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Abstract. The equality of two critical points - the percolation threshold pH and
the point pτ where the cluster size distribution ceases to decay exponentially -
is proven for all translation invariant independent percolation models on
homogeneous d-dimensional lattices (d^ 1). The analysis is based on a pair of
new nonlinear partial differential inequalities for an order parameter M(β, h\
which for h = Q reduces to the percolation density P^ - at the bond density
p = l—e~β in the single parameter case. These are: (1) M^hdM/dh + M2

+ βMdM/dβ, and (2) dM/dβ^\J\MdM/dh. Inequality (1) is intriguing in that
its derivation provides yet another hint of a "φ3 structure" in percolation
models. Moreover, through the elimination of one of its derivatives, (1) yields a
pair of ordinary differential inequalities which provide information on the
critical exponents β and δ. One of these resembles an Ising model inequality of
Frόhlich and Sokal and yields the mean field bound (5^2, and the other implies
the result of Chayes and Chayes that β^ί. An inequality identical to (2) is
known for Ising models, where it provides the basis for Newman's universal
relation /?((5 —1)^1 and for certain extrapolation principles, which are now
made applicable also to independent percolation. These results apply to both
finite and long range models, with or without orientation, and extend to
periodic and weakly inhomogeneous systems.

1. Introduction

There have traditionally been two different notions of a critical point in
percolation models, corresponding to the boundaries of the low density and the
high density regimes. For the standard one parameter percolation models on the d-
dimensional square lattice Έd (i.e. site percolation or nearest neighboor bond
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percolation) the two critical densities are usually denoted by pτ (or πc) and,
correspondingly, pH (or pc). The main result reported here is the proof of the
equality of these two critical points.

Expansion methods show that in the "high density" regime there is percolation
(in two or more dimensional models, and in long range models in one dimension),
while in the "low density" regime the cluster size distribution has exponential
decay and the connectivity functions decay rapidly. Our main result is that these
two phases extend up to a common critical point, without there being an
intermediate phase in which with probability one there is no infinite cluster but the
density of large cluster decays only by a power law.

The coincidence of the two critical points is proven here for general translation
invariant independent models - which may include long range and/or oriented
bonds - in any dimension.

Although such an assertion was expected by the physicists to be true - at least
in the finite range case - previous mathematical treatments of the subject dealt
successfully only with percolation models in dimensions d = 2 and d = \. The
former case included, of course, the celebrated proof of Kesten [1] for self similar
models, and its extension by Russo [2] to other finite range two dimensional
models. The reference to d = 1 concerns, in addition to the trivial case of finite range
models, also the rather special l/|x — y\2 models for which the coincidence of the
critical points was derived in [3], by very different means. (Incidentally, the latter
models exhibit also an intermediate phase, but within the high density regime [4].)

It may also be of interest to compare our results for percolation with the
results of Aizenman [5] on the analogous problem for ferromagnetic Ising spin
models. For the Ising (and related) spin systems, the equality of the high and low
critical temperatures was proven only under a certain "regularity" hypothesis,
whose verification required certain restrictions. The arguments presented here
require no such hypothesis, and suggest that although the regularity is
indispensable for some of the other results derived in [5], it is not so for the
coincidence of the critical temperatures.1

Since translation invariance is the only assumption which is required here for
independent systems, let us also remark that there are known examples of systems
which are highly noninvariant for which pτ does not equal pHί Chayes and
Chayes [6].

Before completing the summary of the results, and their relations with
previous works, let us present the full definition of the two critical points pτ and pH,
and introduce the notation we shall use for general independent percolation
models. In the rest of the introduction we shall focus on (unoriented) bond
percolation models, for which the length of the bonds need not be bounded.
Oriented percolation, and partially oriented percolation (which we introduce in
order to have a unified analysis), are discussed in Sect. 2.1. Site percolation and
some other cases to which our analysis extends are discussed in Sects. 7 and 8.

1 This result has now been derived and is presented in a companion paper, coauthored with
Fernandez [22]
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1.1. The Setup

The basic example of a percolation transition is observed in the nearest neighbor
bond percolation model on the cubic lattice JL = Zd. For this model, bonds are
pairs of neighboring lattice sites. Each bond b = {x, j;} has associated to it a
random variable nb which can take one of the two values : 0 or 1 . If nb = 1 , we refer to
the bond b as "occupied." The variables {nb} are jointly independent and hence
their distribution is completely characterized by the density of the occupied bonds :

p = Prob(τι6 = l). (1.1)

For a given configuration of the bond variables we regard the occupied bonds as
connecting, and decompose the set of lattice sites into the corresponding
connected components. We denote by C(x) the connected cluster of site x elL, and
by |C(x)| its size i.e., the number of lattice sites in it. Some key quantities of interest
are

i) the expected size of the cluster containing a given site, say the origin 0:

(1.2)

and ii) the probability that the origin belongs to an infinite cluster, i.e., the
percolation density:

M(p) = Prob(|C(0)| = oo). (1.3)

The quantity M(p) is more often denoted by P^, which is consistent with the
general notation for the cluster size distribution:

Pn = Prob(|C(0)| = n). (1.4)

Well known arguments show that for small enough p [in particular
p < (2d — 1)" *] the expected cluster size χtotal(p) is finite. Furthermore, the finiteness
of χioiΛι(p) is a good criterion for the low density phase. For example, it is known to
imply exponential decay of the cluster size distribution [7, 8].

At the other extreme, for p close enough to 1, not only does χtotaι(p) diverge, but
also there is a positive probability that the origin belongs to an infinite cluster
(M(p) > 0). For such values of p the probability of generating an infinite cluster
somewhere on the lattice 1L - is one.

The two critical densities to which we referred above, are the boundaries of
these high and low density regimes. Their natural definitions are

pτ = nc = sup {p I χtotal(p) < oo } ,

and (1.5)

Obviously, pτ^pH.
In the more general class of independent bound percolation models, any two

sites may be directly connected by an occupied bond; however, the probability of
bonds to be occupied decreases for long bonds. Thus the set of bonds consists of all
pairs of lattice sites, and with each such pair b = {x, y} we have associated an
occupation random variable nb. The bonds are occupied independently with the
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translation invariant probabilities

= ί) = Kb = l-e-βJ* *9 (1.6)

for b = {x,y}.
The parameter β ( ̂  0), which is in a way redundant, is introduced both for

mathematical convenience and because it allows the analogies with ferromagnetic
spin models to be seen more clearly. It is most convenient to study the percolation
transition by varying β at fixed values of the parameters Jxy (^0). The critical
values βτ and βH are defined by the same criteria as pτ and pH in (1.5).

It should be noted that the class of percolation models described by (1.6)
includes long range models, for which Jx y decays slowly, e.g. Jx y = l/\x — y\s. While
finite range models exhibit percolation only in dimensions d^2, such long range
systems may percolate even in one dimension (iff s ̂  2 [9]). To avoid models with
βH = 0, we assume that

\J\=ΣJo,*«x> (1-7)
X

The results in this paper apply to all such systems.
Other independent percolation models covered by our analysis include

oriented percolation - for which one has only to reinterpret the notions used in our
discussion of ordinary bond percolation (see Sect. 2.1) - and site percolation for
which the adjustments are found in Sect. 7. Furthermore, one may replace the
translation invariance requirement with periodicity or even weaker conditions (see
Sect. 8.1).

1.2. The Main Results

Our main results are the following two propositions. They apply to the percolation
transition which is observed by varying one of the parameters of the model. The
parameter is either p, as in (1.1), or β for the more general case derived by (1.6). For
the former case no other parameter was introduced; however, in the more general
case we also could have chosen to look at the transition produced by varying the
bond densities of bonds {x,y} with given values of y — x. The results would be the
same.

Theorem 1.1. For any independent translation invariant bond, or site, percolation
model on Zd (like the bond models introduced above),

βr = βπ or> when applicable, Pτ = Pπ- (1-8)

We shall denote the common value in (1.8) by βc (or pc). To state the second
result, which is in fact used in the proof of Theorem 1.1, let us define [extending

1- Σ Pn(β)e~nh. (1-9)
1 5Ξ«< oo

The quantity M is of interest because it contains the Laplace transform of the
cluster size distribution, because of its analogy with the spontaneous magneti-
zation in ferromagnetic models, and because of its utility in the derivation of
the above result.
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Theorem 1.2. Under the same assumptions as in Theorem 1.1 (independence and
translation invaήance),

M(βτ,h)^ const h1/2. (1.10)

Let us remark here that, making sufficiently strong assumptions on the
existence of power laws, it is customary to define the critical exponent δ by the
relations

or P^H(βτ)= Σ Pm = n-llδ. (1.11)
m^n

For the sake of concreteness, we shall define δ by:

5=l iminf— r^-ΓT . (1.12)
fc\o lnM(/JΓ,Λ)

The result (1.10) shows that quite generally this exponent obeys the mean field
bound:

δ^29 (1.13)

which is in fact saturated (δ — 2) in the case of percolation models on a Bethe lattice.
The proofs of these two theorems are based on a number of differential

inequalities which are also of independent interest. In particular, we prove that for
bond percolation models, in the generality described above, the quantity M
satisfies:

and

(1.15)

(in the weak sense, as explained in Sect. 3). These inequalities are closely related to
previous results of other works on percolation and ferromagnetic systems. We
shall mention some of those below. Let us first however make some additional
remarks on the nature of these inequalities.

