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Abstract. This article describes the construction of a natural family of conform-
ally invariant differential operators on a four-dimensional (pseudo-)Rieman-
nian manifold. Included in this family are the usual massless field equations for
arbitrary helicity but there are many more besides. The article begins by
classifying the invariant operators on flat space. This is a fairly straightforward
task in representation theory best solved through the theory of Verma modules.
The method generates conformally invariant operators in the curved case by
means of Penrose's local twistor transport.

Introduction

Special relativistic field equations are those which are invariant under the Poincare
group. The Poincare invariance of Maxwell's equations may be regarded as the
starting point for the special theory of relativity. Maxwell's equations and other
massless field equations can, however, be made to exhibit [2,7] an even larger
invariance group, namely the conformal group of Minkowski space. Our first
objective in this article is to describe all conformally invariant differential operators
on Minkowski space.

Our second objective is to exhibit precise analogues of these differential
operators on space-times which are not flat. For this, the sense of the analogy is the
important point since there is no longer a transitive group of conformal
transformations acting on a curved space-time; invariance under a conformal group
becomes meaningless. However, for differential operators depending on a choice of
metric there is the concept of invariance under conformal rescaling of the metric, i.e.
replacing the metric gah with a metric gab = Ω2gab for Ω a nowhere-vanishing
function. If D is a differential operator corresponding to gab then denote by D the
operator corresponding to the rescaled metric gab. One allows tensors, etc., to be
rescaled by powers of Ω, so that if we decide to put φ = Ωrφ, then we say that φ is
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being considered as a conformal density of weight r. We say that a (metric dependent)
differential operator is conformally invariant, in the sense of rescaling, if D$ = ΩsDφ,
when φ is given some conformal weight r. If D is regarded as acting on conformal
densities of weight r to give conformal densities of weight s, then this equation may be
rewritten as Dφ — Dφ. Consider, for example, the massless free field equations of
helicity n/2. Using the notation of [22,27], these may be written VA/vφA>B>...D> = 0,
where the field φAB-D' is symmetric in its spinor indices (of which there are n in
number) and is also conformally weighted of weight — 1. When gab is rescaled, the
Levi Civita connnection changes according to [24,27],

where Ya = Ω " x VaΩ. Thus,

and, consequently,

This demonstrates the well-known (e.g. [22,27]) conformal invariance of these
equations. Perhaps a more interesting example is provided by • -f JR/6, where • is
the Laplacian (i.e. the wave operator in the Lorentzian case) and R is the scalar
curvature. It too acts from conformal densities of weight — 1 to those of weight — 3.
There are higher order conformally invariant operators which have the same form,
i.e. which reduce to an operator invariant under the conformal group in the flat case,
and appear as the flat operator corrected by curvature terms in general. For
example, Q 2 admits such a conformally invariant modification [15] when acting on
functions (weight 0) to produce 4-forms (weight - 4).

One might ask for the most general rescaling invariant operator, but the
question is ambiguous, admitting several formulations even for zeroth order
operators, i.e. tensors (e.g. [30] versus [16]). One could reasonably ask for those
polynomial expressions in the Levi Civita connection, the metric, and its inverse
(thus including curvature) which turn out to be invariant under conformal rescaling.
However, this seems to be a rather ad hoc requirement, and it would be more
satisfying to find a more definitive and elementary requirement. For Minkowski
space invariance under the conformal group is such a requirement.
Moreover, for conformally flat spacetimes this global conformal invariance relates
quite directly to the local rescaling invariance as follows.

Suppose D is a differential operator on compactified Minkowski space [24]
invariant under the group of global conformal transformations. Suppose M is a
conformally flat space-time and choose on M an open set together with a choice of
metric thereon which is flat. Choose a similar open set in Minkowski space and map
one to the other by an isometry. In this way one can attempt to transfer the
differential operator D over to M and it remains to show that this is a consistent
procedure. Here the point is that any two choices are related by a local conformal
map from an open subset of Minkowski space onto another. Liouville's result (e.g.
[9]) that any such local transformation is the restriction of a global conformal
automorphism of compactified Minkowski space now ensures consistency.



Conformally Invariant Differential Operators 209

In fact it will turn out that the rescaling invariant operators derived from those
invariant under the group of conformal automorphisms of Minkowski space have a
similar form to those examples at the beginning of this introduction, i.e. a leading
order term comprising some simple composition of Levi Civita connections,
together with lower order terms with various components of curvature and their
covariant derivatives as coefficients. We will show that these same formulae define
conformally invariant operators (in the sense of conformal rescaling) on a general
space-time. These are the "curved analogues" in the title of this article.

This paper is very much inspired by Penrose's twίstor theory. Two preliminary
observations are taken directly from this theory. The first is that any reasonable
definition of conformal invariance for a real (pseudo-) Riemannian manifold will
work equally well for all signatures as well as in the complexification (see e.g. [20,12])
where there is no longer any distinction between Riemannian, Lorentzian, etc..
Thus, the space-times in this article will be complex. The second observation is the
basis of twistor theory [23,25,26,28], namely that complexified compactified
Minkowski space Ml can be regarded as the Grassmannian of 2-planes in C 4 whence
the global conformal transformations of IVO are 4-1 covered by SL(4, C) acting on M
via the self representation on C4.

In Sect. 1 the flat space problem is reduced to a question in representation
theory. With the introduction of Verma modules in Sects. 2 and 3, the problem is
solved in Sects. 4 and 5. The method of construction used in Sect. 5 is designed so
that it generalizes to the curved case. Following a suggestion of Roger Penrose, this
is accomplished in Sect. 6.

