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Abstract. We obtain massive and massless vector two-point functions in
maximally symmetric spaces (and vacua) of any number of dimensions. These
include de Sitter space and anti-de Sitter space, and their Euclidean analogs Sn

and Hn. Our method is based on a simple way of constructing every possible
maximally symmetric bitensor Ta ^hc....d'(x,x*) which carries tangent-space
i n d i c e s a...b a t x a n d d'...άf a t x \

Introduction

A great deal has been written about two-point functions for scalar fields in de Sitter
space [1-8]. In de Sitter-invariant states, two-point functions like G(x,x/)
= <Φ(x) Φ(xO) a r e functions only of the geodesic distance μ(x, x*) between x and
x'. Hence the wave equation (Ώx — m2) G(x9x

r) = 0 can be written as an ordinary
differential equation in the variable μ and its solution G(μ) can be expressed in
terms of hypergeometric functions.

Our intuition is that the two-point function for a vector field Qab'(x, x')
= {Λa(x)Ab'(x/)y in a maximally symmetric state should be a function only of
the geodesic distance μ(x, x') But how does one incorporate the tangent space
indices a and b'Ί Clearly Qab'(x, x') has to transform as a vector under coordinate
transformations at x and x\ How can it be expressed in some simple way?

In the first section we answer that question. There is a fundamental set of three
bitensors, obtained by differentiating μ(x, x'), in terms of which any maximally
symmetric bitensor can be expressed. In order to solve wave equations one needs
to know the derivatives of these bitensors. Formulae which express each of these
derivatives in terms of the original set of three bitensors are derived. They have
previously been obtained by Peters [27].

In Sect. Πa these methods are applied to find the scalar two-point functions
G(μ(x,xO) by solving the wave equation for G(μ). The principles by which
appropriate solutions are selected in de Sitter and anti-de Sitter spaces are
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explained in Sects. lib and Πc respectively and used ad nauseam in the treatment
of the vector two-point functions.

Sections III and IV treat the massive and massless vector cases, and are
similarly divided into parts a-c. The wave equation (— D + κ)Qah, = 0 is imposed
on a maximally symmetric bitensor ansatz Qab, (supplemented with VaQab> = 0 in
the massive case and corresponding to Feynman gauge in the massless case). This
yields coupled ordinary second order differential equations for the coefficient
functions in Qab,. In the massive case the equations decouple, whereas in the
massless case we must solve the full fourth order system.

Section V contains a summary and discussion of our results.
There are five appendices. Appendix B contains a brief discussion of maximally

symmetric bitensors. Appendix E gives the massless Feynman gauge vector
propagators for the "Euclidean" vacuum state of (2 ̂  n ̂  12)-dimensional de Sitter
space. The remaining three appendices contain technical details.

We conclude this introduction with a brief review of the literature. Scalar two-
point functions in de Sitter space may be found in [1-8,15,16] and in anti-de Sitter
space in [18,20,30]. Spin 1/2 in de Sitter space [1,3,5,26], spin 1/2 in anti-de Sitter
space [25], and spin-1 in CPn [9] have also been treated. The massless spin-1
Feynman function in Adler gauge on Sn is given in [26], and the massless spin-1
retarded propagator in "conformal" gauge on any conformally flat spacetime is
given in [27]. Finally an expression for the traced two-point function for arbitrary
spin on S4 is given in [28].

I. Maximally Symmetric Bitensors

A maximally symmetric space is an n-dimensional manifold with metric which has
as many global Killing fields as is possible [10,11,29]. This type of space "looks the
same" in every direction and at every point. The simplest examples are flat space
and spheres, each of which has ^n(n+ 1) independent Killing fields. For Sn these
generate all rotations, and for Rn they include both rotations and translations.

Consider the expectation value of a vector field Aa(x) in some maximally
symmetric state \ψ), <ψ\ A"(x) \ψ}. (1.1)

This must vanish, since otherwise it would define a preferred direction at x, thus
breaking the maximal symmetry of the space.

For a two-point expectation value

(ψ\Aa(x)Ab'(x^\ψ} (1.2)

the situation is quite different, since the pair of points x and x' determine preferred
geometric objects. These objects are the distance μ(x, x') along the shortest
geodesic from x to x\ the unit tangents na(x, x') and rf!'(x, x') to the geodesic at x
and x\ and the parallel propagator ga

b>(x, x') along the geodesic (see Fig. 1). In a
maximally symmetric space, other geodesies do not determine new geometric
objects. For example, on a unit sphere, the length of the longer geodesic
2π — μ(x, x7) is a function of μ(x, x'). In the pseudo-Riemannian case not all pairs of
points can be connected by a geodesic. These geometric objects have unique
analytic extensions to such pairs, however, as shown in Appendix A.
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Tensors such as these that depend on two points x and x' are called bitensors
[12]. They may carry unprimed or primed indices that live in the tangent space at x
or x' respectively.

Bitensor manipulations may be carried out exactly as for tensors. Unprimed
indices are raised with gab and primed ones with ga'b>'. It follows from the definition
of the parallel propagator gah. that gab(x) = 9aXx>xΊ9c'b(χ\χ) and 0e'fe'(xO
= θafC(χ/9x) 9cb'(x> XΊ- Since (un)primed indices always go with (un)primed points,
the arguments can be omitted from these equations, viz ga

c gc>b = gab, etc.
One can differentiate a bitensor function of x and x' with respect to either

argument. To distinguish the two possibilities we write Va and Va>. For example
Va,gh

c> is the bitensor obtained by (1) fixing x and regarding gb

c' as a vector function
of xf and then (2) taking its covariant derivative with respect to x'.