The differential inequality (1.14) is identical to one obeyed by the magneti-
zation in ferromagnetic Ising spin systems, for which it follows from the Griffiths-
Hurst-Sherman inequality [10]. Newman has pointed out that (1.14) bears an
amusing relation to the Burgers equation, and furthermore, that it implies the
critical exponent inequality [11]:

β(δ-ί)^l (1.16)

for models with βτ = βH. Here β is the critical exponent which enters in the
expected power law:

. (1-17)

Newman's observation was extended in [12] to a number of useful extrapolation
principles, which are now made applicable also to percolation (see Sect. 6). It is
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interesting to note that the inequality (1.16) is saturated in both percolation and
ferromagnetic systems by the mean field (or Bethe lattice) values of the two critical
exponents - despite the fact that individually these exponents take on different
values in the two systems.

The relation (1.15) is truly remarkable. A coarse glance at its derivation shows
that hidden in it are some key features of percolation models which (like the
previous work of [13] and the rigorous results of [8]) indicate a relation with a
"φ3" field theory. Furthermore, combined with more general properties of the
"order parameter" M [like (1.14)], the inequality (1.15) unifies previous
results which dealt separately with the regimes: R1 = {β = βτ, h>Q} and
R2 = {β>βH, h = Q}, and leads also to a proof of the equality βτ = βH-

Our derivation of the inequality (1.15) grew out of an attempt to understand the
relation between the recent result of Chayes and Chayes [14], who proved (under a
harmless assumption)

^—-, (1.18)

and the inequality

M 3+^, (1.19)
dh\h

which we had previously derived by means which are very different from the proof
given below. Here inequality (1.18) is presented in its site percolation version and
1̂ 1 = ΣK{o,X} Csee (1-6)]. In the original derivation of (1.19), which may equiva-

X

lently be stated as
dM M<• —, (1.20)

we were guided by the analysis of [8] and by the recent work of Frohlich and Sokal
[15, 16] on ferromagnetic spin models, for which they proved

dM M2

M^h— + —(h + \J\M)2. (1.21)

The differential inequality (1.19) is readily integrated and leads to the proof of
Theorem 1.2, whereas (1.18) was used by Chayes and Chayes [14] for the
derivation of the critical exponent mean field bound:

/tel. (1.22)

It may be noted that (1.16) and (1.22) imply (1.13) - but only when it is known that
βτ = βH. The very versatile differential inequality (1.15) implies inequalities having
all the essential characteristics of (1.18) and (1.20), and moreover, it leads to the
proof of the equality of the two critical points.

The outline of the paper is as follows. In Sect. 2 we generalize the setup to
include oriented percolation, and introduce a useful ghost field representation. The
main inequalities are derived in Sect. 3, and their applications are found in Sects.
4-6. Site percolation and other extensions of the results are found in Sects. 7 and 8.
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2. Extension of the Setup

Our purpose is to introduce here three different notions. The first is a
generalization of bond percolation models which allows us to treat simultaneously
unoriented and oriented percolation. Readers interested solely in the former may
skip this discussion (Sect. 2.1). Next is the "ghost field" representation which is
used to give a convenient probabilistic interpretation of the order parameter

, h). Finally, we describe the natural finite volume approximations.

2.1. Partially Oriented Percolation

This paper is written in such a way that it is possible to read it having either regular
(unoriented) or oriented percolation in mind. To facilitate this, we shall generalize
the setup introduced in Sect. 1.2, extending it to partially oriented models - which
include both oriented and unoriented bonds. Such systems were first considered by
Hammersley [7].

In some oriented bond percolation models, bonds are regarded as ordered
rather than unordered pairs of sites. When the bond b = (x, y) is occupied (nb = 1),
there is a connection from x to y (x-+y) without there being any implication for the
connection from y to x. As before, the bonds are independently occupied with the
translation invariant probabilities,

for b = (x,y). A given pair of sites {x,}7} may participate in two bonds, (x,y) and
Cv,x), which are occupied independently and for which the couplings Jx_+y and
Jy^x need not be equal. The cluster of x, C(x\ is now the set of all sites to
which x is connected: the sites which can be reached from x by following a path
of occupied bonds in the direction allowing a connection.

An example of such a system is the oriented nearest neighbor bond percolation

model on TLd for which the projection of xeZd on the vector (1, 1, ..., l)/j/d is
regarded as the time coordinate. For this model

f l if \x-y\ = l and Σfa-x^Q,
J -+ = \ ί=ΐ

x^y 0 otherwise.

Let us now describe what we shall refer to as partially oriented percolation
models. These are obtained by associating with each pair of sites three bonds: one
of which is labelled by the unoriented pair {x, y}, and the other two by the
two oriented pairs, (x, y) and (y, x). The first, when occupied, connects both x to y
and y to x, while the bond (x, y) is regarded as oriented - connecting only x to y.
The bonds are occupied independently, with

Prob(n{JCf,} = l) = Prob({x,j;} is occupied) = 1 -e~βjχ>y, (2. la)

and

Prob(n(Xty) = l) = Prob((x,)0 is occupied)- ί-e~βjχ~*y, (2.1b)
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where Jx>y, Jx^y, and Jy^x are regarded as separate parameters (and in general are
not equal). However, we will assume that the couplings J are translation invariant,
meaning that for all x, y, and z:

Jχ + z,y + z = Jχ,y9 an<l J x + z->y + z = Jχ^ y (2-2)

A path from the site x to the site y is a sequence of bonds whose arrangement
satisfies the obvious incidence relations. That is, the bond (u, v) may appear only in
the step which proceeds from u to v and not vice versa, whereas {u, v} may be used
in both directions.

The cluster of x, C(x), is now defined (for a given bond configuration) to be the
set of all sites y for which there exists a path of occupied bonds from x to y. (Note
that the set of clusters of the sites of Tίά no longer offers a disjoint decomposition of
the lattice.)

With this definition of the cluster we continue to define the quantities Pn by
(1.4). The expected cluster size χtotal and the order parameter M are still given by
(1.2) and (1.9). Finally, we modify the symbol \J\ to mean:

M=Σ( Ό., + ̂ x). (2-3)
X

Obviously, the unoriented models described in the introduction may be
regarded as special partially oriented models, with Jx_+y = 0. However, it is also the
case that a reader interested in only the more standard (unoriented) models may
read the rest of the paper ignoring the fact that our notions were generalized in this
subsection.

2.2. The Ghost Field Representation for M(β, h)

We shall now introduce a construction which provides a useful probabilistic
interpretation of the order parameter M(β, h) - extending the intuition one has
forP^.

For that purpose, we augment the model by adding to it random site variables
{mx}xeZd (mx = Q, or 1). Probabilities are assigned so that {nb,mx} forms a jointly
independent set of random variables, with

Pτob(mx -1) -1 - eh (^ ft, for ft small) (2.4)

for every xeZd, and with Prob(rc& = l) still given by (1.6) or (2.1).
For a given configuration {nb,mx} of bond and site variables, we denote by G

the set of sites x with mx=ί and call these sites "green." (These are sometimes
referred to as "ghost" sites, as in [17, 12].) We continue to define the connected
cluster of x as above and we say that x is connected to the green set if at least one
site in C(x) is green.

Proposition 2.1. For the augmented system defined above, with h > 0,

Prob(C(0)nG Φ0) = Prob(0 is connected to G) = M(β, h), (2.5)

where M is the order parameter defined in (1.9).
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Proof. First observe that for any nonrandom set Ac%d,

ProbμnGΦ0) = l- Π e~* = l-έΓ*μι, (2.6)
xeA

where |^l| = card(^4).
On the left-hand side of (2.5), condition on the cluster of the origin:

Prob(C(0)nGΦ0) = Σ ProbμnGΦ0|A = C(0))Probμ = C(0)).
ACZd

Note that the events ",4nGφ0" and "v4 = C(0)" are independent, as the first
depends only on site variables and the second depends only on bond variables.
With (2.6), we obtain

Prob(C(0)nGΦ0) = £

Combining this relation with the fact [see (1.4)] that

Σ Prob(^ = C(0)) = PB
A:\A\=n

yields «
Prob(C(0)nGΦ0) = Σ Λ(l -e~nh) = l - Σ V*

l ^n^oo n — 1

The n = oo term would make no contribution to the sum on the right-hand side
(since h > 0) and for this reason is not included. Π

Although (2.5) is valid only for positive values of ft, M(β, ft) is defined by (1.9)
also for ft = 0 and, in fact, M(β, 0) = P^β). Since M is clearly continuous from the
right at ft = 0, Proposition 2.1 shows also that

limProb(C(0)nGΦ0) = P00.
Λ \ 0

This limit suggests that the green sites may be regarded as surrogates for the point
at infinity. The green sites evacuate every finite region in Zd as ft vanishes. In this
sense, the event "the origin is connected to the green set" is a small ft approximation
to the event "the cluster of the origin is infinite."