We should point out that the representation theory that we use is, by modern
standards, fairly elementary. There is much more sophisticated machinery which
can be brought to bear and which demolishes the problem rather quickly (see [4,5]
where more general results are to be found). Thus, this paper must be considered as
partly expository but, in addition to considerations of sledge-hammers versus nuts,
our approach is constrained by the desire to obtain the curved version in Sect. 6.
The main tool of Sect. 6 is the local twίstor connection [26,28]. This is the 4-
dimensional version of Cartan's conformal connection. Using this more general
notion, Rob Baston [1] has succeeded in placing the arguments of this article in a
much more general setting.

Conversations with Rob Baston and Rod Gover have been very helpful.

1. Formulation of the Problem

In order to be properly defined, conformal transformations require "points at
infinity" to be added to Minkowski space. Indeed, if (t,x,y,z) are Minkowski
coordinates and

then the so-called "inversion in the origin", p ι-> pj1| p ||2, is conformal but is undefined
on the light cone of the origin. The remedy is to compactify Minkowski space as
explained, for example, in [24]. The result is a closed manifold with conformal
structure on which the possibly singular conformal transformations of Minkowski
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space, such as inversion, act as genuine conformal automorphisms. Similar
comments apply in the complex picture. It is the complex picture which we shall
adopt from now on. Thus, all constructions are in the holomorphίc category, i.e.
manifolds are complex manifolds, tensors are holomorphic tensors, and so on.

As indicated in the introduction, complexified compactίfied Minkowski space M
may be identified with the Grassmannian Gr2(C4) of 2-planes in C4, and therefore as
a homogeneous space for SL(4, C). Specifically, M = G/P, where G = SL(4, C) and P is
the subgroup consisting of those matrices of the form

/ # * * *\

* * * *

0 0 * *
\0 0 * */

The theory to be explained in this article applies generally for G a complex
semisimple Lie group and P a parabolic subgroup, i.e. one for which the quotient G/P
is compact. Actually, it is slightly more convenient and slightly more general to take
G to be the (reductive) group GL(4, C). Until Sect. 3, however, the discussion is
general and G can be any complex Lie group with P any complex subgroup.

A homogeneous vector bundle [3] on G/P is, by definition, induced by a finite
dimensional representation of P, say p:P -> Aut (E). The vector bundle is obtained by
factoring the trivial bundle G x E on G by the action of P given by

(α,e)H>(oφ~\p(p)e) for peP, αeG, eeE.

Equivalently, its sections are given locally by £-valued holomorphic functions/on G
satisfying ρ(p)f(ocp) =/(α) for peP,αeG. G acts on such local sections by means of
(g>f)(cc) = f(g~1oi) for #,αeG. All tensor fields, for example, may be regarded as
sections of homogeneous vector bundles since the tangent bundle is induced from
the Adjoint action of P on g/p, where g and p are the Lie algebras of G and P
respectively. In Sect. 3 we will show that spinor fields on M may also be viewed as
sections of appropriate homogeneous bundles. In what follows we shall use E to
denote the homogeneous bundle as well as the representation space of p.

Given two such homogeneous vector bundles E and F, consider the (holo-
morphic) differential operators from E to F. Since such operators act on local
sections, it makes sense to require that they be invariant under the action of G
above. These will be called invariant differential operators. The exterior derivative
d:Ωp->Ωp+ί from p-forms to (p -|- l)-forms is always invariant in this sense. The
problem is to classify all such invariant operators.

A differential operator of order k is the same as a vector bundle homomorphism
D:JkE->F, where JkE is the fcth associated jet bundle of E (e.g. [29]). Its fibre at
PeG/P consists of germs of sections of E modulo those that vanish at P to order
k +1. If/vanishes to that order then so does p-f'for any peP. Hence the fibre over P
carries a finite dimensional representation of P from which JkE is reconstructed as a
homogeneous vector bundle (in the same way as any homogeneous bundle is
induced from the representation of P on its fibre over PeG/P). As before, we denote
the representation of P by JkE also. If D:JkE-^F is a homomorphism of P-
representations, then it induces an invariant homomorphism of the corresponding
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vector bundles, i.e. an invariant operator. Conversely, all invariant operators arise in
this way. Consequently, the classification problem becomes the task of understand-
ing the representations JkE followed by the purely algebraic problem of determining
the P-homomorphisms JkE->F. Clearly the first part of this proposal involves not
only the representation of P on E but also the ambient group G, whereas the second
part concerns only the representation theory of P. In fact, it turns out that the
approach we adopt for the first part (in the following section) greatly eases the
second task if the embedding of P in G is not discarded (see Sect. 4).

2. Dual Formulation via Verma Modules

This section is concerned, in particular, with an algebraic method of constructing the
jet representation JkE. In fact, more precisely, JkE will only be displayed as a Lie
algebra representation of p.

For all k there is a surjective p-homomorphism Jk + 1E-+JkE, and we can form
the projective limit

As a simple example consider the case where G = C,P = {0}, and p is the trivial
representation on C. Evidently, the above system of jets is

] -> -• C[z]/zfc + 2 -• C[z]/zfc + x -+ C[z]/z*-> -> C[z]/z2 -» C.

Here C[[z]] denotes the formal power series in the indeterminate z and in general
J^E may be regarded as the formal power series expansions of sections of E. This
system is dual to

Cid/dz] ID ... =>Cfc + 1[d/dz] n>Cfc[d/dz] ^Ck.ild/dz'] ^ ... ID C1ld/dz'] n> C,

where Ck\_d/dz~\ denotes the space of polynomials of degree ^ k in the indeterminate
d/dz. Observe that C[d/dz] is the universal enveloping algebra [8,19] of the Lie
group C filtered by degree in the usual way. This example generalizes at once to the
case where G is an arbitrary complex Lie group but with P and p still trivial. Then
the universal enveloping algebra 2I(g) filtered by degree clearly has as its dual the
space of infinite jets of functions on G at the identity. In order to incorporate a
subgroup P and a representation p:P->Aut(£), first consider the U(g)-module
U(g) ® c £ * , where g acts trivially on E*, the dual oϊE. This corresponds to the trivial
vector bundle G x E on G. Using p to pass down to a homogeneous bundle on G/P
evidently corresponds to factoring i l(g)® c £* by the left H(g)-submodule generated
by {p®e- \®p*{p)e) for pep, eeE* (and where p*:p->End(£*) also denotes the
derivative of p*:P-» Aut (£*)). This induced U(g)-module shall be denoted V(ρ) and
is called the Verma module associated to g, p, and p. Often the term Verma module is
reserved for the case where E is one-dimensional [31,3,8] but we shall use it also to
refer to the general concept above. An excellent review of the one-dimensional case
and in investigation of the general case is to be found in [21]. The grading of U(g)
induces a grading of V(p):