The world functionμ(x, x')is the distance along the geodesic xa(λ) connecting x

and x'. If = — then
ok

xa(0) = xa(l) = x'. (1.3)

In the literature i [μ(x,x ' ) ] 2 is often denoted by σ(x,x') The vectors defined by

na(x, xθ - Vaμ(x, xθ and nα,(x, x') = Fa,μ(x, (1.4)

have unit length, since μ is the proper distance along a geodesic. Note that they
point away from each other, so that ga

b nb,= —na, as shown in Fig. 1.
Expectation values such as (1.2) define maximally symmetric bitensors. These

are bitensors invariant under any isometry of the manifold. In Appendix B, we
define the action of diffeomorphisms on bitensors, and prove that any maximally

Fig. 1. Two points x and x' in a maximally symmetric space determine preferred directions at
those points. They are tangent vectors to the geodesies joining x and x'. The unit vectors na at x
and na> at x' point away from the geodesic. Vaga

b' is the vector at x' obtained by parallel transport of
Va along the geodesic from x to x'. Hence —na = ga

b'nb>
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symmetric bitensor can be expressed as a sum of products of gab, ga,b,, μ, na, na,, and
gab>. The coefficients of these terms are functions only of the geodesic distance
μ(x, x'). For example if Tabc>(x, x') is a maximally symmetric bitensor then

Tabc'=f1(μ)gabnC' + f2(μ)gac'nb + f3(μ)gbc'na + f4(μ)nanbnc>, (1.5)

where the /f(μ) are functions of μ(x, x').
If Ta...bc'...d' i s a n y maximally symmetric bitensor, then the derivatives

yeTa...bc'...d' a n ( * ^'^...^'...d' a l s o define maximally symmetric bitensors (see
Appendix B). The derivatives of na and gab> can therefore be expressed in terms of
our fundamental set:

Vanb = A(μ)gab + B(μ) nanb,

Vanb, = C(μ)gab, + D(μ)nanb,, (1.6)

# f l C '% + G(μ) #&c,rcfl + /7(μ) wflwftwc,.

The idea is that on the right-hand side of (1.6) we have written down every possible
maximally symmetric bitensor with the correct index structure. In the remainder of
this section the functions A, . . . ,G are determined for the three cases of zero,
positive and negative curvature. They are given in Table 1, which contains the only
results used in the following sections. The contents of Table 1 may also be found in
formulae (3.23) and (3.26) of Peters [27].

We begin by finding the coefficient functions A,B in the expression (1.6) for
Vanb. Since n\ = 1 => nbVanb = 0 ^> A + B = 0, we have

Vanb = A(gab~nanb). (1.7)

Now contracting (1.7) yields Fana = (n—l)A, where n is the dimension of the
maximally symmetric space. From (1.4) it then follows that

A = (n-iyίΠμ. (1.8)

The biscalar D μ(x, x') is again maximally symmetric, hence it must depend
only on the geodesic distance μ from x to x\ We need to evaluate it in three special
cases, Rn, Sn, and Hn, which are maximally symmetric spaces of constant (zero,
positive and negative) scalar curvature.

To evaluate D μ in Rn note that in spherical coordinates ds2 = dr2 + r2 dΩ2_ 1

centered around x' we have μ = r, and the Laplacian on a function of μ is

rn~x dr dr v

Hence D μ = (n—ί)μ~1 and therefore A = μ~ι.
To evaluate D μ on 5n, the sphere is assumed to have radius .R = 1 (the units

can be restored by dimensional analysis). In spherical coordinates centered about
x', the metric is

d2 dθ2 2θdΩ2

x. (1.10)

Here dΩ2_x is the metric on a unit S"" 1. The geodesic distance is μ = θ, and the
Laplacian on a function of μ is

Π=(smθ)1-"-^(smθΓ1~. (1.11)
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Hence \Jμ = (n— l)cotμ and therefore A = cotμ. Restoring the units yields
A = R~X cot(μ/R). Notice that for μ/R<ξl, the effects of local curvature are
negligible, and A(μ) looks the same as in flat space.

A similar computation for Hn of (hyperbolic) radius \R\ yields
A = \R\~1 coth(μ/\R\). This is also obtained from the result for Sn by simply letting
jR = i|jR|. For this reason, we will henceforth give formulae only for Sn. The
corresponding formulae for Hn are obtained by letting R have pure imaginary
values and for Rn by letting

To evaluate C and D in (1.6) note that nb'nb,= l=>nb'Vanb, = 0=> -C-\-D =n (1.6) n o t e t h a t nnb,= l=>nb'
since gab>nb''= —na. Hence

Vanb' = C{gah, + nanh). (1.12)

We can obtain C by applying neVe to (1.12), and then integrating out along a
geodesic.

Consider a geodesic y through a fixed point x\ and let x be any point on y.
The derivative with respect to the proper distance μ(x,x/) along y is d/dμ = neVe.
Thus we have neVegab> = neVena = neVenb, = O, i.e., the tensors gab>, na, and nb are by
construction covariantly constant along the geodesic.

Applying neVe to the left hand side of (1.12) we find

neVeVanb, = neVaVenb, (1.13)

= (Kn*)(Venb.) (1.14)

= -AC{gab. + nanb) (1.15)

We can commute derivatives in the first step since nb is a scalar at x (it has no
unprimed indices), and the third step follows using (1.7) and (1.12). Now applying
rfVe to the right hand side of (1.12) we have

neVeC{gaV + nanb) = (dC/dμ) {gab, + nanh) . (1.16)

Together (1.12), (1.15), and (1.16) yield the ordinary differential equation along y

jμC{μ)=-A{μ)C{μ) (1.17)

whose solution is

C(μ) = const exp(-$A(μ)dμ). (1.18)

We will shortly determine the constant of integration in (1.18) from the short
distance (or flat-space) behavior of C(μ). It is convenient to find £, F, G, and H in
(1.6) before doing this.

To determine £, F, G, and H first note that naVagbc> = 0 and (1.6) imply

(E-F + H)nbnc.-Gβbc, = 0. (1.19)

Hence ( £ - F + £F) = 0 and G = 0 [contract (1.19) alternately with n V and ghc'\
Furthermore Va(gbb,n

b) = - Vanb, implies that n

bVagw= - Vanb,-gwVan
h. The left-

hand side can be evaluated from (1.6) and the right-hand side from (1.7) and (1.12).
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Table 1. This table gives expressions for the derivatives of the elementary maximally symmetric
bitensors nb, nb > and gbc>, in terms of sums of products of these same bitensors. Since na = Vaμ and na>
= Va>μ, higher derivatives can be found by repeated application of these formulae. The curvature
and the functions A(μ) and C(μ) are identical for 5" and Hn. However R is imaginary for Hn and
real for Sn

Definition of tangent vectors: Definition of A(μ) and C(μ):

na = Kμ va^b = Aθab - n

anb)

Relations between

dA/dμ=-C2

dC/dμ=-AC

A(μ) and C(μ):

Space:

Rn

Sn or Hn

A(μ) and C(μ):

Scalar curvature:

0

n(n-l)

R2

C2-A2 = l/R2

A(μ):

μ'1

1
-cot(μ/R)
K

C(μ):

__ γ

R

The process can be repeated for nb'Vagbb,. One obtains

The unique solution to these equations is

E = J F = - μ + C) and G = H = 0, (1.21)

so one finds from (1.6) that

Kθtc =-(A + Q (gabnc, + gac,nh). (1.22)

In flat space A + C must vanish. Hence the constant of integration in (1.18) must be
chosen so that lim(^4(μ) + C(μ)) = 0. The resulting functions A and C for S", Hn,

and Rn are shown in Table 1.

