergent for small fields. Since
the Balaban gauge provides a complete gauge specification we have in the small
field region (with Adp., i e J, a linearly independent set)

*>.= Σ NxiAepί (5.23)
ieJ

(for bonds ba not assigned ε by the gauge). By the inverse function theorem we have
for Adpi small enough (depending on N)9

(5.24)

This estimate will enable us to control all corrections to steps in the small field
proof. We make a number of comments:

a) Equation (5.18) is generally correct by Lemma 1.3.
b) Equation (5.19) has a correction to be added in the exponent as dominated

by estimate in Lemma 1.2.
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c) The exponent in (5.20) must have the same correction mentioned in b) added
to it, and is otherwise correct.

d) For a small enough (depending on N) we find from Baker-Campbell-
Hausdorff estimates the basic result:

\AdP\
2 ^N2 Σ ΛJ\A9P]\

2 + c(Σ \ASPJ\
2)3'2 . (5.25)

Parameter Condition 5.10. a0 is picked small enough (as a function of AT) such that
(5.25) holds.

Equation (5.25) is Local Stability Theorem 4.3 with /2 determined (as a
function of N).

5.3. Regime 2

The proof of Theorem 4.2 is complicated and tricky, but mushy; it involves no hard
estimates or precise non-trivial inequalities. All the modifications introduced in
Sect. 3 and the Appendix are needed and used. A number of constants arise that in
general will depend on the positions of the l.f. plaquettes. Since there are only a
finite number of positions for the l.f. plaquettes, we may choose the constants
independent of l.f. plaquette positions by maximizing or minimizing over a finite
set, and we do so. Some of the constants will depend on N, which we will note. Our
results are obtained for N large enough, and a0 small enough depending on N.

1) We include the l.f. plaquettes (among the pt) inside ^ r^ balls of radius ^ c2.
(We are considering a total lattice of 4N4 vertices, in the four N4 blocks, vertices of
P.) Inside each N4 block, the vertices and bonds not in any of the balls includes a
large connected set of bonds and vertices, the major block sublattice. The set of
vertices in the block, not included in the major block sublattice contains ^c3

elements. The union of the four major block sublattices naturally combine to form
the major sublattice, a connected lattice, with only s.f. plaquettes.

2) We will say a lattice is simply connected if every closed contour can be
modified to a trivial contour (a point) by a sequence of elementary homotopies.
(See the discussion before Lemma 5.5.) By removing ^ c4 vertices and bonds each
major block sublattice and the major sublattice may be made simply connected
and connected. (This could not be done in two dimensions.) We thus arrive at the
nice block sublattices and nice sublattice.

Observation. In a simply connected lattice, if the bonds in a maximal tree are
assigned the identity as a choice of gauge, then the bond variables are uniquely
determined by the plaquette variables.

3) The bonds assigned ε inside a block in the Balaban axial gauge will also be
assigned ε in the nice block sublattice. This in general will not define a gauge inside
the nice block. We assign ε to a sufficient number of additional bonds to define an
axial gauge in each nice block.

4) For each of the three bonds of P assigned ε in Sect. 5.2, we will set a certain
average to be ε. We first note, if in a given block as illustrated in the Appendix,
contours radiate out from the center of a ball, B in the figure, instead of C; then we
may in this section let B be the base point, instead of C. This does not effect our
estimate, it is a gauge change. With this convention, we average to ε, for the three
bonds, those group elements assigned to the subset of the relevant contours
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contained in the nice lattice. We are averaging as in Sect. 5.2, possibly with a
different base point, but not over all the contours. We are not assigning three of the
bonds in P ε, but approximately ε; the average we are setting to be ε is not precisely
the same average that assigns group elements to the bonds of P. (We no longer
mention the shift in base point.)

5), 3), and 4) specify a gauge. In this gauge we deduce an inequality like (5.24),
with both sums over only s.f. plaquettes. We also have, for N large enough, (5.13)
with 8 replaced by j^(22)2 for the contours kept in the average in 4). (This is a gauge
independent statement.) See Sect. 5.4.