V(p) ^ ... ^ Vk+ί(p) ^ Vk(p) ^ V^^p) D. O ^ D V0(p) = £*,

with each level preserved by p. It is a matter of pure thought to check that taking
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duals gives
j*E-+ '->Jk + ίE-* JkE->Jk~ιE ->...-> J^E-^E

as H(p)-modules.
Now if JkE-+F is a P-homomorphism for representations p and σ on E and F

respectively, then it induces Jj+kE-+JjF for all j and so J°°£-» J°°F. Dually, this
corresponds to a homomorphism of lί(g)-modules V{σ)->V(p). These observations
may be reversed to conclude that the search for invariant differential operators is
equivalent to the search for homomorphisms between Verma modules. The order of
the corresponding operator is the least k for which the image of F* = V0(σ) lies in
Vk(ρ). The composition

V0{σ)-+Vk(p)-+Vk(p)/Vk-1(p)

is then, by virtue of the jet exact sequence [29],

dual to the composition OkΩ1 ®E-^JkE-+F, which provides the symbol of the
operator [29]. Here O means the symmetric tensor power and Ω1 is the
homogeneous bundle induced from the coAdjoint representation of P on (g/p)*.
From this one can begin with a prospective symbol and ask whether it lifts to be the
symbol of an invariant differential operator (cf. [17]). However, we shall adopt a
more direct approach to determining the homomorphisms V(σ) -» V(ρ).

In general, the Verma modules V(p) are complicated owing to the complicated
nature of U(g). However, when g is semisimple and p is parabolic a great deal can be
said. In this case one can always write g = p + q (a vector space direct sum of Lie
subalgebras) whence, by the Poincare-Birkhoff-Witt theorem [19], V(p) =
U(q) (x)c£*, with grading induced by that of U(q). The action of g is then a result of (i)
the action of q on H(q) alone and (ii) the action of p obtained by using the
commutation relations between p and q to commute elements of p past U(q)
whereupon they strike £* according to p*. Although these are still quite complicated
objects, the homomorphisms between Verma modules constructed from irreducible
representations are partially known [21,4,5] and indeed completely known in case
p is also minimal, i.e. a Borel subalgebra.

3. The Structure of Verma Modules for Minkowski Space

This section describes the Verma modules V(p) for Minkowski space M = G/P,
where p is an irreducible representation of P. This description follows a general
scheme valid for any parabolic subgroup of a semisimple or reductive Lie group.
Any unjustified statements made in this section are directly verifiable for Minkowski
space. The general approach may be found in [3,19,21] for example.

To fix notation we shall label the generators of gl(4, C) according to the scheme

'ill -Λ i A2 Λ4

7 h v v
' 1 1I2 Λj Λ3

\y* J>3 Y2 K)
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Then g = p -f q, where q is the subalgebra consisting of matrices of the form

/ 0 0 0 0\
0 0 0 0

y2 JΊ 0 0
\3>4 ^3 o o/

Notice that q is Abelian (a further simplification as compared with the
general case), whence U(q) is simply the polynomial algebra C[ylty2,y3,y4.']. Thus,
forp:P->Aut(£) a finite dimensional representation of P,

V(p) = <

with grading determined by polynomial degree.
Let L denote the subgroup of P consisting of matrices of the form

(*
*

0

Vo

*
*
0

0

0
0
*

*

0
*

*/

with corresponding Lie algebra I (= gl (2, C) x gl (2, C)). In general L is called a Levi
factor of the parabolic P. Every finite dimensional irreducible representation of P is
derived from a finite dimensional irreducible representation of L by means of P -> L.
These representations may be classified by either highest or lowest weights, using the
usual "raising" and "lowering" arguments with Xl9X2 as raising operators and
Yl9 Y2 as lowering operators. The result is that homogeneous bundles on M are in
1 — 1 correspondence with the symbols (a,b\c,d) for integers a ̂  b and c^d9

meaning that the corresponding representation is on a vector space E containing a
lowest weight vector δ with

h1δ = aδ, h2δ = bδ, h3δ = cδ, h4δ = dδ.

This notation agrees with that in [13,14] where the description is given in terms of
Young tableau. In the notation of [10], (a9b\c,d) is the spinor bundle

d—c

The dual representation £* is therefore constructed from a highest weight vector α
with

h1oc= — αα, h2oc= —ba, h3oc= —cot, h4oc= —doc.

It is evident that V(a, b | c, d) = C[j/ί, y2, y3, y4] ® £* is itself a highest weight module
for U(g) in the sense that it contains a highest weight vector, namely 1 (x) α (which
from now on will just be denoted by α) annihilated by XUX2, Xi, *2> X3? X4 a n d ^ a t

K(α, b I c, d) is generated by applying the lowering operators YuY2>yi>yi>y$>y4
Now suppose that D:V(e,f\g,h)^>V(a,b\c,d) is a U(g)-homomorphism. Let β

denote the highest weight vector generating V(e9f\g, h). Then D(β) must be a highest
weight vector in V(a,b\c,d\ i.e. it must be annihilated by X1,X2,x1,x2,x3,x4. and
provide a joint eigenvector for hl9h2, h3, h4 (though it does not necessarily generate
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V(a, b\c,d) under lowering). Conversely, if y is a highest weight vector in V(a,b\c,d)
with weight given by

hx y = - eγ, h2y= -fy, h3y = - gγ, h4y = - hy,

Then D: V(e9f\g9h)-+ V(a9b\c9d) may be defined by mapping β\-+γ and applying
lowering operators to determine D on the rest of V(e9f\g9h).