II. Scalar Two-Point Function

a)

In this section we calculate the scalar two-point function

(2.1)

This simple and well-known example serves as a model for the spin-1 case. We
assume that the state \ψ} is maximally symmetric, so that for spacelike separated



Vector Two-Point Functions in Maximally Symmetric Spaces 675

x,x\ G{x,x') depends only upon the geodesic distance μ(x,x'). For timelike
separated points, the symmetric and Feynman functions also depend only on μ,
whereas (2.1) and the commutator function depend additionally on the time
ordering. We will obtain all of these two point functions by analytic continuation
from spacelike μ2 > 0 to timelike μ2 < 0.

Denoting the derivative dG/dμ by G\ we have

ΏG{μ)=VaVaG{μ)=V\G\μ)na)

(2.2)

where the formulae of Table 1 have been used. The equation of motion
( - D +m2)φ = 0 therefore implies

G"(μ) + (n - 1) A(μ) G\μ) - m2G = 0, (2.3)

as long as x φ x\ This equation can be converted into a hypergeometric equation
[13,14] by a simple change of variable.

Defining a new variable

z = cos2(μ/2R), (2.4)

the Eq. (2.3) for G becomes

H(ao,bo,co)G(z) = 0. (2.5)

Here H(a, b, c) is the hypergeometric operator

^ 2 + [ c ( α + ft + l)z]^--αfc, (2.6)
dz dz

and the parameters in the present case take the values (subscript 0 denotes scalar)

(2.7)

There are two linearly independent solutions G{z) to Eq. (2.5). The choice of a
particular solution is determined by which maximally symmetric state |φ>, and
which 2-point function G(x, x') is desired. In the next two subsections, we find
appropriate solutions in de Sitter and anti-de Sitter space by examining the
following properties of G:

i) short distance behavior as μ-»0
ii) long distance behavior as μ->oo

iii) location of singular points
iv) location of branch cuts.
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b) de Sitter Space (R Real)

Equation (2.5) is invariant under z-»l — z, since the parameters satisfy
ao + bo + l=2co. Two independent solutions are therefore [13,14]

F(ao,bo;co;z) and F(ao,bo;co; 1 - z ) . (2.8)

Here F(α, b c z) is the hypergeometric function defined by a convergent power
series for \z\ < 1 and by analytic continuation elsewhere. These solutions are
singular at z = l and z = 0 respectively, since F(aθ9bo;co;z)~(l— z)~"/2 as z-*l
and F(α0? ̂ o\co' >z)->l as z->0. They must be linearly independent, because they
have different singular points, so the general solution is some linear combination of
them.

To locate the first possible singularity in G(μ(x, x*)), notice that z = 1 when
μ(x,x') = 0. In Riemannian space this implies x = x\ while in Lorentzian space it
implies x and x' are null-related. On the other hand, if x and x are antipodal points
(see Fig. 2) then μ(x, x) = πR and z = 0. This locates the second possible singularity
of G.

In de Sitter space (R real), the spacelike intervals μ2 > 0 correspond to the range
0 ^ z < l . In the Riemannian case, this encompasses the entire space. In the
Lorentzian case, we have in addition the timelike intervals μ2 < 0, corresponding
to the range l<z<oo. Thus in the Riemannian case ze[0,1], and in the
Lorentzian case ze[0, oo). In the domain |z |<l, we have the same two-point
functions G(z) in the two cases. By analytic continuation into the complex z-plane,

R2>0

R2<0

RIEMANNIAN PSEUDO-RIEMANNIAN

De SITTER

ANTI-DeSITTER

Fig. 2. The geometry of maximally symmetric spaces. The top two figures are spaces of constant
positive curvature, and the bottom two figures are constant negative curvature. The Riemannian
spaces (with positive definite metric) are shown to the left and the pseudo-Riemannian spaces to
the right. In three of the four cases a point x in the space (time) has a unique antipodal point x
located directly across from it
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the two-point functions for μ2>0 can be extended to points with μ2<0. This
should become clear in the example that follows.

There exists a one complex parameter family of de Sitter-invariant Fock
vacuum states \ψ} [15,16]. Each one determines a particular solution G(z). There
is a special member of this family called the "Euclidean" or "Bunch-Davies"
vacuum [8, 17]. It is the only one whose two-point function G(x, x') [15]

a) has only one singular point, at μ(x, x') = 0 [and is therefore regular at
μ(x, x*) = πK] and

b) has the same strength μ-»0 singularity as in flat space.
It appears that this is the "most reasonable" vacuum state [17]. Moreover, one

may obtain the two-point functions for any other de Sitter invariant Fock vacuum
from GE u c l i d e a n. Therefore now, and in the spin-1 case to follow, we will obtain the
two-point function only in the Euclidean vacuum, and denote it by G.

Condition (a) for the Euclidean vacuum selects the solution to be

G(z) = qF(ao,bo;co;z). (2.9)

Condition (b) determines the constant q as follows. As μ->0 G(μ) must approach
the flat space form,

Furthermore, near z = l we have

{c)Γ{a + b~c)-zY-"-b (2 11)cz) a

and (l-z)~(μ/2R)2, so we find that

Γ(ao)Γ(bo) 2

4 = K

Γ(n/2)2V- ( 2 1 2 )

Equation (2.9) gives the two-point function for spacelike intervals 0 ^
Generically the hypergeometric function F(a,b;c;z) has a branch cut for z>\
along the real axis, i.e., for timelike intervals. The Feynman function is the limiting
value G{z + ίO) approaching the branch cut from above. The symmetric function is
the average value across the cut, G(z + zΌ) + G(z — ίO). The commutator function is
given by ε(x,x/)ΔG{z). Here ε(x,x^ = (+1, —1,0) if x,x' are (future, past,
spacelike) separated, and A G{z) = G(z + zΌ) — G{z — iff) is the discontinuity of G(z)
across the branch cut. (Note that the commutator function is thus symmetric only
under the orthochronous components of the isometry group of the manifold; cf.
Appendix B.)