Because of certain analogies with Ising spin systems, we denote the order
parameter by M, the symbol used for the magnetization in those models. The
independent variable ft plays the role of an external magnetic field. As in the case of
Ising models, we define the susceptibility to be the derivative of M with respect
to ft:

e"*9 ft>0. (2.7a)
On n =ι

The definition of χ is extended to ft = 0 by continuity:

χ(β, 0) = lim χ(β, h)= Σ nPn = <|C(0)| /[|C(0)| < oo]> , (2.7b)
Λ \ 0 ιι=l

where /[ — ] is the indicator function which vanishes when the cluster is infinite.
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For β<βH, infinite clusters have zero probability of existing. Hence the
expected sizes of clusters and finite clusters coincide:

χ08,θ)=χ,ouι(/0=<|C(θ)l>. (2.8)
It is desirable to develop a geometric interpretation for the susceptibility as well

as the order parameter. This is accomplished in the next statement.

Proposition 2.2. For any ft > 0,

χ = <|C(0)|-/[C(0)nG = 0]>. (2.9)

Proof. Since the distribution of the green sites is independent of the bond variables,
it is convenient to evaluate the right-hand side of (2.9) by first conditioning it on the
bond configuration. The conditional expectation of the indicator function is
exactly e~h\C(0^9 and hence

-^-χ. D

Remarks. 1) As the above argument shows, for positive h there is no contribution in
(2.9) from the event that the cluster of the origin is infinite. For an expression which
is valid also at h = 0, one should modify the right-hand side of (2.9) by explicitly
adding the restriction that |C(0)| < oo.

2) The following is a simple but convenient trick which is frequently of use.
Since

|C(0)|=Σ/[xeC(0)],
X

we have by Proposition 2.2 that for Λ>0

χ = Σ</[xeC(0)]/[C(0)nG = 0]>. (2.10)

Observe that the summand in (2.10) converges in the h \ 0 limit to the probability
that the origin is connected to x and the cluster of the origin is finite. This is one of
the natural notions of the truncated two point connectivity function.

2.3. The Finite Volume Approximation

Here we introduce the finite volume quantities and state their basic relation with
the corresponding functions for the infinite lattice. The reasons for considering
finite systems are:

(i) all of the quantities of interest (in particular the order parameter) are
trivially analytic in /?,

(ii) the derivations of the main inequalities (1.14) and (1.15) rely on Russo's
formula, the application of which is immediately valid only on a finite lattice, and

(iii) the proof of (1.15) additionally uses the van den Berg-Kesten inequality
which also has an initial finite lattice requirement.

In order to maintain translation invariance at finite volume, we shall study
percolation on the cubes ΛL = ( — L,L\dr\TLά with periodic boundary conditions.
The periodic models are defined by setting the bond occupation probabilities, for
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with

(2.12)

and similarly for the oriented bonds with the finite volume oriented
couplings «4L_Ir

Remark. There are also other natural boundary conditions which may be imposed
on AL (e.g., the wired and free boundary conditions discussed in [1 8]) but they have
the disadvantage of lacking homogeneity.

We let

P(n} = P(n\β) = ProbL(|C(0)| = n) , (2.1 3)

and define the finite volume order parameter and susceptibility by

ML(β9h) = ί- Σ P(n\β}e~n\ (2.14)
w = l

and

P/Lf

The finite volume order parameter and susceptibility have probabilistic
interpretations similar to those of their full volume analogues. As in the preceding
section, it is easily verified that

ML = ProbL(C(0)nG Φ 0) . (2.16)

That is, Proposition 2.1 holds at finite volume. Likewise, a finite volume positive h
version of Proposition 2.2 can be proved by repeating the arguments of Sect. 2. 1 . In
particular, we obtain the identity

XL= Σ ProbL(xeC(0), C(0)nG = 0). (2.17)
xeΛL

Information about finite volume quantities is translated into information
about full volume quantities by taking the "infinite volume limit."

Proposition 2.3. For any /? ̂  0 and h > 0,

ML(β/0 — MOM), (2.18)

and

) x C M ) (2.19)

Remark. For Λ = 0, (2.18) certainly fails if β>βH. If in addition χ(β,0)<oo, (2.19)
also fails to hold.

These claims may be regarded as well known. Still, for the sake of
completeness, and because of the fact that we refer now to more general models, we
shall give a proof of these assertions in the Appendix. However, let us comment
here that some of the more natural arguments which can involve a "free energy"
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and convexity considerations for the proof of Lemma 2.3 in the unoriented case,
are not applicable to the more general partially oriented percolation models.

We now list a number of useful properties of the order parameter. The first of
these follows directly from the definitions of M (1.9) and ML (2.14).

Lemma 2.4. Let β>0be fixed. Then M and ML are increasing, concave and analytic
functions of h, for h>0.

We next consider the ^-dependence of M(β, h). When h = 0, we have M(β, 0)
= P^(β\ and thus M(β,0) is clearly nondecreasing in β. In fact a stronger
statement, which is a consequence of Proposition 2.1 and its finite volume version
(2.16) is true.

Lemma 2.5. At any fixed value of h (^0), M and ML are nondecreasing functions
of β.

The question of the analyticity of the order parameter is more difficult to
resolve at the level of generality considered here. The following lemma summarizes
some of what is known in this direction. For proofs, see the Appendix. (These
results will not be used in this paper.)

Lemma 2.6. (i) M is a continuous function of β for h>0 and all β^O and - in the
unoriented case - also for h = 0 and β=¥βH.

(ii) In finite range percolation models, M is an analytic function of β for h>0
and β>0.

3. Derivation of the Main Differential Inequalities

In this section we consider the finite volume periodic models introduced in the
preceding section and prove the differential inequalities upon which Theorems 1.1
and 1.2 rest. In subsequent sections we will integrate these inequalities at finite
volume and then take the infinite volume limit. The two inequalities obtained and
employed in this manner are found in the following propositions.

Proposition 3.1. In a finite volume periodic model with ML and χL defined by (2.14)
(2.15),

(3.1)

Proposition 3.2. With the same hypotheses as above,

(3.2)

Remarks, i) The quantity \J\ enters (3.1) as £ (J(^x + J(o^x), which by our choice
X^ΛL

of finite volume couplings in (2.12) equals £ (^o * + «Λ)->;c) = kl Csee (2.3)].
xeZd

ii) The above inequalities are finite volume versions of (1.14) and (1.15). In view
of Proposition 2.3 the inequalities extend trivially to distributional inequalities for
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the infinite volume order parameter M(β, h\ for h > 0. ί Note that for this purpose,

in (3.2) one should rewrite ML^—- as ̂ -^.} When M is differentiable (see
op 2 op J

Lemmas 2.4 and 2.6), those inequalities are valid in the classical sense. The above
observation could be used for an alternative direct derivation of the infinite volume
results reported here. We shall however use (3.1) and (3.2) in the more explicit way
outlined at the beginning of this section.

3.1. Proof of Proposition 3.1

Before stating the differentiation formula which is used, let us introduce some
technical terms.

Definition. The event E is increasing with respect to the bond variables {nb} (or the
site variables {mx}) on ΛL if the indicator function /[£] is nondecreasing in nb

(respectively, mx) for every bond b (respectively, site x) in AL.
An important example of an event which is increasing in both the bond and site

variables is the event that the origin is connected to the green set: C(0)nGφ0.

Definition. For a given configuration (nb, mx}, the bond b0 is called pivotal for the
event EiiE occurs for {n(

b\mx} but not for {n(

b\mx}. Here {n^} (i= 1,0) are the
bond configurations obtained from {nb} by requiring the bond b0 to be occupied
(i = l) or unoccupied (z = 0). Note that the event that bQ is a pivotal bond is
independent of the status of its occupation.

With these definitions, we can now state a useful differentiation formula.

Proposition 3.3 (Russo's formula [2]). // the event E is increasing with respect to the
bond variables on ΛL, then for each bond b0,

3ProbL(£) jbo is piυotal far £)

ProbL(rcbo = 0, b0 is pivotal for E),

where

Proof of Proposition 3.1. Recalling (2.16) and applying the Chain Rule followed by
Russo's formula yields

= Σ 4L)ProbLK = 0, the bond b is pivotal for "C(0)nGΦ0"), (3.3)
op

where the summation is over all the oriented and unoriented bonds, which we
uniformly denote by b. The couplings are J(

b

L) = J(^y for the unoriented bonds,



502 M. Aizenman and D. J. Barsky

Fig. 1. The event that n{Xίy} = 0 and {x, y} is pivotal for "C(0)n G Φ 0" up to an x <->• y permutation.
The solid lines show connections made by paths of occupied bonds, the square symbolizes the
green set, and the dashed line represents the hypersurface which demarcates the cluster of the
origin. Every bond which could connect sites on the inside of the surface to sites on the outside is
unoccupied

b = {x, y}, and J(

b

L} = J(^y for the oriented bonds, b = (x, y). (In unoriented models,
the latter couplings are identically zero.)

Suppose that the unoriented bond b0 is unoccupied and pivotal for the origin
being connected to the green set. Then the origin is connected to precisely one of
the two sites of b0, the other site is connected to the green set and the cluster of the
origin is free of green sites (see Fig. 1).

If the bond b0 = (x, y) is oriented but otherwise as above, then we see that the
same line of reasoning applies. Moreover, in this situation we know that x is the
site to which the origin is connected.