Thus, the search for invariant differential operators {a,b\c,d)-+(e,f\g,h) is
entirely equivalent to the search for highest weight vectors in V(a9b\c9d). Note that
since x2,x3,

 a n d x* c a n be generated from commutators of Xi9X29 and xί (e.g.
[Xi,Xi] = x2)9 it suffices to find weight vectors annihilated by Xί9X2, and xx. In
fact, it is easy to check that a weight vector γ say

hl7=-ey, h2y=-fγ, h3y=-gy, h^y = - hy

annihilated by Xx and X2 corresponds to a possible symbol i.e. to a F-module
homomorphism,

O^1 ®(a,b\c,d)->(ej\g,h).

Thus, xxy may be regarded as the obstruction to this being a genuine symbol, i.e. the
symbol of a genuine invariant differential operator. This also shows that the symbol
of an invariant operator between irreducible bundles determines the operator.
Using that Ωx = (0,11 — 1,0), it is at this stage a tractable task, with knowledge of the
Clebsch-Gordan coefficients for gί(2,C), to determine all symbols and thus all
invariant operators. This task is simplified, however, by the use of central characters
as explained in the next section.

This section ends by way of illustration with a few invariant operators. Consider
first the Verma module,

where hγα = h2a — h3a = h4a = 0. The symbol Ω1 (x)(0,0|0,0)->Ω* corresponds to
the weight vector yt(x. Note that

h1y1a= Lhuyja

h2y1cc= [ft2,J>i]α

a = 0,

X2yict = [*2, j J α + y,X2cc = [X^y^cc = 0,

as required. Also

lxuyjoc = (h2 - h3)a = 0,

so this defines an invariant operator (0,0| 0,0)-•((), 1| - 1,0), namely the exterior
derivative Ω°-+Ω1.

Another symbol is described by the weight vector y\ α:

χiy\a = 0 = X2yl<x.
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However,

ih3,yjot= -2y1(x,

so the symbol Q2Ω1 (χ)(0,0|0,0) = (0,2| - 2,0)0(1,1| - 1, - l)-K0,2| - 2,0)
does not lift to an invariant operator.

Next consider the Verma module K(0,n| - 1 , - 1 ) generated by highest weight
vector α. The symbol

Ωι®{0M - 1, - l) = (0,n + 1| - 2 , - l)Θ(l,n | - 2 , - l)->(l,n| - 2 , - 1)

is represented by the weight vector ny2a + y± Y\0L (this follows from the proof of the
Clebsch-Gordan formula for gl(2, C); see e.g. [19]). Moreover,

= nY1cκ. + (h2 - h3)Yx a

= nYί<x + Y^oL

so this symbol lifts to an invariant operator (0, n | — 1, — 1) -• (1, n | — 2, — 1). This is
the massless field operator of helicity n/2 described in the introduction. In the
notation of [10] it is

Finally, consider the Verma module F(0,0| - 1, - 1) and again denote the
generating highest weight by α. Consider y = (yxy4 — j ^ J ^ K ^ ^s readily verified
that hίγ= -~y,h2y= ~y>h3y = 2y,hΔfy = 2y and that Xί9X2, and x x annihilate y.
This highest weight vector therefore corresponds to an invariant operator
(0,01 - 1, - 1)->(1,1| - 2 , -2) , namely the wave operator (see e.g. [10,33])

• ;£?[_ 1] _ ^ [ _ 2 ] [ - 1 ] ' .

4. The Use of the Central Character

Let Z(g) denote the centre of U(g), i.e.. the elements which commute with all others in
U(g). These elements are often called Casimίr operators. For any U(g)-module W, the
elements of Z(g) act as H(g)-module endomorphisms. Consequently they take weight
vectors into weight vectors of the same weight and also preserve highest weight
vectors. Hence if oteV(p) is a highest weight vector generating V(p), then za = φ(z)oί
for some φ(z)eC This defines φ as an algebra homomorphism Z(g)->C. Now for
any xell(g),

z(xα) = x(zoί) — φ(z)xoci

so that z acts on V(p) as multiplication by φ(z). This homomorphism φ is called the
central character or infinitesimal character of V(ρ).

Suppose Z):F(σ)-> V(p) is a U(g)-module homomorphism between Verma
modules. If V(σ) has central character φ, then for any veV(σ) and zeZ(g),

zD(v) = D(zv) = D(φ(z)v) = φ(z)D{υ)9
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so φ is also the central character of V(p) if D is to be non-zero. Hence, in searching for
U(g)-homomorphisms between Verma modules, one is constrained by the (very
strong) condition that the two modules have the same central character.

As an illustration one can use this information to determine all invariant
differential operators on the Riemann sphere as a homogeneous space

Label the generators of gl(2, C) according to

Then h1+h2 and (ht — h2)
2 + 4yx — 2(hί — h2) lie in (and in fact generate) the centre

of U(gl(2, C)). The irreducible homogeneous bundles are all line bundles. Explicitly,
(a\b) for any integers a and b corresponds to the representation on C given by

o
and V(a\b) is generated by a highest weight vector α with h1<x= —aa and h2a =
— b<x. Hence the two Casimir operators act by

[/i1H-/ι2]α= - [ α + 6]α,

[(*i " h2)
2 + 4yx - 2ihx - Λ2)]α = [(6 - a)2 + 2(6 - α)]α.