6) We write, as in Step 1 of Sect. 5.2,

gdp = g ι ' g 2 ' g 3 ' g 4 > (5-26)

gk = e^
+E\ fc = ι,...,4. (5.27)

The n superscript indicates all contours lie in the nice lattice,

=0, fe = l,2,3. (5.28)

We also have Nk as the number of these "nice contours" entering the bond k
average. We can require

Nk = N*-NE

k, (5.29)

with

Nξ<c5N. (5.30)

This requires a reasonable choice of the balls in 1) and a reasonable choice of the
additional bonds and vertices removed in 2). We may require all bonds and vertices
within distance cίN — c6 of the base point to be in the nice lattice. Note that the
inequality (5.30) depends on the modification of the Appendix; and also indicates
how close parts of the contours have to be to the radial straight line paths (see the
discussion near the end of the Appendix).

7) It follows from the modification introduced in Eq. (3.5) and (3.6) and from
(5.30) that

\Ek\<^a09 k = 1,2,3, (5.31)

\E4\<^a0 + cs(N2a0)
2. (5.32)

For fixed N large enough, α0 small enough, these Ek are small enough not to
require careful treatment in deriving our estimates.

8) We write thus

gdp = e^-\+E' (5.33)

with E' very small [with estimate like (5.32)]. We consider N x N squares in the
nice lattice, parallel to P, such as were averaged in Appendix A of [4]. We may
rewrite the exponent in (5.33),

(5.34)
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where the sum is over such squares in the nice lattice. The number of such s, ΛΓS,

SatisfieS N*-Nsίc9N. (5.35)

E" is small [with an estimate like (5.32)] and differs from E' by some An

Γk not in any
An

s.
9) With (5.34) we may feel we are almost there, that the remaining proof is just

as in the last subsection. But there is a major difficulty yet to be overcome, the
trickiest aspect of the present proof. Although the square contours summed over in
(5.34) lie in the nice lattice, not all their "interiors" do. (The interior of a square
contour is the N x N union of plaquettes of which the square is an outer boundary.)
The number of such "bad squares" is easily estimated to be ^ cN2 in number, but
this is too many to be moved over to the error term E". And the proof in the last
subsection will not go over to the bad squares. Thus we have a real problem.

10) Given any ε > 0, we will show in the next step that we may rewrite (5.34) as

(5.36)
., . N GS

with

l^α(GS)^l+ε, (5.37)

where the sum over GS is the sum over only "good squares" (ones with interiors in
the nice lattice) and E'" satisfying an estimate as (5.32) with constants a function of
ε. As in the last subsection we deduce from (5.36) for N large enough, α0 small
enough (depending on N)

c(N9ε)al-εa2 (5.38)

PjS.f.

with the sum in (5.38) as indicated over s.f. plaquettes only. From (5.38) it is
straightforward to deduce Theorem 4.2, for ε small enough, N (as a function of ε)
large enough, and a0 (as a function of N) small enough.

1 1) We pick one of the two lattice directions, say n, perpendicular to the plane
of P. To each bad square, say BS, we find c10 good squares GSα that are each
parallel displacements of BS in the direction of n. We can also require that the
distance between BS and each GSα is ^cli lattice spacings. We then can write

. (5.39)
C10 «

with

2Na. (5.40)
(c12 will depend on c10.)

Equations (5.39) and (5.40) are derived by relating the contour BS to each of the
BSα by a sequence of elementary homotopies, and studying the change in assigned
group elements as in the analysis of Lemmas 5.4 and 5.5. If c10 is picked large
enough (as a function of ε) we can achieve (5.36) and (5.37).