In light of these considerations, (3.3) can be rewritten as

dMT± = Σ ProbL(x e C(0), C(0)nG = 0, C(y)r\G Φ 0) [J(£>y + J^J . (3.4)
Op x,yeAL

Partitioning the events on the right-hand side of (3.4) according to the cluster of
the origin, we obtain

- = Σ Σ ProbL(^ - C(0), x e C(0),
dβ

= Σ Σ
x,yeΛL A'.xeA

(3.5)

If y is in AL\A, then CAlλA(y) is the cluster of sites to which y is connected by a
path of occupied bonds none of whose sites lies in A. For y not in AL\A, CΛlλA(y) is
defined to be the empty set. The second equality in (3.5) is obtained by noting that a
consequence of y lying outside of C(0) [since y is connected to G and C(0) contains
no green sites] is that the path connecting y to G cannot make use of any bond
having a site in C(0).

In the terminology of [8], C(0) is a self-determined random subset of AL. Self-
determined sets are often employed in the analysis of percolation models because
they possess a locality property reminiscent of the nonanticipatory feature of
stopping times in Markov processes and martingales. We make use of this
property in the following way. Since all of the bonds which permit connections



Sharpness of Percolation Transitions 503

from sites in C(0) to sites out of C(0) are unoccupied, the cluster does not connect to
the remainder of AL. Thus the distribution of bonds having no sites in A is
unchanged when conditioned on the event "A = C(Q)" For this reason, (3.5)
becomes

= Σ Σ
x,yeΛL A xeA

Clearly, the probability that y is connected to the green set in AL\A is bounded
above by the probability that y is connected to the green set in all of AL9 i.e., by the
finite volume order parameter. Thus, performing the summation over the sets A in
the above expression, we have

Σ ProbL(xeC(0), C(0)nG = 0) £ [4̂  + 4L-U
op X<=ΛL ye^L

The proof is completed by using (2.3), (2.12), and (2.17) to re-express the right-
hand side of this bound. Π

3.2. Proof of Proposition 3.2

Let us now introduce the inequality of van den Berg and Kesten [19] which we will
use in the proof of Proposition 3.2.

Definition. Let E1 and E2 be a given pair of events in a random bond/site model.
We say that the events Ev and E2 occur disjoίntly, for a particular configuration
k = {nb, mx}, if there exist two disjoint bond/site collections A± and A2 such that Ei

occurs for any configuration which agrees with k on At (i = 1,2). The event which is
represented by the set of all such configurations is denoted by Eί °E2.

Proposition 3.4 (van den Berg-Kesten inequality [19]). For a bond/'site model with
independent random variables, if E^ and E2 are equally monotone in the occupation
variables, then

ProbJEi o E2) £ ProbJEJ ProbL(£2).

In the particular case that E is the event that a given site x is connected to the
green set, E°E is the event that x is doubly connected to the green set. Since this
notion will play a key role in this section, let us define it explicitly.

Definition. The site x is doubly connected to the green set if there exist two distinct
green sites g and g' such that x is connected to those sites by a pair of paths of
occupied bonds which can be chosen so as to not share a common bond. (If x is
green, one of these paths may be the empty path.)

In the proof of Proposition 3.2 we shall use (following [14]) a particular
decomposition of the event "C(0)nGφ0," whose probability is the order
parameter M. Since the part of the argument is purely graph-theoretic, we shall
state it in that general context. In the unoriented case this claim appears to be self-
evident, until one tries to prove it.
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•f or r

Fig. 2. The decomposition of the event "C(0)nGφ0" provided by Lemma 3.5. The solid square
represents a single green site whereas the open squares represent subsets of the green set. The solid
lines show connections made by paths of occupied bonds and the dashed line represents the
"hypersurface" separating the cluster of the origin from the remainder of the lattice. Unless
explicitly shown otherwise, all sites in the cluster are nongreen

Lemma 3.5. Let Γbea partially directed graph: a set of sites (vertices) and directed
and undirected edges which link some of the pairs of sites.

If a site z in Γ is connected to at least one site belonging to a given subset G of
sites, then exactly one of the following three possibilities holds (see Fig. 2).

(1) The site z is connected to exactly one site in G.

(2) The site z is doubly connected to G (in the sense defined above).
(3) There is an edge linking a pair of sites {x,y} such that in the subgraph

obtained by the removal of this edge from Γ,
(i) z is connected to x,

(ii) z is not connected to any sites in G, and

(in) y is doubly connected to G.

Proof. It is easily seen that (1), (2), and (3) are disjoint. Thus the heart of the matter
is to show that if z is connected to G and the first two possibilities do not occur,
then the third must occur. So we suppose that

(a) z is connected to more than one site in G, and
(b) z is not doubly connected to G.
Let S be the set of all sites which are doubly connected to G. From our

assumptions, we can make the following observations.
(A) S does not include z. [Use (b).]
(B) S is not empty. To see this, let us take any two self-avoiding (hereafter, s.a.)

paths yί and γ2 from z to G. Such paths exist by (a). The set of sites visited by both
paths is nonempty since it includes z. The "last" vertex in this set - in the order of,
say, yί - is clearly in S.

(C) The site z is connected to S. (This is another consequence of the preceding
construction.)

(D) Any path from z to G must hit a site in S. Let us first comment that this
statement is obvious in the undirected case where each edge connects both of the
sites to which it is associated because every site of G is also in S. For the more
general case, an adaptation of the argument of (B) proves (D).

(E) Any two distinct sites u and v in S are disjointly connected to G. To see this,
let y{ and y2 be two s.a. and disjoint (meaning that they have no edges in common)
paths from u to G. Now let y3 be any s.a. path connecting v to G. If y3 fails to
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intersect both yi and y2 we are done, so suppose that it intersects at least one of
them. Without loss of generality, we may assume that y3 intersects y2 before γίt

Combining the first part of y3 with the latter portion of y2 yields a path from v to G
which is disjoint from yί.

Let us now choose an s.a. path γ from z to S which stops upon hitting S for the
first time, and let b denote the last edge along this path. We claim that b has the
following property (from which it follows that b is unique).

(F) Every path from z to S passes through b. To verify this, suppose that there
exists some other s.a. path γ' connecting z to S which first hits S through some other
edge b'. If the two paths intersect only at z (and, possibly, their other endpoint) then
z is doubly connected to G which contradicts assumption (b). But if γ and γ' have
another intersection point, then, by the construction used in (B), they must visit a
site in S before reaching their endpoints, which is also a contradiction.

Not only is b a choke-point for all connections from z to S, but also, by (D),
every path from z to G passes through b. This statement shows that the third of the
alternatives listed in the lemma does indeed occur if the first two do not. Π

Proof of Proposition 3.2. We will establish inequality (3.2) by first proving the
related bound

(3.6)

where x = ex — 1 ( = x, for small x), Q = sup {βJ^/βJ^} and the supremum is over
b

all oriented, and unoriented, bonds b [see the comment after (3.3)]. We then show
that Q may be replaced by one and that K may be replaced by h.

We begin applying Lemma 3.5 to the situation where Γ is the set of sites and
bonds in ΛL, z is the origin and G is the green set. With (2.16) we find

ML = ProbL(C(0)n G Φ 0) = PτobL(FJ + ProbL(F2) + ProbL(F3) , (3.7)

where Fi9F29 and F3 are the events corresponding to the three possibilities listed in
Lemma 3.5.

Partitioning the event Fί according to the number n of sites in C(0), and then
computing the probability that exactly one of the n sites is green yields

ProbL(F1) = (e*-l)ΣP£LW-"* = %L. (3.8)
«

Application of the van den Berg-Kesten inequality to the event F2 produces

ProbL(F2) ̂  [ProbL(C(0)nG Φ 0)]2 = M2

L . (3.9)

By the subadditivity of the probability measure,

ProbL(F3)^£ProbLK = l, xeC(0), C~*(0)nG = 0,
b

y is doubly connected to G). (3.10)

Here b is either (x9y) or {x,y} and C~b(Q) is the cluster of sites which remain
connected to the origin even after nb is set to zero.
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Fig. 3. The event that «6 = 1, x e C(0), C~b(0)nG = 0, and y is doubly connected to G. The solid lines
show connections made by chains of occupied bonds, the wiggly line is the occupied bond b0, the
two squares represent the two disjoint subsets of G to which y is connected, and the dashed line
portrays the hypersurface which outlines C~&(0). Every bond crossing this surface which could
connect the interior to the exterior (except for b) is unoccupied

The events in the right-hand side of (3.10) are depicted in Fig. 3, which is
somewhat similar to Fig. 1. The remainder of the proof consists of relating the
corresponding terms. The van den Berg-Kesten inequality allows the replacement
of one of the connections from y to G with the probability that y is connected to G,
i.e. the order parameter. Some minor adjustments are then necessary to
compensate for the fact that b is occupied in Fig. 3 and unoccupied in Fig. 1.

The details of the above argument are as follows. Partitioning the events on the
right-hand side of (3.10) according to C~&(0), and using the independence of the
resulting events, we have that

ProbL(fi{JCf,} = l)

x PτobL(y is doubly connected to G in ΛL\A)

+ (a similar sum with {x, y } replaced by (x, j;)) .