In order that V(e\f) and V(a\b) have the same central character,

a + b = e+f and (b - a)2 + 2(b - a) = (e -f)2 + 2(e - / ) ,

so either e = a,f=b and the homomorphism is a multiple of the identity, or else
e = b+\ and/= a — 1. In this second case there is no non-trivial map unless a^b,
where y>~Λ+1α is a highest weight vector in V(a\b) providing the required
homomorphism. This is unique up to scale and there is an exact sequence,

0^>V(b+l\a-l)->V(a\b)->(a,b)-+0,

where (a, b) is a finite dimensional irreducible representation of gl(2, C). This method
of constructing representations (such as (α, 6)) is a standard application of the theory
[19] of Verma modules. In terms of invariant differential operators this yields the
dual exact sequence

The differential operator is a conformally invariant power of edth [11] and this
constitutes a complete list of such globally invariant operators.

Harish Chandra's theorem [18,19] uses an analysis of this kind to identify both
the centre Z(g) and those Verma modules which have the same central character via
their highest weights. For gl(4, C) the result is that V(a, b\c9d) and V(eJ\ g, h) have the
same central character if and only if (e + 1,/H- 2,g -h 3,/z + 4) is a permutation of
(a+ l,fo + 2,c + 3,d + 4). This immediately cuts down (e,f\g,h) to at most six
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possibilities. In general V(p) and V(σ) have the same central character provided p
and σ are related under the affΐne action of the Weyl group.

Generally, (a+ l,ft 4- 2, c + 3,d + 4) will consist of distinct integers in which
case (a, b\c,d) is said to be regular and there are precisely six representations with the
same central character. Explicitly, one can first apply a permutation as above to
suppose that, without loss of generality, a^b^c^d. The representations with the
same infinitesimal character are then:

(a,b\c,d) ( α , c + 1 | & - l , d ) ^ l ^ ^ ' ^ ( * + U + 2 | α - 2 , c - 1 )

(c + 2,d + 2\a-2,b-2).

In the case of a singular character (not regular), the same pattern occurs except
that if any of the adjacent slots in ( , | , ) are in decreasing order, then this
possibility is omitted and some distinct representations in the regular pattern may
now coincide, e.g.

or

o ( i , i | - i , o ) ( 1

( ' 1

2 [ j l 1 \ " 0 )

1 ) ( i , 2 | - i , - i ) o.

It is now possible systematically to determine all invariant differential operators.
For example, consider the case

(0,010,0) (0,l |- l ,0) (°(f ^ " ^ (1,21-2,-1) (2,2 |-2,-2).

There are already a limited number of possible symbols. Since

O2Ωι - ( O , 2 | - 2 , O ) 0 ( 1 , 1 | - 1 , -1),

Θ3Ω1={0,3\ -3,O)0(1,2| - 2 , -1),

| - 3 , — l)φ(2,2| —2, -2) ,

there are, for example, only three possible symbols for a differential operator acting
on (0,010,0):

-1,0)

O 3 ί2 1 ®(0,0 |0,0)->(l,2 |-2, - 1 )

O 4 ί2 1 ®(0,0 |0 ,0)^(2,2 | -2 , -2) .

The corresponding weight vectors in F(0,0|0,0) are y tα, y\(y±y4 — y2)??>)&, and
(.Vi ̂ 4 ~~ J^)^)2 α The case yx α was investigated at the end of the previous section and
yields the exterior derivative,
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as an invariant operator. A straightforward computation, however, shows that

so there is no invariant operator (0,0|0,0)-»(l,2| - 2 , -1). Finally, Xι(yxy4
— ̂ 23

;3)2<χ = 0, so that there is an invariant operator

ί2° = (0,0|0,0)->(2,2|-2, ~2) = Ω\

This is perhaps slightly unexpected. The curved generalization is described in [15].
Continuing in this manner, it is easy to determine all the invariant operators for

this basic case to obtain the diagram (not commutative)

(O,O|O,OH(O, i| - ^ o ) ^ 0 ; 2 1 " 1 ' " " ^ ( u i -2,-1)^(2,21-2,-2).

The operator (0,1| - 1,O)->(1,2| - 2 , - 1 ) is either of the obvious compositions,
each operator is determined up to scale, and, apart from f20->ί24, this is nothing
more than the deRham resolution:

0 1 β + 3

where Ω\ (respectively Ω2J) denotes the (sheaf of germs of) self-dual (respectively
anti-self-dual) 2-forms. Of course, this is conformally invariant in the curved case
too. On the level of Verma modules, the deRham sequence is reflected in a Koszul
complex on C[yι,y2,y39y4].

5. The Translation Principle

Although it is possible to treat the general case in a similar manner to the case of
(0,0|0,0) as above, there is a short cut by way of the Jantzen-Zuckerman translation
functor (see e.g. [32]). This translation principle is a method for producing new
homomorphisms from old ones between Verma modules. The general idea is as
follows. Start with D:V(σ)-+V(ρ) for irreducible representations p and σ of p.
Suppose τ:Q->End(W) is an irreducible representation and consider

D ® 1: V(σ) ® W* > V{p) ® W*

II II

If p®τ and σ®τ contained irreducible representations ζ and η of p as direct
summands, then the corresponding Verma modules would split off V(σ ® τ) and
V(p®τ\ whence D®1 would give rise to a new homomorphism V(η)-+V(ζ).
Unfortunately, things are rarely so simple since σ® τ is typically reducible but not
decomposable. Nevertheless, the corresponding Verma module V(σ ® τ) will often
split as a genuine direct sum of Verma submodules. The point is that V(σ ® τ) is
composed of weight spaces which may then be grouped according to central
character. Since central character is preserved under the action of g, it is automatic
that this grouping provides a l%)-module splitting of V(σ ® τ). Thus, if distinct
composition factors of σ ® τ have distinct central character, then the corresponding
Verma modules occur as direct summands of V(σ (g) τ). Such a condition is easily
checked by Harish Chandra's theorem. If this also happens for V(p ® τ), then D ® 1
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induces new homomorphisms between these Verma modules. Indeed, since, by
earlier reasoning, a homomorphism of Verma modules for irreducible represent-
ations of p must preserve central character, D ® 1 must split up so as to act between
corresponding direct summands.