For some values of mass and spacetime dimension the branch cut is absent.
There is nevertheless a pole at z= 1, and the same ίO limiting prescription holds.

c) Anti-de Sitter Space (R = ϊm(R))

Since anti-de Sitter space is not globally hyperbolic, the Cauchy problem is not
well posed. Boundary conditions, controlling the flow of information through a
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timelike surface at spatial infinity, are therefore required to define a quantum field
theory [18]. These boundary conditions will determine the possible states and
hence the two-point functions. We will select a vacuum by requiring that the two-
point function G(μ(x, x')) = <φ(x) φixj)

(a) falls off as fast as possible at spatial infinity μ2->ao, and
(b) has the same strength μ2->0 singularity as in flat space.
These correspond to the "reflecting" Dirichlet boundary conditions of [18] in

the conformally invariant scalar case. For spins greater than zero, condition (a)
seems to be required in order that the state be stable against small fluctuations, and
for other reasons found in [19]. In the scalar case, however, condition (a) is not the
only possibility.

A convenient set of solutions for G(z) in the present case is [13,14]

(l/z)α°F(α0, a0 - c0 + 1 α0 - b0 + 1 1/z)

(l/z)b°F(b0, b0 - c0 + 1 ;b0 - a0 + 1 1/z),

which fall off as z~a° and z~bo respectively, as z->oo. In anti-de Sitter space
CR = Im(K)) we have z = cos2(μ/2K) = cosh2(μ/2|K|). Thus timelike intervals
correspond to 0 ̂  z < 1 on the real z axis, and spacelike intervals correspond to
z > l . Furthermore spatial infinity μ-»oo corresponds to z->oo. Hence since
F(a,b,c,0) = l, and 0<b o <α o , condition (a) selects the solution

G(z) = rz-a°F(ao,ao-co + \;ao-bo+l;z-1) (2.14)

and condition (b) determines r to be

Γ(α o)Γ(α o-c o + l)
V= m ( 2 1 5 )

The standard branch of the hypergeometric function is cut along the real z axis
from 1 to oo. The function z~a is defined as exp( —αlogz) where logz is cut along
the negative real axis. Hence G(z) is cut for z ̂  1. In particular, it is cut along the
timelike region 0 ̂  z < 1. As before, the Feynman function is obtained as the
limiting value G(z + zΌ) above this cut. The symmetric function is the average value
G(z + zO) + G(z — zO) across the cut. The commutator function is ε(x, x') [G(z + z'O)
— G(z-zΌ)]. Although anti-de Sitter space has closed timelike curves, the
Feynman function can still be interpreted as the expectation value of a "time
ordered" product as explained in [18]. The two-point function (2.14) has also been
obtained [20] by doing a mode sum over the "regular" modes.

Anti-de Sitter space (adS) has topology S1xRn~1, with the S1 periodicity
occurring in the timelike dimension. To eliminate closed timelike curves, one may
"unwrap" the S1 by considering the universal covering space CadS with topology
Rn. In CadS all values of the mass m are allowed. The allowed mass values in adS,
and the form of G(x, x") on CadS can be determined by noting that the Feynman
function is obtained by adding O+ to μ (remember μ = i\μ\ for timelike intervals).
Only those discrete values of m for which G(z(μ + 0+)) is periodic as μ-^μ + 2πR
are allowed. This is because although we said originally that |μ(x, x')l i s the length
of the shortest geodesic joining x and x', our derivation of Eq. (2.3) for the two
point function holds for |μ| the length of any such geodesic. These discrete values



Vector Two-Point Functions in Maximally Symmetric Spaces 679

of m are precisely the mass values for which a complete set of mode functions
φn(x) [orthonormal, satisfying (G — m2)φn = 0, periodic in S1 direction] exists on

adS[18]. /u + OΛ
Since R = i\R\ for adS, z(μ + 0+) = c o s 2 \ ^ ~ — =cos2(μ/2R) + ί0+ sin(μ/R).

\ 2R )
Thus as μ increases from 0 to 2πRj, z follows a contour which loops j times
counterclockwise around the interval [0,1] in the complex z-plane. Continuing
analytically around this contour, we discover from (2.14) (by deforming the
contour to large |z|) that

G(z(μ + 2πRj + 0+)) = oxp(-j2πia0)G(z(μ + 0+)). (2.16)

Thus in adS the allowed values of m are given by α0 = integer. In CadS, (2.16) gives
an explicit expression for G(x, x') when x, xf are separated byj sheets. See also [30]
for a careful discussion of the various scalar two-point functions in CadS. Similar
considerations apply for the vector case to follow.

G(z) (2.14) can be expressed as a linear combination CίF(ao,bo;co;z)
+ C2F(a0, bo; co; 1 -z) in either the upper half plane or the lower half plane since
these two functions provide a complete set of solutions to the hypergeometric
equation [14, Eq. (2.9) (25)]. The coefficients C1 and C2 are in fact different in the
two half planes, since the two sides of this equation have different branch cuts.

III. Massive Spin-1 Two-Point Functions

a)

The Euclidean action for a massive vector field Aa is

(3.1)

where Fab = VaΛb — VbΛa. This is the action in the Proca theory of a massive spin-1
particle. It also arises in gauge theories, in the unitary (ξ^O) limit of the 't Hooft
background field gauge [21]. There, the gauge potentials Aa have a lowest order
(non-interacting) effective action of this form, with m2 a matrix in the internal
space. In the massless case m2 = 0 one must add a gauge fixing term to the action
(3.1) [21]. We shall consider this case separately in Sect. IV.