The combination of the van den Berg-Kesten inequality and the observation
that the order parameter in AL is larger than the order parameter in AL\A yields

ProbL(y is doubly connected to G in ^L\^)^MLProbL(C^^(j;)nGφ0).

Inserting this bound in the right-hand side of the preceding inequality and
comparing ProbL(nb = 0) with ProbL(nb=l), we obtain

Σ ProbL(xeC(0), C(0)nG = 0, C(}/)nGΦ0)
x,yeΛL

^ βQML £ ProbL(x e C(0), C(0)nG = 0, C(j;)nG =f= 0)
x,yeΛL

χ(4L»+4L-υ,
where Q= sup {βjψ>/βJ(

b

L)}. With (3.4) this becomes

(3.11)
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The three terms appearing in the decomposition (3.7) of ML have been
computed and bounded in (3.8), (3.9), and (3.11). Together these relations yield
(3,6).

To obtain (3.2) we need to replace the Q and Kin (3.6) with 1 ( < Q) and ft ( < ί).
So that the same argument may be used to justify each of these substitutions we
first show how the ghost field ft may be put on more of an equal footing with the
bond density parameter β. We append to the lattice 1L a single green site g (the
point at infinity) which is connected by "ghost bonds" to every site x in 1L. The site
variable mx is now interpreted as the bond variable for the ghost bond {x,g}, i.e.,

If we replace "x e G" by "x is directly connected to g by the occupied bond (x, g}"
and understand that |C(0)| denotes the cardinality of lattice sites excluding g to
which the origin is connected, then none of our preceding work is modified. For the
rest of this argument we will work from the ghost bond rather than the green site
point of view.

We now replace the partially ordered percolation model by a refinement which
has a different set of bonds, but exactly the same connectivity functions. The new
system is obtained by splitting each bond b into n different bonds which connect
the same pair of sites (and have the same orientation) as b. The couplings for the
new bonds are chosen to be Jb/n (or h/n for the new ghost bonds). The original
model may still be realized within the new one by regarding the bond b as occupied
whenever at least one of the bonds in the collection obtained by splitting b is
occupied. It is easy to see that the function ML(β, ft) - and its β and ft derivatives -
for the refined model are the same as that of the original system.

Repeating the argument which proved (3.6), we find that the terms on the right-
hand side of (3.7) can be evaluated or bounded for the refined system as follows:

(3.12)

ProbL(F2)^M2

L (as before), (3.13)

and

, (3.14)

where Qn= sup {{βJ(

b

L)/n)/βJ(

b

L}}. The prefactor n in (3.12) arises from the fact that
b

there are n choices at each site for the single ghost bond connecting C(0) to g.
Similarly, the prefactor n in (3.14) is due to there being n choices in the refined
system for the "pivotal" lattice bond produced by Lemma 3.5.

Combining (3.7) with (3.12)-(3.14) and observing that

fi\n\ -) - > ft,
\nj ""*°°

and

nQn - » 1^n n->oo

allows us to conclude that (3.2) holds. Π
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4. A Lower Bound on M(βτ, h)

In this section we prove Theorem 1.2 for the translation invariant partially
oriented percolation models introduced in Sect. 2.1. That is, we show

M(βτ,h)^ const hί/2. (4.1)

The first step in obtaining the bound (4.1) is to combine the two partial
differential inequalities (3.1) and (3.2) to obtain a single ordinary differential
inequality for ML. The substitution of (3.1) into (3.2) yields

. (4.2)

Before proceeding to the proof of (4.1), let us pause to examine the different
implications, for β < βτ and β = βτ, of the infinite volume limit (see Proposition 2.3)
of (4.2):

(4.3)

Remark. By weakening (3.2) one step further, we obtain

fiM 3

This inequality follows from (4.3) by the application of the bound

(4.4)

(4.5)

which is implied by the concavity in h of M(β, h). It is instructive to compare (4.4)
with the inequality (1.21) which was previously derived by Frόhlich and Sokal [1 5]
for ferromagnetic spin systems. Inequality (1.21) implies the critical exponent
bound δ ̂  3 for those models.

To develop intuition for our treatment of (4.3) let us suppose that, for a
given β, M(β,h) displays strict power law behavior in the sense that M = chs.

Then the operator h— acts as multiplication by s when applied to M. For

β<βτ, Af(/?,0) = 0, and χ(β,0)<oo; hence s = l. In this case, (4.3) is of little
interest in the h \ 0 limit - its left-hand side is entirely cancelled by the first

1
term on the right. However, for β = βτ, M is expected to have s= - <1. Then

flM 1
Λ-ΓT- = -M and this term can no longer completely cancel the left-hand side of

on ό
(4.3). So under the strict power law assumption, one would have

M3

—

M2

from (4.4). The above inequality implies that -:— ̂  const > 0, i.e., δ'2:2. Note that
h



Sharpness of Percolation Transitions 509

for percolation models δ = 2 in the mean field approximation, and on a Bethe
lattice.

We now offer a rigorous argument which leads us from v the differential
inequality (4.3) to the bound (4.1) without having to make any additional
assumptions, such as power law behavior. To make our analysis applicable also to
other models (see Sects. 7 and 8), we present the next result in greater generality
than is actually required here.

Lemma 4.1. Let M(h) be an increasing differentiable function of h for h>Q obeying

1) M \ 0 as / z \ 0 , (4.6)

M
2) T"^00 as / Z N ° '

and

3) M^h +M/(M) + αM1 + θ , (4.8)
ah an

where α,θe(0, oo) and f satisfies

i) 0^/(M)<1, (4.9)

ii) /(Λf)->0 as M \ 0 , (4.10)

and

(in) dM<ao. (4.11)
o M

Then when h is small,

M^const/ι1 / 1 + θ (4.12)

with a positive constant.

Proof. Since M is increasing and differentiable it has a differentiable inverse h(M).
Rewrite (4.8) as

dh h aMθ

dM M(l -/(M)) = 1 -/(M)'

and multiply this inequality by the integrating factor —, where

ψ dx

The resulting expression is

d //A aMθ

= (\-f(M))μ(MY ( ' }



510 M. Aizenman and D. J. Barsky

Under assumption (4.11), the quantity μ(M) behaves linearly in M as M \ 0
since

M 1 il'2dx[ 1 <T| 1 f 1 / 2 f(x)dx

Thus, by (4.7), - -»0 as M \ 0.
M

The integration of (4.13) from 0 to M yields

h(M) M

p xθdx
= a

μ(M)= ί ( ί - f ( x ) μ ( x ) >

from which we obtain

h^constM1+θ (4.14)

and hence (4.12). Π

Theorem 4.2. For every translation invariant bond percolation model onZd, the order
parameter obeys the following bound (4.1):

M(βτ,h)^ const /z1/2

for small h. In particular, if M(βr,0) = 0, then the critical exponent δ defined by
(1.12) is bounded from below:

δ^2. (4.15)

Proof. If M is discontinuous at (β = βτ,h = 0), i.e., M(/?τ, 0) > 0, there is nothing to
prove. So suppose

MG?Γ,0) = 0. (4.16)

We want to apply Lemma 4.1 with M(Λ) = M(βτ, h). By Lemma 2.4, M is increasing
and differentiable. Condition 1) of Lemma 4.1 is met by the assumption (4.16) and
the continuity of M(β,h) in h. From (4.16), (2.8) and the fact that χtoiai(β) diverges
as β\βτ [7, 8], we see that χ is infinite at (β = βτ, fc = 0). Together with (4.5), this
observation shows that M(βτ, h)/h diverges as h \ 0. Let us emphasize that it is at
precisely this point that the criticality of βτ has entered our argument. Condition
3) of the lemma is satisfied by (4.3) with /(M) = M, 0 = 1, and α = βτ\J\. A more
explicit version of (4.14) can be obtained in this case:

M2

5. Equality of βτ and βH

In this section we prove the general result on the equality of the two critical points
defined in the introduction for homogeneous partially oriented bond percolation
models.
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Dividing both sides of (3.2) by ML, which is positive when h is, we obtain an

inequality which provides a lower bound on L :
dβ

(Λ>0). (5.1)

Let us now discuss what becomes of the first term on the right-hand side of (5.1)
after taking the infinite volume limit and then the h \ 0 limit. If M(β, 0) = 0, then

lim — ̂  — = χ(β, h), since χ is continuous from the right at h = 0. However, when
h\0 h

M(/?,0)>0, the leftmost inequality in (4.5) implies that

= M(β,h)= M(β,h)'

Thus we have

β<βτ,
β>βH.

Were βH strictly greater than βτ we would discover in the intermediate regime
that M(β, 0) = 0 and (by Theorem 4.2 and Lemma 2.5) M(β, h) ̂  ch 1/2. It would be
natural then to assume the existence of the following limits:

•»• <">
In this case, Lemma 2.5 and Theorem 4.2 imply

— <J~ = - (54)δ(β) = δ(βτ) 2' V >

Using (5.3) to substitute (5.4) into the formal expression obtained by taking the
limits L-κx) and h \ 0 in (5.1) would yield

(5.5),

However, integration of (5.5) shows that M(β,0) becomes positive as soon as β is
larger than βτ. Hence βτ and βH coincide and there is no intermediate region after
all.