Dually, the story is as follows. D is an invariant differential operator between
homogeneous vector bundles E and F over G/P. Thus, D induces an invariant
differential operator between E ® W and F ® W, where W is a representation of G
regarded as the trivial bundle with fibre W over G/P. Generally, E ® W and F ® W
will not decompose into irreducible homogeneous bundles but irreducible factors
may be split off by invariant differential operators, thus yielding new invariant
operators when combined with D.

To see how this works in practice, consider, for example, the Verma module
K(0,010,0) ® (0,0,0,1)* = V(Q, 0,0,1). The representation (0,0,0,1) of GL(4, C) is
reducible but not decomposable as a representation of P. There is an exact sequence
of P-representations,

0->(0,l|0,0)-> (0,0,0, lH(0,0 |0 , l )-*0,

which does not split. In the notation of [10] there is an exact sequence of bundles

0^>ΘA,->Θ"^(9A->Q9

which does not split. But K(0,110,0) and K(0,010,1) have different central character,
and so the exact sequence of Verma modules

canonically splits. For the correspodning homogeneous vector bundles, this implies
a splitting

0->(0,l|0,0)-* (0,0,0,

where D and D are (first order) differential operators. In other words, although this
sequence does not split as vector bundles, as a sequence of sheaves it does split. We
shall denote this phenomenon with the notation (cf. [13])

(0,0,0,1) = (0,010,1)+ (0,110,0).

Explicit formulae for D and D will be given in the next section. We claim that, more
generally there is a series of splittings

0->(α,fc|c,d)®(0, l |0,0)-φ,fr |c,d)®(0,0,0, l)-φ,f?|c,d) ®(0,0|0, l)->0

by invariant differential operators D and D provided (a,b\c, d) is regular. To see this
first observe that, by the Clebsch-Gordan formula (e.g. [19]),

|0,0) = (α,f>+ l\c9d)®(a+ l,b|c,d)

(omitted if a = b\

(omitted if c = d).
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These will all have distinct central character provided {a + l,ί? 4- 3,c -f 3,d 4- 4},
{α 4- 2, ft -f- 2, c + 3, d + 4}, {a + 1, b + 2, c + 4, rf + 4}, and {a + 1, b + 2, c + 3, d + 5}
are distinct. This is indeed the case provided (a,b\c,d) is regular, i.e. provided
a -f 1, fc -f- 2, c + 3, and rf + 4 are distinct. Thus Z) and D exist by earlier general
reasoning. Again, explicit formulae will be given in the next section. By symbol
considerations, D and D are first order.

To see the translation principle in action, consider the invariant differential
operator d:Ω° = (0,0|0,0)-*(0,11 - 1,0) = Ωι and tensor through by (0,0,0,1).
This gives

(0,0|0,0)®(0,0,0,l) = (0,0|0,

(0,11 - l,0)®(0,0,0,1) = [(0,11 - 1,1)0(0,110,0)]

+ [ ( 0 , 2 | - l , 0 ) © ( l , l | - 1 , 0 ) ] ,

and hence a new invariant differential operator

together with the identity (0,110,0) -> (0,110,0). Recall that (0,010,0) -> (0,11 - 1,0)
had C as kernel, so that

0->C(0,0,0,l)-*(0,0,0,l)-*(0,l |-1,0)0(0,0,0,1)

is exact, where C(0,0,0,1) denotes the finite dimensional representation of GL(4, C)
as distinct from the corresponding homogeneous bundle. This implies that
C(0,0,0,1) is also the kernel of the new operator (0,0)0, l)-»(0,1| - 1,1). Applying
this process to the whole deRham sequence yields an invariant resolution

of (0,0,0,1) and an invariant (fifth order) differential operator

(0,0|0,l)->(2,3| - 2 , - 2 )

obtained from (0,0|0,0)-^(2,2| - 2 , - 2 ) . One can recover the original case by
tensoring this new case through by (— 1,0,0,0) and using

(-l,0,0,0)®(0,0,0,1) = (-1,0,0,1)0(0,0,0,0) and

| - 1 , 0 )

for regular (α, b \ c, d). This also shows that there are no extra invariant operators (up
to scale) between the bundles

(0,010,1) —(0,11 - 1,1)<(^317^',~.^Xl.31 -2, -1)->(2,3| -2, -2)
{ (I, 11 2,1) j

other than those shown (else they would give new operators for the (0,0|0,0) case).
One can continue on this way to investigate all regular homogeneous bundles
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(a,b\c,d) by tensoring repeatedly with (0,0,0,1) and (-1,0,0,0). This is the
translation principle and yields the following:

Theorem. For a^b^c^d there are non-zero invariant holomorphic differential
operators as in the following (non-commutative) diagram

Ja,d + 2\bl,cV^
(a,b\c,d)-+{a,c + l\b - IJΓ Φ + M + 2\a-2,c- l)-+(c + 2,d + 2\a-2,b-2).

^{b+\+\\2JY

Each operator is unique up to scale, and this is a complete list of invariant opera-
tors between regular irreducible homogeneous bundles. Omitting the operator
(α, b I c, d) -»(c + 2, d -f 21 a — 2, b — 2) from the above diagram leaves a resolution of
C(α,6,c,d).

Remarks. The resolution in this theorem may also be deduced from the Bernsteίn-
Gelfand-Gelfand resolution [3] or constructed by analogous reasoning [21]. In
[14] it is referred to as the generalized deRham sequence. The invariant operators
between singular homogeneous bundles may be investigated in a fashion analogous
to the regular case. The translation principle applies within the realm of singular
bundles and results in diagrams degenerating from the regular case as in the
following examples:

(0,0)|-1,-1)-+(0,0|-l,-l) ° (i,i|_2,-2)^(l,l|-2,-2)

t ° ί
£ ίl 21 — 1 —1) J ^

0 ( U | - l , 0 ) ^ ^ [ h ' 1 0 ) ' ^ ( 1 , 2 | - 1 , - 1 ) 0.