The equation of motion arising from <5S = 0 is

VaF
ab = m2Ab. (3.2)

The antisymmetry of Fah implies VaVbF
ah = 2RabF

ab = 0. Hence taking the diver-
gence of (3.2) we obtain nι2VbA

b = Q. Thus if m2 + 0 we have a supplementary
equation ^ a = 0 ( 3 3 )

Using the definition of Fab together with (3.2) and (3.3) one obtains the wave
equation WabA

b = 0, with the operator

Wab = {gabU-Rab-m2gab). (3.4)

The Laplacian operator is D = VaV
a and Rab is the Ricci tensor. In a maximally

symmetric space Rab = (n— l)R~2gab, where as before we take R pure real
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(imaginary) for Sn(Hn) of radius \R\. Thus in a maximally symmetric space, defining

κ = m2 + (n-l)/R2 (3.5)

we have Wab = gab{ D - κ\
The expectation value of a product of two quantum fields

a(x) AvM \ψ} (3.6)

defines a bitensor Qah,. This tensor satisfies the wave equation WabQ
bc' = 0 for

μ(x,x")ή=0 (there is a singularity when μ = 0) and the supplementary condition
VaQah, = 0, since the field operator Aa satisfies these equations. In a maximally
symmetric state \ψ} the two point function Qab, will be a maximally symmetric
bitensor, which can be written as

QΛ,(x, xθ = (x(μ)gab> + β{μ)nanh., (3.7)

where α(μ) and β(μ) are two arbitrary functions of the geodesic distance μ(x, x").
The wave equation then takes the form

Wa

bQb, = F(μ)gac, + G(μ)nanc, = 0, (3.8)

yielding F = G = 0.

Using (3.7), (3.4) and the formulae of Table 1, and denoting —-— by f'(μ), one

finds
2 0, (3.9)

(3.10)

The supplementary condition VaQ
ab' = H(μ)nb =0 yields

0. (3.11)

Various identities useful for obtaining these and other equations are given in
Appendix C.

To solve for α and β it is convenient to define

= a{μ)-β{μ). (3.12)

Then H = 0 implies

-{n-\)Ca = y' + (n-\)Ay, (3.13)

while F - G = 0 implies

γ" + (n-l)Ay'-l(n-l)(A2 + C2) + κ]γ-2(n-l)AC<* = 0. (3.14)

Now substituting (3.13) into (3.14) to eliminate α one finds
2 y = 0, (3.15)

where the identity C2 — A2 = l/R2 has been used. It is sufficient to solve (3.15) for γ9

since then α can be found from (3.13) and β can be found from (3.12).
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By the same change of variables (2.4) as in the scalar case Eq. (3.15) for y can be
converted to hypergeometric form,

61,c1)y(z) = 0, (3.16)

where now (subscript 1 denotes spin-1)

(3.17)

The complete solution for Qab, in the massive case is given from (3.7), (3.12), and
(3.13) by

Q( 0

<μ) = ί(n - 1)" 'R sin(μ/R) (d/dμ) + cos(μ/Λ)] y(μ), (3.18)

β(μ) = [(n - 1)"1Λ sin(μ/,R) (d/dμ) + cos(μ/K) - 1] γ(μ) .

ft; de Sitter Space (R Real)

We select a two-point function Qab, following the principles explained in Sect. lib.
Thus we take

y(z) = qF(aubι;cί;z) (3.19)
with

Above the branch cut along the real axis z^ 1, this together with (3.18) yields the
Feynman function.

c) Anti-de Sitter Space (R = Im(R))

Following Sect. Πc we take

y(z) = rz~aιF(a1,a1 — cγ + 1; a1 — bx + l z " 1 ) , (3.21)

with

Λ -m~ 2 |ΛΓ Λ . (3.22)
2n + 1πM / 2Γ(α1-ft1 + l)

Above the branch cut along the real axis z< 1, this together with (3.18) yields the
Feynman function.



682 B. Allen and T. Jacobson

IV. Massless Spin-1 Two-Point Functions

a)

The action for a massless vector field Λa with a convenient gauge-fixing term is

\

ηdV, (4.1)
where Fab = VaAb — VbAa, and λ is any positive real number. The equation of motion
is WabΛ

b = 0, where the wave operator is now

Wab = gabΠ-Rab + (λ-\)VaVb. (4.2)

As before, we consider the two-point function Qab, = (AaAb>} in a maximally
symmetric state, so that

gab> + β(μ)nanh,. (4.3)

As before, the equation of motion WabA
b then implies

WabQ
bc' = 0. (4.4)

Note that if one sets λ = ί, this equation is identical to the massive case for m = 0.
However since m = 0, the supplementary equation m2 VaA

a = 0 is vacuous and no
longer implies a first order equation like (3.11) for α and β. Therefore one must
solve (4.4) differently than before.

It is convenient to introduce the maximally symmetric bitensor

Qa/
b\χ,χr)=^vlaVla'QbΓ=<y{μ)gYagϊ^<μ)n{ag%na'\ (4.5)

which is the gauge invariant expectation value (FabF
ab'}. We will see shortly that

it is independent of λ. From the definition of Qab> in terms of α and β, it follows that
σ and τ in (4.5) are

(4.6)

(4.7)

The equation of motion WabQ
bc' = 0 implies that VaQ

ab

aΎ= - λVb(VaV[a,QbΊ

a\ and
the maximally symmetric bitensor in parentheses can be expanded as ρg[aγ^
+ vn[a>nbΊ, which vanishes identically. Hence the equation of motion for Qab

ab

doesn't involve λ and is

VaQab

a'b' = 0. (4.8)

This equation is easily solved to find σ and τ. Once σ is known, Eq. (4.6) then
provides a first order "supplementary" equation which we can use later to solve
(4.4) for α and β.

The equation of motion for Qab

ab' (4.8) can be written

VaQab

a'b' = Jgb

[a'nbΊ = 0, (4.9)

where from (4.5), J is

± U = 0. (4.10)
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Using Eq. (4.7) which defines τ in terms of σ, one can eliminate τ from Eq. (4.10) to
obtain a second-order equation for σ,

σ" + (n+\)Aσ'-(2(n-l)/R2)σ = 0. (4.11)

This equation is identical to the hypergeometric Eq. (3.15) for γ when m = 0. Hence
the parameters (3.17) are now a1 = n—l, bί=29 and cί = (n/2) + 1.

As in the massive case, the equation for σ has two linearly independent
solutions, and as before the choice of solution is related to the choice of maximally
symmetric state. Once σ is chosen, Qab

ab' is then determined using (4.7) and (4.5).
We can now find Qab, = (AaAb>) by using the above result for σ. The bitensor

Qah> is not gauge-invariant and depends upon λ. We choose λ = ί, because the
equations for α and β are then simpler. This choice of λ is called Feynman gauge
[21]. With λ=l, the wave operator Wab (4.2) is identical to Wab in the massive case
(3.4) with m set to zero. Hence we again have the coupled equations F = 0 (3.9) and
G = 0 (3.10) for α and β, where now κ = (n- l)/R2.