The actual proof presented below was designed to arrive at (5.5) circumventing
all the assumptions made in the above heuristic argument.

Before presenting the proof of the main result let us comment that, for β > βH,
the combination of (5.1) and (5.2) leads us to the inequality of Chayes and
Chayes [14]:

). (5.6)
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Here the derivative is to be interpreted in the distributional sense. The integration
of (5.6) (which is justified by the argument of Chayes and Chayes, or by the method
used in the proof of Theorem 5.1) shows that

M(β,Q)-M(βtt,0)ZV-M(βa,ΰϊ] ^—j^J (5-7)

for β^βu This leads to the mean field bound

/tel (5.8)

for the critical exponent β defined in (1.17).
For a complete proof of the above statements we present here a useful lemma

which shows the consequences of a more general inequality than (3.2). (In this
generality, the analysis is applicable also to Ising models [22].)

Lemma 5.1. Let {ML(β, h)} be a sequence of positive functions defined for β, /z > 0,
increasing and differentiable in both β and h, and converging as L-» oo to the function
M(/J, h) which is extended to h = 0 so as to be continuous in h there. Suppose that the
functions ML obey

(5.9)

and

where aί,a2,θe(Q,ao) and f is a continuous function satisfying conditions
(4.9H4.11) of Lemma 4.1. // there exists a β0 for which

co (Ml)

as h \ 0, then for each β>βQ,

M(J8,0)£ const (β-β0)
llθ (5.12)

with a positive constant.

For the sake of concreteness, let us mention that the bound which we obtain is

β,) (5.13)
aί

for all β2^β^β0, where ?(x,y) = sup{f(z)\x^z^y}. With β±=βQ, this bound

proves (5.12). With β2-βι infinitesimal, (5.13) shows that— — ̂  — [1 -/(M)] in
dβ a1

the distributional sense, just as suggested by the above heuristic argument.

Proof. Our starting point is the inequality (5.9) which is rewritten as
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We integrate (5.14) over the rectangle & = [βo,β'] x [/h,ft2]> where β0<β and

0<hl<h2, with the measure — dhdβ = dInhdβ. Observe that by the monotonicity

properties of the functions ML

mm {ML(β'> h) I 03', Λ) e #} = ML(β0, h,)

and

max {ML(β'9 h) I (β'9 h)e^} = ML(β, Λ2).

By our choice of measure, one of the two iterated integrals of each of the
derivative terms in (5.14) can be integrated exactly. The remaining integrations are
performed by making appropriate use of the previously mentioned bounds on ML.
In the L-> oo limit, one obtains

(/?-/?o)ln^(0-/g^

where Mx - M(βθ9 ftj and M2 - M(β, h2). '

Next keep ft2>0 fixed and let h^\ 0. The singular factor In-i-^ appears
Λ!

explicitly in three of the four terms in (5.15). To handle the remaining term we
consider two cases: either M(βθ9 0) = 0 or M(β0,0)>0. In the first case, Lemma 4.1
implies

M2 M2 1 h2

const h2

/l+Θ 1+θ

and, in the second case,

const

Thus dividing both sides of (5.15) by In - ,̂ using the appropriate bound on hi
and taking the limit, we obtain 1 1

— -/(M(/?0,0), M2) (β - β0), M(βQ90) = 0,
—I

— [1 -?(M(βQ, 0), M2)] 08 - β0), M080,0) ̂  0.
fll (5.16)

In the limit h2 \ 0, M2 is replaced in (5.16) with M(/?,0). The resulting bound
proves the claim made in (5.12). Π

Regarding the inequality (5.13), let us note that the assumption made on β0 in
Lemma 5.1 is satisfied also for each β1>β0.A posteriori, we now know that in this
case the second of the alternatives in (5.16) applies. Hence (5.16) proves the bound
(5.13) for all β2 = βι>βo The extension to the case βi^βo follows by simple
considerations.
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Theorem 5.2. For a translation invariant partially oriented percolation model on Zd,

βτ = βH ( = )8C). (5.17)

Proof. The content of the theorem is that M(β, 0) becomes positive as soon as
β>βτ, where βτ is defined as in (1.5). This result follows by a direct application of
the preceding lemma taking βo = βτ- The hypotheses on the functions ML are
shown to be satisfied by Lemmas 2.3-2.5 and by Propositions 3.1 and 3.2, with

0 = 1. The ratio ^— diverges as h \ 0 by the argument given in the proof of

Theorem 4.2. The explicit bound our methods yield for (bond) percolation is the
inequality (5.7). Π

6. Extrapolation Principles

In this section we shall present some additional information on the critical
behavior in percolation models which follows, by known arguments, from
inequality (3.1). The main results are the critical exponent bound

#5-1)^1, (6.1)

and a statement which proves one of the general predictions of the scaling
hypothesis (Proposition 6.1).

As was already stated in the introduction, (3.1) is identical to a relation obeyed
by the derivatives of the order parameter (i.e., magnetization) in ferromagnetic
Ising models. In that context, it was pointed out by Newman [11], that (3.1) leads
to (6.1). Newman's observation was expanded in [12] to two extrapolation
principles, which are now made applicable to percolation.

The hypotheses under which these extrapolation principles were derived are
the following properties of the order parameter M and its finite volume
approximations.

1. M(β,h) is continuous in h for /z^O.
2. For h > 0, M(β, h) is the pointwise limit of the functions ML(β, h) which are

differentiable in h.
3. The functions ML satisfy

(i) 0:

and

(ϋ)
uri

Observe that from (3.1), (2.18), and Lemmas 2.4 and 2.5, these conditions are
satisfied for the percolation models considered in this paper. The most important
of these properties is the inequality (3.1).

Perhaps the simplest way of viewing (3.1) to interpret it as providing a bound
on the slopes of curves in the β — h plane on which the order parameter is constant.
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Since M is an increasing function of h for fixed β, the relation M(β, h) = m can be
inverted to define the function h(β, m). By Lemmas 2.4 and 2.5, for each fixed value
of m, the curve h = h(β, m) in the β — h plane has negative slope. Inequality (3.1) tells
us that the slope of such a curve of constant M is bounded, in absolute value, by
\J\rn:

0^-0CΪ,m)£|J|m. (6.2)

This bound on the slopes makes it possible to compare the critical behavior of the
order parameter on different lines of approach to the critical point (β = βc,h = 0).

In this section we will only state the extrapolation principles. Readers who are
interested in the proofs are directed to [12].

Proposition 6.1. Suppose

M(βc + f, Λ) ̂  ch«\lnh\ω(l + 0(h)) (6.3)

along a ray t = ah,h^Q with c>0,0<α<l, and ω ̂  0. Then a similar inequality with
the same c, α, and ω is asymptotically true for any other ray t = bh, h ̂  0. The same
principle applies to upper bounds on M.

Proposition 6.2. (i) Suppose

M(βc + t,Q)^ct\l + 0(t)) (6.4)

in the region R2 = {(β, h)\β^βc,h = Q} with c, λ > 0. Then along any ray t = ah,h^Q,

M(βc + ί, Λ) ̂  ( \ J \ c ί / λ ) λ / ί + λhλ/1 + \\ + 0(h)) . (6.5)

(ii) Suppose

M(βc + ί, Λ) ̂  c/zα|ln/z|ω(l + 0(Λ)) (6.6)

along a ray t = ah, /z^O, with c>0, 0<α<l, and ω^O. Then, in the region R2,

M £ (I J|c1/α)α/1 "αία/1 ~α|ln(| J|Mί)|ω/1 ~α(l 4- 0(ί)) , (6.7)

where M = M(βc + t,0).

Proposition 6.2(i) implies the following critical exponent inequality which is
satisfied also in Ising models.

Corollary 6.3. The critical exponents δ and β as defined in (1.12) and (1.17) obey the
relation (6.1):

The above inequality is saturated in the mean field approximation - for
percolation, as well as for Ising models.

Note that by the results of the preceding sections, (6.4) and (6.5) are satisfied
with λ = 1 ( ̂  β) [14]. However, before one knows that βτ = βH, the combination of
Corollary 6.3 and (5.8) only proves [see (5.3)]

(6.8)

which is a weaker statement than (4.15) since [by (5.4)] δ(βH)^δ(βτ).
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7. Site Percolation

Heretofore we have proven Theorems 1.1 and 1.2 only for partially oriented bond
percolation models on TLd. In this section we extend the results which were derived
for bond percolation models to translation invariant site percolation systems on
Zd. In these models, the sites are each independently occupied with probability p.

In the standard nearest neighbor models, the sites x and y are directly
connected if both are occupied and \x — y\ = 1. More generally, we let ,/F be a given
finite set of "neighbors" of the origin. The neighbors of the site x are the translated
neighbors of the origin: ^V + x. So that the unoriented and oriented cases may be
treated simultaneously, the set Jf is not required to be symmetric about the origin.
We say that x is connected to y if there exists a sequence of occupied sites

z1=x9 z2,...,zn = y with

The cluster of x could be defined as above to be the collection of all sites to
which x is connected. We denote this cluster by c(x) as we will prefer to work with a
different notion of cluster (called the augmented cluster in [8]):

[Note that if x is occupied, C(x) and c(x) coincide.] With this new definition of
cluster, the quantities Pn, M, and χ are defined by (1.4), (1.9), and (2.7) with β
replaced by p. The definitions of the critical probabilities pH and pτ are still given
by (1.5).