Further investigation of these operators is best undertaken in the context of general
four-dimensional conformal geometry.

6. The Curved Case

The link between the homogeneous approach and the general four-dimensional
Riemannian manifold M is via the diagram of Lie groups (see e.g. [27])

SL(2, C) x SL(2, C) -• SO(4, C) a 2 - 1 covering,

n n

S(GL(2, C) x GL(2, Q ) -• CO(4, C) a 4 - 1 covering,

where CO(4, C) is the complex conformal group. We shall assume that M has only a
conformal metric, i.e. a reduction of the structure group of the tangent bundle from
GL(4, C) to CO(4, C) and that, moreover, M is spin, i.e. there is a lifting of this
CO (4, C)-bundle to a 5(GL(2, C) x GL(2, C))-bundle. This is always the case locally,
and then some of the conformally invariant operators which can be constructed
locally will fail globally to exist simply through lack of spinors, whereas those which
involve only tensors will be globally well-defined. Hence, this is not a serious
restriction. An irreducible spinor bundle is the induced bundle for an irreducible



222 M. G. Eastwood and J. W. Rice

representation of S(GL(2, C) x GL(2, C)), whereas the irreducible homogeneous
bundles on M earlier in this paper were given by irreducible representations of
L = GL(2, C) x GL(2, C). This is a rather trivial change, and we shall continue to use
the same notation, i.e. (a,b\c,d) now denotes an irreducible spinor bundle on M.
With notation analogous to that in [10],

d-c

meaning that sections of (a,b\c,d) are spinor fields with d — c symmetric unprimed
indices, b — a symmetric primed indices, and of conformal weight d — a (see [27] for
definitions and further discussion (cf. also [10])). In the language of [10], primed and
unprimed conformal weights have been identified. Thus,

(a,b\c,d) = (a + n,b + b\c + n, d + n)

for any integer n.
The idea in the curved case is to mimick the construction of Sect. 5 using the

methods of, for example, [27] to check conformal invariance at each stage. In the
conformally flat case the construction will reduce to that of Sect. 5.

The first thing which is needed is a curved analogue of the basic case

( 0 , 0 | 0 , 0 ) - ( 0 , l | - l , 0 ) ^ ( 0 ; 2 | ~ 1 ; " 1 ) ^ ( l , 2 | - 2 , - 1 ) ^ ( 2 , 2 | - 2 , - 2 ) .
I ^ (1 , l | — z ,u) I

This is nothing more than the deRham sequence together with [15]

« - 2Rab + 2Rgab/3]Va

(0,0|0,0) = ί2° >ί24 = (2,2|-2, -2),

where gab is any metric in the conformal class, Vα is the metric connection, Rab is the
Ricci curvature, and R is the scalar curvature with normalization conventions taken
from [27].

To invoke the translation principle in the general case, the next ingredient is a
curved version of

For this take (0,0,0,1) to be the bundle of local twistors [26,28] constructed as
follows. For any choice of metric gab the sequence is required to split (as bundles)

(0,0,0,1)= Θ = 0
(0,110,0) OΛ.

but if gab is replaced by gab — Ω2gab, then this splitting is changed according to

ώA = ωΛ, τtA> = πA,-rAA>ωA, where Ya = Ω~ιVaΩ.

The resulting exact sequence is evidently conformally invariant.
In the flat case (0,0,0,1) is a canonically trivial bundle. One way of describing

this triviality is as a flat connection. There is a notion [26,28] of local twistor
connection (or transport) Da which generalizes this to the curved case. Specifically, for
a chosen metric gab in the conformal class, Da is defined by
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where Vα is the metric connection, δB is the Kronecker delta, and Pab = — Rabβ
+ Rgab/12. Using formulae from [27], this definition is easily seen to be conformally
invariant as follows:

. ίωA\ ίVBB'ώ
A + δAπB, \ (^BB>ωA + δi(πB. -

j^ I ^^ \ I Jots ^^ D IS 1 i LSD LS \ LS

UB\ILB,

'*l πA.)~ \vRBIπA. - PABA.B,ώ
AJ ~ VvBB.(π^, - XAA.ω

A) - PABAΊi.ω
A

B. ω
A + δA YCB, of + δB πB. - di YCB. ωc

B nA.-(VBB,YAA-)ωA-TΛA.VBB.ω
A- rBA,{πB,~ TΛB.ω

A) - PABA.B,ω
AΓ

since PABAB' = PABAB1 ~~ VBB1 ^AA' + ^BA1 rABr =

as required.
The final ingredient is a series of splittings

Ό
BB' πA' ~ "ABA'B1

by conformally invariant first order differential operators D and D. It is
straightforward though tedious to check that D may be defined by

ιA'B DE' G' •^ *-« ' ' d-b + 2 «**•""> (b-a + ί)(d-a + 3)

.yWf nAB-D V7(ΰ -C-D)
yA bA {E'σF'-G')H' c_U_ι_\ (A'ZE'---G')

*J ^ m—,τj'iτ> n.-.Tw

w h e r e (oAB...DE>...G> = σ A B DE G' + εA(Bτc D)E' Gr ^ o r GAB DE' G' — σ(AB D)(E' Gf)

and τc...£)£-...G' = τ(c D)(£' G') Here, round brackets on spinor indices denotes
symmetrization (see [27]). If c = d, then τc...DE....G. is omitted. Note that the above
formula fails iϊ b = d + 2,a = d + 3,b = c+1, or α = c + 2, i.e. when the character
(a,b\c,d) is singular. The rest of this section will discuss the curved translation
principle only amongst regular characters (for which the above formula is valid).
There is a degenerate version which allows one to translate between singular
characters exactly as in the flat case.