The equation F = 0 is

O. (4.12)

Eliminating β from Eqs. (4.6) and (4.12), and using C2 — A2 = l/R2, one obtains

a? + (n+l)A<x,'-(n/R2)oι = (A/2C)σ. (4.13)

The same change of variable as before (2.4) converts this into the inhomogeneous
hypergeometric equation

H(α1 + l,fe1-l,c1)α(z) = iΛ 2(l-2z)σ(z), (4.14)

where we have used A/C = 1 — 2z.

The general solution to this equation is of the form

φ ) = fciαi(z) + fc2α2(z) + α(z), (4.15)

where oq and α2 are independent solutions to the equation

iϊ fo + l A - 1 , ^ ) 0 ^ = 0, i = l , 2 , (4.16)
and α(z) is any particular solution to the inhomogeneous equation (4.14). Note that
once σ is given, there is a 2-parameter family (ku k2) of solutions α. Together with
the freedom in σ, this makes 4 parameters in all: Four conditions are required to
determine a unique solution to the coupled system of second order equations
F = G = 0 for α and β.

Having chosen a solution σ(μ) and α(μ), β(μ) is then determined by Eq. (4.6).

b) de Sitter Space (R Real)

We select a solution Qab, in two steps, following the principles explained in
Sect. lib. First we choose the particular solution for σ

w i t h φ ) = pF(nl,2;n/2+l;z) (4.17)

Γ ( n - l ) - . (4.18)
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In Appendix D it is shown that for n=t=3,

Ί

s -ϊJ
(4.19)

is a particular solution to (4.14) with source (4.17) [the parameters of
F(au b1;cί; z) are omitted unless they differ from (al9 bl9 c j ] . The unique solution
for α with the correct short distance and singular behavior is then [cf. (4.15)]

φ ) = qF(n, 1 n/2 + 1 z) + α(z) (4.20)

with

(4.21)

where ψ(z)= — logJΓ(z) is the psi function [13], and ψ(l +z) = ψ(z) + 1/z.
az

The other homogeneous solution to (4.16) is absent in (4.20) because it is
singular at z = 0. The constant q in (4.20) is chosen to cancel the (1 — z)~"/2 short
distance pole in α. The residue at order (ί—z)~n/2 + 1is correctly fixed by the earlier
choice (4.18) of p.

If the number of dimensions n is an integer then this solution takes a simple
form. In Appendix E we give a table of solutions in dimensions 2 ^ π ^ 12. In four
dimensions it is

α(z)-(48π 2 JR 2 )- 1 [-3(z- l )- 1 +z- 1 +(2z" 1 +z- 2 ) log( l-z)] ,

z)] ?

(4.22)

The reader can easily verify that these are (1) solutions to the ot,β equations, (2)
regular at z = 0? (3) flat-space singular at z = l , and (4) cut along (1, oo) in the
complex z plane.

c) Λntί-de Sitter Space (R = lmR)

Following Sect. Πc we first choose the particular solution for σ,

σ(z) = pz1-nF(n-\,n/2-l;n-2;z-1) (4.23)

with

p = 22-"π-" / 2Γ(n/2)|#Γ\ (4.24)

It is shown in Appendix D that for n φ 3

α(z) = 5 Γ(2 - n)FadS + (n- 4)FΛdS(αt -1) + 2(3 - ή) (d/dα - d/db)FΛJ + } Ί ,

(4.25)
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With -iπ(n/2 + l)Γ( ]\
\2-nί

2n+1πn'2(n-3)2Γ(tι/2+l)

is a particular solution to (4.14) with (4.23) as source. The parameters of
Fa d S(α, b c z) are omitted unless they differ from (al9b^c^). The function F a d S is
defined by

F a d S ( a , b ; c ; z ) = F n e w ( α , b ; c ; z ) + F(a, b c l - z ) . (4.27)
Fn e w(α,b; c;z) is the unique analytic function (1) equal to F(a, b c z) in the upper
half z-plane and (2) cut for z < 1 along the real z axis. The reason for defining Fnew is
that the standard branch of the hypergeometric function is cut along (1, oo), yet we
need a solution which has its cut only in the tίmelike region (0,1), as explained in
Sect. He. One may express F n e w in terms of F by [14, Eq. (2.9) (25)]

(4.28)

The unique solution for α with the correct short distance limit and the fastest
possible falloff as z~*co is then [cf. (4.15)]

α(z) = α(z) + qFnew(n, 1 n/2 + 1 z) + rF(n, l n/2+l l-z) (4.29)

with
q = sl(n-l)(n-2) + 2(n-3)(ψ(\)-ψ(n))-], (4.30)

r = 2πί(n-3)s + q. (4.31)

The constant q in (4.29) is chosen to cancel the (1 -z)~" / 2 short distance pole in
α. The residue at order (1 — z)~n/2 +1 is correctly fixed by the earlier choice (4.24) of
p. The constant r in (4.29) is chosen to cancel the z " 1 (slowest falloff) term in
α + gF n e w . This solution for σ(z) and α(z), and the corresponding solutions for β(z)
and τ(z) [determined from (4.6) and (4.7)], fall off as

n~ -n + 2 ^ -n+1

(4.32)

as z-^oo.
If the number of dimensions n is an integer then this solution takes a simple

form. In four dimensions it is

( 4 3 3 )
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V. Summary and Discussion

We have shown that any maximally symmetric bitensor can be expanded in terms
of a minimal set of bitensors consisting of na, na>, and gab>. The coefficients of the
expansion are scalar functions of μ, the geodesic distance between x and x'. The
derivatives of this minimal set are themselves maximally symmetric bitensors, and
can thus be expanded in terms of na, na>, and gaV. In Sect. I we obtained the
coefficient scalar functions of these derivatives. That knowledge permits one to
compute arbitrary derivatives of arbitrary maximally symmetric bitensors. The
two-point expectation values of field operators such as (φ(x)φ(x/)},
iAa{x)AaXxJ)9 and <Jtab{x)ha'h'(xy> are bitensors, and they are maximally
symmetric if the state and gauge fixing terms are. Since the two-point functions
satisfy wave equations, the results of Sect. I yield ordinary (coupled) differential
equations for the coefficient scalar functions.