The results of Sect. 2 can be directly translated into results for site percolation
by replacing β with p and the bond occupation variable nb with a site occupation
variable nx (Prob(nJC = l) = p). The finite volume models are determined by
periodically continuing the neighbor sets of sites near the boundary of ΛL.

We now state and briefly sketch the results which are the site percolation
analogues of Propositions 3.1 and 3.2.

Proposition 7.1. For a homogeneous independent site percolation model on Zd,

Proposition 7.2. For the same models as above,

±. (7.2)

Sketch of Proof of Proposition 7.1. By Russo's formula and the site percolation
version of (2.16),

Σ ProbL (x is vacant, x is pivotal for "C(0)nGφ0"). (7.3)
—P xeΛL

It is to be understood that the pivotality of x in (7.3) refers to its occupation status
and not to its color.
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Following the argument presented in the proof of Proposition 3.1, (7.3) can be
rewritten as

= Γ— Σ Σ— ACΛL

x is a vacant neighbor of some site in A)

ML £ ProbL(C(0)nG = 0,
1 — P

x is a vacant neighbor of some site in C(0)) .

Inequality (7.1) is obtained by applying the site version of (2.17) to the bound above
since

Σ ProbL(C(0)nG = 0, x is a vacant neighbor of some site in C(0))
xeAL

^μη Σ Probt(xeC(0), C(0)nG = 0). Π
xeΛL

Sketch of Proof of Proposition 7.2. Use Lemma 3.5 to decompose the event
"C(0)nGφ0" into the following three events.
F1: C(0) contains a single green site.
F2 : The origin is doubly connected to G. By doubly connected we mean that, in

the configuration obtained by requiring that the origin be occupied, there
exist two distinct green sites g and g' and a pair of disjoint (away from the
origin) paths of sites (each site of which is an occupied neighbor of the
preceding site) connecting the origin to g and g'.

F3 : There exists a site x such that

ii) C(0)nG = 0 in the configuration obtained by forcing the site x to be
vacant, and
iii) x is doubly connected to G.

Thus, as before, we have

ML = ProbJFJ + ProbL(F2) + ProbL(F3) , (7.4)

= %L, (7.5)
and

(7.6)

By the subadditivity of ProbL,

ProbL(F3)^ Σ ProbL(xeC(0), C~*(0)nG = 0, x is doubly connected to G),
xeΛL

where C~*(0) is C(0) in the configuration obtained by forcing the site x to be
vacant. We argue as in Proposition 3.2 to obtain

ProbL(F3)^ X Σ /[x is a neighbor of some site in A]
xeΛL AcΛjL

x ProbL(x is occupied) ProbL(,4 - C~*(0), Ar\G = 0)

x ProbL(x is doubly connected to G in ΛL\A).
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Applying the van den Berg-Kesten inequality, comparing
p = ProbL(x is occupied) with 1— p = ProbL(x is vacant) and finally using (7.3),
gives

ProbL(F3)^pML- - £ £ ProbL(x is a vacant neighbor
1 — P xeΛL

of some site in A, A = C~X(0), 4nG = 0)ProbL(C^lΛΛx)nGφ0)

= PML- - Σ ProbL (x is vacant, x is pivotal for "C(0)nGΦ0")
1— P xeΛL

Combining (1A}-{1.1) yields

L

from which (7.2) follows by applying the "subdivision of bonds" technique to ghost
bonds connecting lattice sites to the green site g. Π

Repeating the arguments of Sects. 4 and 5, using inequalities (7.1) and (7.2) in
place of (3.1) and (3.2), we can prove the site percolation versions of Theorems 1.1
and 1.2.

Theorem 7.3. For a translation invariant independent site percolation model on TLd,

Pτ = Pπ ( = PC)9 (7 8)

and

^(^yv.
Remark. The explicit bound which proves (7.8) is

M(p, 0) - M(pr, 0) £ [1 - M(pr, 0)] fc^ή (7.10)
\ P J

for
Finally, let us mention that the extrapolation principles of Sect. 6 may be

derived also from (7.1) for site percolation models. In particular, the critical
exponent inequality (6.1) (Corollary 6.3) still holds.

8. Further Extensions

The results of this paper can be applied to study other systems of interest in
statistical mechanics. In this section we briefly discuss weakly nonhomogeneous
percolation systems, the contact process, and a class of Ising type spin models.
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8.1. Nonhomogeneous Percolation Models

The differential inequalities (3.1) and (3.2) upon which the above analysis rested
have interesting extensions to the nonhomogeneous case. If we repeat the
arguments found in the proof of Propositions 3.1 and 3.2, we find

(8.1)

(8.2)
uμ

where

Mx = Mx(β, h) = Prob(C(x)nG Φ 0),

δMv
Λ* dh '

and

It is not clear to us whether the general relations (8.1) and (8.2) always have
useful implications. However, in the weakly nonhomogeneous case where there
exists a constant G ( < oo) such that M0 ̂  CMX for all x accessible from the origin,
(8.1) and (8.2) can be used to prove the equality of the critical points (5.17) as well as
the critical exponent bounds (4.10) and (5.8). In particular, bond percolation
models with periodic couplings are weakly nonhomogeneous and this observation
solves the third of Kesten's Unsolved Problems [20].

Even if a system is not homogeneous it may be stochastically invariant, i.e.,
generated randomly by a translation invariant law. It is an easy exercise, which we
leave to the reader, to show that our main conclusions also apply to stochastically
invariant systems obtained by independent removal of lattice bonds. Since the more
general nonhomogeneous stochastically invariant case is still not well understood,
let us mention here that (3.1) has the following inhomogeneous version:

+ J ^ - W (8.3)

If the ghost field is also made inhomogeneous, the term h——^ should be replaced

instead of (3.1) we have

, ,8.4,,
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and

f-4M,f, + M,f,l (Mb)
dJu,v L Shu 3hv_\

At this time we know of no further implications of (8.3) and (8.4).

8.2. The Contact Process

The contact process is a dynamic interacting particle system which may be thought
of as modeling the spread of an "infection." The medium through which the
infection spreads (stochastically) is ΊLd and the infection at each site is described by
a binary random variable. That is, each site is either infected or not; there is no
intermediate degree of infection.

For the discrete time contact process, the configurations are updated in unit
time intervals. In each time step every infected site x has some fixed probability
pe(0, 1) of healing itself and probability 1 — e~βjχ^y of infecting any other site y.
We allow both short and long range couplings Jx^y as in Sect. 2.1.

In the more commonly studied continuous time contact processes, the
infection at x heals with an exponential waiting time which, by adjusting the time
scale, may be assumed to be one. The infected site x also infects other sites y with
exponential rates βJx^y. The analysis of this paper has a straightforward
application to discrete time processes, while some additional technical consider-
ations seem to be required for continuous time processes.

One is interested in the stationary states (time invariant probability measures
on the space of configurations) and in the nature of convergence to equilibrium.
Certain domination arguments show that all of the stationary measures are
bracketed between two (possibly equal) extremal states. One of these states, <S0, is
concentrated on the totally healed configuration and the other, μβ, is the measure
obtained by taking the infinite time limit starting from the totally infected
configuration. For β sufficiently small, every initial measure converges exponenti-
ally fast (on local events) to δQ which is the unique stationary state. At the other
extreme, when β is large the process is no longer completely ergodic and μβή=δQ.

We define the order parameter of the contact process to be the density of the
infected sites with respect to μβ:

= μβ({0 is infected})

= Km Prob(0 is infected at ί — 01 every site was infected at t = s).s^-°° (8.5)

It is readily observed that M is an increasing function of β and that M = 0 if and
only if the process is completely ergodic. The critical value of the infection
parameter is defined to be

βc = mϊ{β:M(β)>0}. (8.6)

Although each "subcritical" (i.e., β < βc) contact process is completely ergodic,
the convergence of arbitrary initial measures to δQ need not a priori be
exponentially rapid. However, as described below, our analysis shows that the
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infection dies out exponentially fast for every subcritical process (and that it dies
out no faster than by a power law in the critical, i.e., β = βc, case).

To make this statement precise, we introduce the variable

where tx is the total length of time that the site x is infected:

00

tx= $ dtl[x is infected at time ί] .
o

Letting v0 denote the measure describing the contact process which begins at time
t = 0 with only the origin infected, we define

Xtotal(/0 = σ>Vo=Σ<ί*>vo (8-7)
X

Here < — >vo denotes the expectation value with respect to v0.
We are now ready to state our results. In the remainder of this section we

comment briefly on the arguments which we use.

Theorem 8.1. Discrete time contact processes have the following properties.
i) For any subcritical (β < βc) process,

(8.8)

Furthermore,

(8.9)

and, in the nearest neighbor contact process,

v0({ί jc>0})^conste~ l |x | l/χtotal, (8.10)

d
where \\x\\ is the t± norm: ||x|| = ]Γ |χ.|.

i = l

ii) For any supercritical (β > βc) process,

M(β)-M(βc)^\\-M(βc)-\{^^. (8.11)

iii) For the critical (β = βc) process,

lim sup v0({T>τ})τ1/2^ const >0. (8.12)
τ-*oo

Remarks. 1) Statement (8.8) may be viewed as the heart of the matter. For one
dimensional nearest neighbor processes (continuous as well as discrete time), the
results in part i) of Theorem 8.1 were proven by Griffeath [21].