12) It is clear many of our estimates are rather wasteful, such as (5.40), and it is
a very worthwhile problem to try and find a sharper stability theorem than we have
stated.
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5.4. Simple Lattice Geometry

A) Minimum Area of a Loop

We first consider the problem of bounding the number of elementary homotopies
it takes to contract a closed contour of / bonds in d dimensions in a complete unit
lattice. We will not count as a step removing a portion of the contour consisting of
the same bond traversed in both directions in sequence. We note the folk theorem
on the isoperimetric inequality for square packing which states that a square on the
2 — d lattice maximizes the area to perimeter ratio. From this it is easy to deduce
that in two dimensions a contour of length / can be contracted to a point by

(l\2

^ I - I elementary homotopies. The minimum number of elementary homotopies

it requires to contract a loop to a point is sometimes called the minimum area of the
loop.

Theorem on Minimum Area (due to A. Blass). In d dimensions the minimum area of a
loop of length I is

Proof. We convert the problem to one of the study of words in a free group. We
consider the free group generated by g1? . . ., gd (and gϊ1,.. ., gd~ *). Associating gt to
any edge in the ιth direction with positive orientation, and gf~

 1 to these edges with
negative orientation; there is a natural assignment to a loop of length /, of a word of
length / (which we note contains equal numbers of elements gt and gf~

 1). We wish to
convert this word to the identity element (or zero word). In this conversion we
allow three kinds of steps:

a) removal of adjacent elements of form g^gί"1 or g^g;,
b) interchanging adjacent elements,
c) replacing word w^ by w2wx.

We note that steps of type a) correspond to the removal, in a loop, of a subpath
traversing an edge in one direction and then immediately the opposite direction.
Step b) corresponds to an elementary homotopy. In a sequence of steps converting
our word to the identity, we count the number of steps of type b). The minimum
number of such steps in a sequence "contracting" the word to the identity is the
"minimum area" of the associated loop.

We leave to the reader the elementary (but non-trivial) argument required to
show that the worst cases, configurations that maximize the minimum area, are of
the form

This, a word of length (2dr) = /, is easily seen to require

steps of type b) to contract. For a bound of the form c(d)l2, we have found the best

constant c(d) = - I 1 — -
8 V d )
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B) Radial Maximal Trees

We now consider constructing radial trees on a lattice as required in the Appendix
and Sect. 5.3. For its intrinsic interest we do the construction in any number of
dimensions. We first state what properties our tree will have - this will define in
what sense the tree is radial. We then construct a maximal tree on the lattice Zd,
radial about the origin, i.e. satisfying all the properties listed.

Properties of Radial Maximal Trees in Zd. For a point p in Zd, we write \p\ for the
distance to the origin, and dτ(p) for the distance to the origin along T, a maximal
tree. The following properties define the term "radial" applied to T.

Radial Property 1. There is a ca such that for all p, dτ(p) ^ca\p\.

Radial Property 2. There is a cb such that for each point p, the portion of the tree
joining p to the origin (a path from the origin to p, lying in T) lies within a ball
about the origin of radius, \p\ + cb.

Radial Property 3. For each c0 > 1 there is a m(c0) such that for each r > 0 one has
that : if T is cut at any point p with \p\ ̂  r, then the number of vertices lying in a ball
of radius c0r about the origin and disconnected from the origin is ^ mr.

Construction of a Radial Maximal Tree. We construct our tree by an inductive
process. We have trees T1? T2, . . . such that TtcTi+1 and 7J C T. Tt is a maximal tree
on the vertices lying within the ball Bt of radius rt = 2l about the origin. We assume
Tt has been constructed, and specify the construction of Ti+ί.

Construction of Ti+ί. We choose constants cί9 c2, c3 (independent of ί) satisfying

c1>2]/d, c 2>3c l s c3>3c2.