In Sects. Ill and IV these equations are solved for the massive and massless
spin-1 case. Because the ordinary differential equations admit a two or four
parameter family of solutions, some principle was needed to select a particular
solution. Although we have not constructed a Fock vacuum state, we believe that
Feynman two-point functions are obtained via the following considerations:

1. They are cut in the complex μ plane for timelike separations.
2. They have flat-space short distance (μ->Ό) singularities.
3 a. In de Sitter space they have only one singular point.
3b. In anti-de Sitter space, they fall off as fast as possible at spatial oo.

In Sect. II we showed that considerations 1-3 select the "Euclidean" or
"Bunch-Davies" vacuum in the scalar de Sitter case and the "regular reflecting"
vacuum in the anti-de Sitter case. In both the scalar and vector cases these two-
point functions have the Hadamard form [22, 23].

We now intend to use these methods to calculate the spin-2 Feynman function.
Another possible application is to calculate quantities such as the correlation
function of the stress-energy tensor (Tab(x) Ta,b(x')y in maximally symmetric
states. However this quantity contains five undetermined functions /j(μ) and the
field equations VaTab = 0 impose only three relations among the ft. Hence this
correlation function still contains two undetermined functions, which can be
obtained only from knowledge of what fields are creating the stress-tensor.

The definition of maximally symmetric bitensors can be generalized to bi-
spintensors, and a spinor parallel propagator DA

B\x9 x') can be introduced which
is related to ga

b'(x, x') by ga

b' = D/'D/'. It is then possible to express all maximally
symmetric bi-spintensors in terms oϊnAA; nB^>, and DA

B, and thus to generalize our
results to spin-1/2 and 3/2 [32].

Finally we should note that it is not surprising that the coefficient functions
fι(μ) generally satisfy equations of the hypergeometric type. This is because the
hypergeometric functions occur naturally as the matrix elements of irreducible
representations of the rotation groups O(n, m) which are the symmetry groups of
maximally symmetric spaces [24].
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Appendix A. If There is no Geodesic from x to xf

In a pseudo-Riemannian space there is not always a geodesic from x to x\ We thus
require an extended definition of the maximally symmetric bitensors μ(x, x%
na{x, x*), and gab'(x, x'). For example, let M denote Lorentzian de Sitter space and
define the point set

Jx = {x'eM such that 3 geodesic from x to x'} . (Al)

Then M — Jx is nonempty: it includes the interior of the (past and future) light
cone of x (x is the antipodal point to x). We can nonetheless define μ(x, x') by
analytic continuation in the coordinates of x and x\

Consider de Sitter space to be the set of points YaeRn+1 which satisfy

Y"Y»ηah = R\ (A2)

where f/αb = diag(—151,...,1), and the induced metric is ds2 = ηabdYadYb. Let
Ya(x) denote the vector in the Rn + 1 embedding space which "points to x." Then
for x' e Jx one has

and consequently that z = cos2(μ/2#) = ̂ [ l + cos(μ/l?)] is

( A 4 )

The right-hand side equals cos2(μ/2R) inside Jx. However it is also well defined
outside Jx, and it is an analytic (polynomial) function of the coordinates Ya. Hence
(A 4) serves to define z(x, x7) everywhere, and we can define μ(x, x1) = 2R cos ~ ι (z1/2)
as the limiting value above the standard branch cut of cos" 1.

Now that μ(x, xf) is globally defined, one can define na and na, everywhere by

na(x, xθ = VAx, xΊ na.(x, x*) = Va.μ(x, x'). (A 5)

Once again, the right-hand side is an analytic function of the coordinates Ya, and
equals the "geometrical" na and na> everywhere inside Jx.

To define ga

b' everywhere, one may invert Eq. (1.12) to obtain

9M = C(μ)-γVanh.-nanh.. (A6)

The right-hand side is an analytic function of the coordinates Ya and is well defined
everywhere. As before it reduces to the "geometrical" gah, inside Jx but serves also
to define it outside that region.

The formulae (A4)-(A6), defining μ, na, na>, and gah, outside Jx apply also in
anti-de Sitter space with R pure imaginary.
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Appendix B. Maximally Symmetric Bitensors

The action φ*Ta b'~
d

a, b,
c' * d'(x,x/) of a diffeomorphism φ on a bitensor T is

defined by direct extension of its action on ordinary tensor fields [10]. Similarly,
the Lie derivative is defined by LxT=\imλ~ι[φfT— T], where {φλ} is the one-

parameter family of diffeomorphisms generated by the vector field Xa. For
example, if T(x,x') is a biscalar then LxT = Xa(x)VaT+Xa'(x')Va,T.

A maximally symmetric bitensor Tis one for which σ*T= Γfor any isometry σ
of the maximally symmetric space. It follows in particular that LKT = 0 for any
Killing vector K. The converse is not true however, since there are isometries
which are not continuously connected to the identity.

A maximally symmetric biscalar /(x, x') is in fact a function only of μ(x, x'). To
see this, note that for all isometries σ that fix x, we have /(x,x/) = /(σ(x),σ(x/))
= /(x, σ"(xθ) The orbit Bμ = {σ(V)} °f x' under the isometries that fix x is precisely
the set of points at distance μ(x, x') from x. Thus /(x, x') is really a function of the
orbit, i.e., f(x, x') = f(μ(x, x')). As an aside, note that for timelike intervals μ2 < 0 in
Minkowski space, Bμ consists of two disconnected pieces, the future and past
sheets, /(x, x') must be invariant under the entire isometry group (including any
disconnected component) for the above argument to hold.

The covariant derivative VaT of a maximally symmetric bitensor is again
maximally symmetric. Indeed, since parallel transport commutes with isometries,
we have σ*(VaT)=Va(σ*T)=VaT. Thus na=Vaμ(x,x% na.= Va.μίx9x% and βάb.
= C~ιVanb, — nanb, are all maximally symmetric.

We now show that these three bitensors provide a complete set, in the sense
that any maximally symmetric bitensor can be expressed as a sum of products of
na9 na,9 and gab,9 with coefficients that are functions only of μ(x, %')• It is sufficient to
prove the proposition for bitensors with all indices at one point, since one can
always write Tammmbc>..,d(x,x') = gc.

c... g/Ta_bc_d(x,x'). The argument now pro-
ceeds by induction on the number of indices.