The idea is now to use the above ingredients in order to generate progressively
more complicated invariant operators just as one would in the conformally flat, i.e.
homogeneous, case. The crucial observation (made, for example in [27]) is that any
conformally invariant formula involving algebraic combinations of the Levi Civita
connection and curvature correction terms (as above) remains invariant if the fields
also have values in some vector bundle with connection, where the Levi Civita
connection is replaced by the background-coupled connection. This observation is
used repeatedly with the local twistor bundle (0,0,0,1).
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The curved translation principle works as follows. Start with the basic case

(0,0|0,0)->(0,l|-l,0)^ ' jί(l,2|-2, - 1)->(2,2|-2, -2),
(1,1) — 2, ϋ) A

and couple this with (0,0,0,1) to obtain, for example

given explicitly by

BB'ω J^^B7ίB' \ ίωb \ fV(B'ωC')B~~~ π(B'C')A
^yBB'UA> — PABA'B'ω J \πA'bJ \V(B'π\A'\C)B +ω(B'Pc')AΊ

where vertical lines round an index indicate that it does not enter the symmetriz-
ation. The first of these gives

(0,0,0,l) = (0,0|0,l) +(0,l,|0,0)

I 1
(0,1| - 1,0)0(0, 0,0,1) = [(0,1| - 1,1)0(0, l|0,0)]

+ [(0,2|-l,0)8(l,l |-l,0)],
and hence a total of eight possible new conformally invariant differential operators.
Consider, for example, the composition

(T) (Π Φ

(0,010,1)—•(0,0,0,1) —.(0,111,0)®(0,0,0, l )^(0, l | - 1, l)θ(0,1(0,0).

This gives invariant operators
(0,0|0,l)->(0,l|-l,l) and (0,0|0,l)->(0,l|0

Similar compositions

A'b'

m m

ID

give only zero operators:

) A / 2 P ^ A + V A W
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= 0,

ABA.

2εABΛ ωA

where notation and formulae have been freely taken from [27].
Since the central character is unavailable in the curved case, it is conceivable

that, by translation, one can generate more operators than in the flat case.
Preliminary calculations such as those above indicate that this does not happen, but
we have no proof as yet. The operators which parallel the homogeneous ones have,
by construction, the same symbol as in the homogeneous case and differ only by
curvature "correction" terms. A more interesting example of such an operator is
given by the following composition

(T)

0,3| - 1 , - 1 )

ΦABB'

(0,l |

which

, J<

gives

H
>vA

A,<

o,i|

VABB

- 1 ,

m

0)® (0,0,0,1)-*

UJ1 '

(0,2|

1

π\A'\C)B '

\π/l'β'C'/

1)0(0,0,0,1)

+- ω ( β , Pc')A'BA

I , ^/ ' (tf-r^ )ΰ V(B'ΨC')B

V*B.VA

ΊφΛBA./3 + ΦtB

BPCΊA'BA

Although the curved translation principle provides a method of computing
exactly what curvature correction terms need be added in general to create a
conformally invariant operator, it is, as the above example illustrates, a rather
lengthy and inefficient process. In practice it is much easier to start with the leading
order term (which must be as in the flat case) and to see how it alters under conformal
rescaling in order to ascertain what the lower order terms must be. The translation
principle guarantees that this process will generate a consistent answer. Consider for
example the operator

From the formulae in [27]:
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and thus

γA γB ±
— ι {A ι B'ΨC')AB

But

Ω~\ΦAAv%r$ r%rn so
is conformally invariant as obtained above.

In any case one obtains the following diagram of conformally invariant
operators

I (0 31-1 - I K 1
(0 ,0 |0 , l )^(0 , l | -U);* 1 ' ' ' ^ ( i , 3 | - 2 , - 1 ) ^ ( 2 , 3 | - 2 , - 2 X

I ^ (Ul-2,1) -* j

but now omitting the operator (0,010,1) -• (2,31 — 2, — 2) no longer leaves an exact
sequence. Indeed, this is no longer a complex because the deRham sequence coupled
to the local twistor connection gives the curvature of this connection when two
operators are composed. The curvature of the local twistor connection is [28]
precisely the Weyl curvature. The composition

(0,0 |0 , l )-(0, l | -1,1)->(1,11-2,1)

is given by ΨA*-+ΨABCDΦA> where ΨABCDeΓ(M,(l,l\ —3,1)) is the anti-self-dual
Weyl curvature.

Coupling the previous diagram with local twistors and splitting it up using D and
D gives two new diagrams:

' ( 0 , 4 | - l , - I K < l „ x ,„ „, 1
(0,0|0,2W(0,1| - 1,2)^ JΓ(1,4) —2, - 1)->(2,4| - 1 , - 1 )

j ^ (l,l|-2,2) t

For example, (0,0| 1, l)->(0,2| - 1,1) is given by composing

0 \
ω\ >

m m m

to give

though it is easier to work out this correction term Φ^B> by inspection, as in
previous cases.
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By construction, the anti-self-dual Weyl curvature

is conformally invariant. This spinor field may itself be the subject of an invariant
operator:

(1,11-3,1) ( l , 3 | - 3 , - l )

*ABCD

As remarked by Roger Penrose, this gives the Bach tensor (e.g. [16,28]), a well-
known conformal invariant. A modification of this construction also gives the
Fefferman-Graham conformal invariant [16]. It would be interesting to have some
characterization of the tensors and operators which can be generated in this way. It
is possible that in some sense this is all the conformally invariant ones.

The physical significance of these curved analogues of the homogeneous
differential operators is unclear except for the massless field operators (as in the
Introduction). In this context, the fact that the curved generalized deRham sequence
is no longer a complex is normally referred to as the existence of Buchdahl
conditions (see e.g. [27]).
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