We select a set of lattice points, pα, satisfying

2) The points pα have mutual separations ^c2.
3) Each point on the boundary oϊBt (these need not be lattice points) is within

distance c3 of some pα.
We now for each pα draw a line through the origin and pα, call this /α. We pick a
shortest path on the lattice ί0α satisfying

1) ί0α connects pα to a point within distance ]/d of the boundary of Bi+ί.
2) ί0« lies in (βί + !-£<).
3) The maximum distance between a point in t0a and /α is ^c1.

We note that ί0α is of length ^ 2lc4, for a constant c4 independent of i (and α).
We arrange our ί0α in a (finite) sequence, and expand these inductively. With an

ordering α l s ...,αs on the α's, we will first expand ί0αι to become ίlαι, then ί0α2 to
become ίlα2. In general after expanding trΛ. to become t(r+ 1)αj, we next expand trΛj+l

to become t(r + 1)αj + 1 i f / < s, t(r + 1)αι to become t(r + 2)αι if/ = 5. Each ίrfltj. will be a tree in
(Bi+ ΐ —Bt). At a given expansion step, when traj is expanded to become t(r+ 1)α/ one
must have

1) ίrα Cί ( r+i)α., i.e. it is an expansion.
2) £(,.+ 1)0,. is disjoint from all other trees as they have developed so far in the

inductive process.
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3) Each bond in t(r+1}Λj touches a bond in ί .
4) t(r+1)Λj is a maximal element satisfying 1), 2), 3).
At the end of this expansion process. We have disjoint trees ί/α hitting all

vertices in (Bi+l—Bi). Ti+1is obtained from Tt and the ί/α by adding one bond for
each ί/α to join it to T£.

This has been what at first seems a rather complicated construction. But living
with it for a while one may see the resulting tree satisfies the three Radial
Properties.

Appendix. Field Dependent Contour Selection

We begin with a brief discussion of the problem motivating the modification
introduced in this Appendix. We consider a2 — d52 block with root vertex C, and
bonds assigned ε by a typical Balaban axial gauge drawn. We prefer

Fig. 9

a centrally located root vertex, so we draw an alternative gauge selection

Fig. 10

p, g label plaquettes. Now imagine these two figures with 5 replaced by a very large
number N, and p, g similarly located, near midway along the bottom row, adjacent
to C, respectively. Now imagine a very localized field excitation; all plaquettes pt in
the whole lattice have small gdpi, except p and g which have large gap = g^1. It
is easy to see that this very localized excitation, buried in the N2 block wreaks
havoc on the group elements assigned to contours, that have to be averaged. The
group elements will be divided into two sets, a large number of elements in each set,
and the group elements within each set nearly equal, but very different between the
sets. We wish to establish an averaging procedure that minimizes the effects of a
local excitation such as this - it appears to be impossible to do with the Balaban
averaging procedure. More immediately we want a procedure that will enable us
to establish stability estimates.
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Fig. 11

We put the root vertex C at the center of the N4 block. We put r1 +1 balls of
radius c^N in the block, the balls are separated from each other, from C, and from
the boundary of the block by c^N. For a field configuration in Regime 2 there will
be less than r± +1 l.f. plaquettes in the block. We may thus find a ball, say the one
illustrated with center B, with no l.f. plaquettes inside it. Having selected (by some
decision process we do not now detail) the ball centered at B, we define the Balaban
axial gauge. Better, we define contours connecting C to each vertex in the block, in
such a way that no closed loop can be made of portions of the union of contours.
These contours are selected to be made of the path from C to B followed by a path
from B to the point. In the figure, C is joined to X by CBuBX. On the lattice, of
course, one cannot choose straight line paths, but one chooses "good approxi-
mations" to the straight line paths. The proofs in Sect. 5.3 specify how good an
approximation is here required, not one demanding a precision algorithm. We will
require that the number of bonds in the path from the center of a ball (B in the
figure) to any point (X in the figure) be less than 5(AT— 1). Likewise for the path
from C to B. These points are discussed further in Sect. 5.4.

When there are no l.f. plaquettes in the block, or more than r ί l . f . plaquettes in
the block any axial gauge suffices.
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