The biscalar case (0 indices) is proved in the preceding paragraph. Now
suppose the proposition is true for bitensors with p indices, and let Γα 5(x, x') be a
maximally symmetric bitensor with p + 1 indices. We have

Γβ...*(x, xΊ = (Kc + nan
c)... (hb

d + nbn
d) Γc...d(x, x")

= ha

c... hb

d Tc_d(x, xθ + (terms with ne), (B1)

where ha

c = ga

c — nan
c is the projector onto the hyperplane V orthogonal to na. All

the terms with at least one ne are the product of an ne with a p-index maximally
symmetric bitensor, and hence by induction have the required form. The term with
no ne's is a p + 1 tensor lying entirely in V. This term is invariant in particular under
all isometries which leave both x and x' fixed, i.e., under the full orthogonal group
of the hyperplane V. It must therefore be decomposable into sums of products of
the projected metric hac(x, x'), with scalar coefficients c(x, x"). Contracting all
indices shows that the c(x, x') must be maximally symmetric as well, so that c(x, xf)
= c(μ(x,xy). This completes the proof.
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Appendix C. Useful Formulae

The following are useful formulae derived from Table 1.

naVanb = 0, (Cl)

n"Vagbc, = 0, (C2)

naVanb, = 0, (C3)

n»'Vanb, = 0, (C4)

(C5)

(C6)

nanb) = {n-\)Anb,, (C7)

na = (l-n)A2na, (C8)

na, = {\-ή)C2na,, (C9)

n α % ] , (CIO)

+ C2)-]nanb.. (Cll)

Appendix D. The Inhomogeneous Solution α for the Massless Case

1. de Sitter Space (R Real)

The equation to be solved (4.14) is

l,b1-l,c1)& = iR2(l-2z)σ, (Dl)

with σ(z) = pF(a1,b1;cι;z) (4.17). One can express the source term as a sum of
three hypergeometric functions using formulae (15.2.14/19) of [13]. Denoting
F(aubί + 18;ct;z) by F(bι + 18) and so on, one finds

(D2)

Using formulae (15.2) from [13] one can show that

H(a1 + l,bι-l,c1)F = (n-2)F, (D3)

H(ai + l,b1-l,c1)(F(a1-\) + F) = 2(n-3)F(a1-l). (D4)

Furthermore, for arbitrary values a, b, and c, HF = 0 implies

ZTzF-bF> ( D 5 )

ZίzF-aF- (D6)
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Subtracting these two equations, and letting a = aί + l and b = bί — l, one finds

Putting together the results of Eqs. (D2)-(D4) and (D7) one can construct a
solution α to the inhomogeneous equation (D1)

as long as nφ3. (D8)

2. Antί-de Sitter Space (R = lmR)

In the upper half plane the source term \ R2(\ — 2z)σ with σ given by (4.23) can be
expressed as [14],

σ = const [F(α l 5 ^ c1 z ) - F ( α l 5 bγ cx 1 - z ) ] . (D9)

The operator H(a x + 1 9 έ>i — 1, cx) which appears on the left-hand side of (Dl) is
invariant under the substitution z-»l — z. The right-hand side transforms into
— \R2{\ —2z)σ(l —z). Hence one can generate a solution to (Dl) with (D9) as
source, from the de Sitter solution adsi by taking

#adsθ) = const •• [αdS(z) + α d s(l - z)] (D10)

in the upper half plane. Since F n e w = F in the upper half plane, the solution (4.25) is
of exactly this form in view of (4.27) and the definition of F n e w . The solution as given
in (4.25) is therefore the analytic continuation of (D10) from the upper half plane to
the whole complex plane cut along the negative real axis z e ( — oo, 1).

Appendix E. Exact Massless Vector Propagators
in n-Dimensional de Sitter Space

In the massless case the function α(z) (4.20) simplifies if n is integer. It may be
expressed as

^ / 2 ^ / 2 fc] (El)) Φ ^ ( V ^
k

if n is even and n ̂  2, and as

a(z) = d(n)Σlak(z-k + (l-zyk)ω(z)-bk(z-k-(\-zyk)-] (E2)
k

if n is odd and n^ 5. The function ω(z) in (E2) is

ω ( z ) - z - 1 / 2 ( l - z ) - 1 / 2 a r c s i n ( z 1 / 2 ) 9 (E3)

and the overall coefficient is

XSL"'- (E4)
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Table2. The nonzero constants ak> bk, and ck appearing in formulae (El) and (E2), which give the
(Feynman gauge) massless de Sitter propagator in dimensions nS 12

a0

fli

a2

« 3

aA

a5

* 1

b2

b,

h
b5

Cl

^ 2

C 3

c4

2 4

-1/2 1/6
1/3

-1/2 1/2

1/6

5 6

-5/32 1/60
5/32 1/20

1/10

5/32 1/8
1/8

7/120
1/60

7

-7/96
7/128
21/512

21/256
21/512

Dimension n

8

1/350
2/175
1/35
2/35

1/30
1/12
1/10

37/1050
9/700
1/350

9

-3/64
85/2048
117/4096
45/4096

17/256
147/4096
45/4096

10

1/1764
5/1764
5/588
5/252
5/126

1/112
11/336
71/1008
97/1008

533/21168
107/10584
11/3528
1/1764

11

-11/320
77/2048
99/4096
715/65536
385/131072

187/3072
3245/98304
1265/98304
385/131072

12

1/8316
1/1386
1/396
2/297
1/66
1/33
1/420
19/1680
17/540
109/1680
27/280
1627/83160
25/3024
73/24948
13/16632
1/8316

The values of the nonzero constants ak, bk, ck are given in Table 2 for n^ 12. They
were obtained using a MACSYMA program, which may be obtained from one of
the authors (B.A.). The program uses the result that if a — b is a positive integer,
then one has

l6/da-e/db~]F(a,b;c;z)

k=l

1 F(a,b;c;x)dx\ . (E5)

J
Differentiating these results for α(z), one obtains β(z) from (4.12). One may also

obtain σ(z) and τ(z) from (4.6) and (4.7). Despite appearances, these functions are
nonsingular at z = 0, as they were constructed to be. They may be useful in
supergravity, superstring and Kaluza-Klein theories, which can have maximally
symmetric internal spaces.
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