2) The analysis of Griffeath and our proof of Theorem 8.1 both make use of a
relation between the contact process and oriented percolation which, for a discrete
time process, is seen by considering the space-time picture of the process in Zd x TL.
From this viewpoint the histories of infections are the clusters of an oriented
percolation model called the percolation substructure of the contact process. The
order parameter M(β) is the probability that the cluster of the origin extends back
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to the t = s hyperplane as s-» — oo in the percolation model. Hence M(β) is the
percolation density. Similarly, χtotal is the expected cluster size. It is interesting to
note that Griffeath proved the equality pτ=pH for two dimensional nearest
neighbor directed percolation models (by arguments very different than those used
here).

3) The proof is as follows. Our analysis of oriented percolation models shows
that βc = β'c, where

Once it is known that χtotal is finite throughout the entire subcritical regime, the
arguments of Aizenman and Newman [8] may be used to prove (8.9) and hence the
exponential convergence of initial measures to δ0. The bound (8.10) is proven by
means of the Hammersley inequality [7, 8], which is often referred to as the
percolation version of the Simon-Lieb inequality. The bounds (8.11) and (8.12)
correspond to our critical exponent bounds on β and δ.

4) We expect the natural extension of Theorem 8.1 to be valid also for
continuous time contact processes, but we are unable to prove this at the present.
Our difficulty lies in the need to control the effects of short time fluctuations for the
continuum extension of (3.2). However, the validity of (3.1) in the continuum is
easily verified.

5) It is interesting to note that one learns here about the standard contact
process by imbedding it in a larger class of process. In this context, the parameter h
appears as a spontaneous infection rate.

8.3. Ising Type Models

As mentioned in the introduction, this work was stimulated in part by some related
works on Ising models. It may therefore be interesting to note that the percolation
results presented here have in turn inspired new results for these ferromagnetic
models. Specifically, in the companion paper with R. Fernandez [22] we show that
the order parameter M in the Ising model satisfies

. (8.13)

Since (8.13) is stronger than (3.2) and because the Ising type order parameters
also satisfy (3.1), it follows that the analysis of Sects. 4 and 5 is immediately
applicable to these models. In this fashion one obtains a proof of the equality of βτ

and βH - or βc and βm (for spontaneous magnetization) as they are designated in [22] .
A stronger inequality than (3.2), for instance (8.13), would imply stronger

bounds than (4.10) and (5.8) on the critical exponents δ and β. In view of the wider
applicability of the method of Sects. 4 and 5, we remark that the main result on the
equality of the critical points would have followed had it only been known that,
along with some simple monotonicity properties and (3.1), M obeys the gen-
eralization of (3.2) [and (8.13)] given in (5.9):

-.
dβ
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The critical exponent bounds which would follow from the above statement are

te-.
o

Appendix. The Infinite Volume Limit; Continuity of M(β,h)

In Sect. 2.3 we left two claims unproven. These claims are generally known to be
true for finite range unoriented models. However, since some of the simple proofs
do not apply to either the long range case, or to the partially oriented percolation
models, we shall supply here arguments which deal with the general case. The two
issues which we now address are the convergence of the finite volume quantities (in
particular, ML) to their full volume analogues and the continuity of the order
parameter in β. The first result (called Proposition 2.3 in Sect. 2) was an essential
ingredient in our analysis. The second result (Lemma 2.6) is not used in this paper
but is included for the sake of completeness. We restate both of these propositions
here.

Proposition A.I. For any β^O and /z>0,

ML(β,h)—^M(β9h) and χL(β, h) — > χ(β, h) .
L->oo L-+OO

Proposition A.2. (i) M is a continuous function of β for h>0 and β^O and - in the
unoriented case - also for h = Q and βή=βH.

(ii) In finite range models, M is analytic in β for h>0.

Both propositions make use of the following two estimates on Pn(β).

Lemma A.3. For every L,

ProbL(|C(0)| = rc,

where diam^4 = max{||x — y\\: x,yeA} and, for notational convenience, distances
are measured using the £ ̂  norm: ||x|| =max{|x i |: i= 1, ...,d}. The same bound is also
satisfied (for n<co) when ProbL is replaced with the full volume measure Prob.

Remark. Note that by the summability of Jb, the right-hand side of (A.I) vanishes
as D->oo, uniformly in L and uniformly on compacta in β.

Proof. Suppose that in a given configuration the cluster of the origin contains
exactly n sites. By disregarding occupied bonds which contribute to loops in this
cluster it is possible to reduce the bond set of the cluster to a spanning tree of n — 1
bonds. If the diameter of the cluster is at least D then some bond in the tree must
have length at least D/(n—ί). Thus there must be a (nonrepeating) walk along the
spanning bonds which starts at the origin, proceeds along bonds in the allowed
direction(s) and reaches this long bond in n—1 steps or less. So

ProbL(|C(0) = w, diamC(O)^D)

^ Y Y (Σ ProbLK = 1)} Σ ProbLK = 1) , (A.2)
k=ί i=ί\bi Jbk: H x k - i - X f e l l ^ D / O i - l )
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where the bond b^ is either the unoriented bond {0, xx} or the oriented bond (0, x j
and the succeeding bonds bi are either of the form {x^^xj or (x^^x,.). Using
1 — e~x^x, we replace (A.2) with

ProbL(|C(0)| = n, diamC(0) ̂ D)

g /? V Osμ(L)l)fe ~1 Σ (4?*+4L-U - (A 3)
fc=l *fc: l l * fc- ι-x k | | ^D/(«- l )

In the first sum in (A.3) observe that |J(L)| = |J| and in the second sum

Σ 4?»= Σ ΣJo.*+2i#£ Σ Jo.* (A.4)
\\x\\*D/(n-l) L £ | | j c | | £ D

A similar bound holds for the oriented couplings.
Combining (A.4) and its oriented analogue with (A.3) proves the bound (A.I).

The full volume version of (A.I) is proved by repeating the argument which leads to
(A.3). Π

Lemma A.4. For every D,

ProbL(|C(0)| = n, diamC(0)<£) > Prob(|C(0)| = n, diamC(0)<D). (A.5)
L~* oo

Moreover, the convergence is uniform on compacta in β.

Proof. We begin by decomposing the event "|C(0)| = «, diamC(0)<D" as follows:

ProbL(|C(0)| = n, diamC(0)<£>)

= Σ ProbL(^4 = C(0), B is the set of occupied bonds connecting C(0))
A,B: \A\=n

= Σ EL(A)FL(B)IIA is the cluster corresponding to the bond set B~],
A,B: \A\=n

where
EL(A)= Π e-β(J&+jΆy>9 (A.I)

xeA

and

(A.8)
beB

The same decomposition can be used for the full volume probability of the above
event where the only changes in (A.6)-{A.8) are the removal of the "L" subscripts
and superscripts and, in (A.7), the relaxation of "yeΛL\A" to "ye!L\A"

Upon considering the ratio of the infinite products EL and E, one finds

y*ΪΪA
[ yV*oA J

which implies

(A.9)
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Note that the right-hand side of (A.9) tends to one (uniformly on compacta in β) as
L-κx).

Because there are only a finite number of factors in the products FL and F9 and
since J(

b

L} ^>Jb as L-»oo for each beB, FL-+F.
Thus EL(A) - FL(B)-^E(A) F(B) as L-»oo. This proves the lemma, since there

are only a fixed number of pairs (A, B) which make a positive contribution to the
sum in (A.9). Π

The following result is not only the heart of the proofs of Propositions A.I and
A.2(i), but it also may be of independent interest.

Lemma A.5. Let n be finite. Then
(i) lim P(n\β) = Pn(β) and the convergence is uniform on compacta in β, and

«->00

(ii) Pn(β) is continuous in β.

Proof. For both statements we use the decomposition

p(V(β) = ProbL(|C(0)| - n, diam C(0) < D) + ProbL(|C(0)| - n, diam C(0) ̂  D).

(A.10)

By Lemma A.3 the second term can be made arbitrarily small; by choosing D large
enough, and using Lemma A.4, we see that the first term in (A. 10) has the desired
convergence and continuity properties. Π

Proof of Proposition A.I. In light of Lemma A.5(i), this is just a simple application
of the Dominated Convergence Theorem. Π

Proof of Proposition A.2. (i) By Lemma A.5(ii), M(β, h) is continuous in β whenever
h is positive. For the unoriented h = 0 case, see [18].

(ii) This result is well-known in percolation theory (see [23]). The proof is
based on the observation that for each finite n we may write Pn as a polynomial with
nonnegative coefficients in the variables pb = Prob(nb = 1) and qb = 1 — pb. Once Pn

is written in this form, bounds on all of its derivatives are easily obtained and
analyticity of M(β, h) is not hard to show. Π
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Note added in proof. After submitting the manuscript we learned that the equality of pτ and pH

was also proven, for finite range models, by Menshikov, M. V., Molchanov, S. A., Sidovenko, S.F.
(in press), by means of an independent and somewhat different argument.




