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On the Existence of Eigenvalues
of the Schrδdinger Operator H— λW in a Gap of σ(H)
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Abstract. The authors prove a number of results asserting the existence of
eigenvalues of the Schrδdinger operator H — λW in a gap of σ(Ή), where
H = — A + V and V and W are bounded. The existence of these eigenvalues is
an important element in the theory of the colour of crystals. The basic theorems
are proved in Rv; stronger results for v = 1 are also presented.

Introduction

In the quantum theory of crystals one studies periodic Schrδdinger operators

H=-A + V, V(x + g)=V(x),

where A is a lattice in IRΛ The operator H is the basic ingredient in the so-called
one-electron model (cf. Reed and Simon [14, Sect. XIII. 16, p. 312], Kittel [8], and
Ziman [20]) describing the energy levels of an electron in a pure crystal. The main
feature of the model is that "allowed" energies for an electron moving in the crystal
lattice lie in σ(H), the spectrum of H, which consists of bands. In a typical insulator,
there is a gap of some electron volts between the first and second bands, and
absorption of photons from incoming electromagnetic radiation is possible only if
the energy of the photon is greater than the gap (in this theory, all electron states in
the first band are assumed to be filled, so that the electron has to "jump" over the
gap by absorbing the photon energy). If impurities are present in the crystal, new
energy levels may appear in the gaps of σ(H) ("impurity levels"), which effectively
reduce the width of the gaps and lead to a selective absorption of certain photon
energies (cf. Stoneham [18] and Townsend and Kelly [19]). Perhaps the most
appealing example in nature is the A12O3 crystal (Corundum), which has a large
gap between the first and second bands and is transparent and colourless. By
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replacing some of the Al3+-ions by Cr 3 + (respectively Ti3 +), one obtains Ruby
(respectively Sapphire). The impurity levels lead to absorption of green (respectively
yellow) light, and the crystal appears in the familiar complementary colour red
(respectively blue) (cf. e.g. Ludwig [10, pp. 372f.]).

The situation seems to be much the same for glasses, where one assumes that
the "pure glass" is described by H = — A + V, where Fis no longer periodic, but has
some "short range order," which produces gaps in σ(H) (cf. Townsend and Kelly
[19]). In general, we will not assume V to be periodic.

In this paper, we consider the following model problem for the one-electron
theory of solids: let H = — A + Fbe the Schrόdinger operator of the pure "crystal"
and let the potential W describe the "impurity."

Question. Given an energy E e ΊR\σ(H), does there exist a (real) coupling constant λ
so that E E σ{H-λW)?

If W(x) decays and

(i) W(x) is of one sign,

or

(ii) £<infσ(/f),

the problem of the existence of real /Γs reduces in a standard way (cf. Reed and
Simon [14, p. 99]) to the classical existence theory for real, nonzero eigenvalues of
the nonzero, compact, selfadjoint operators \W\1/2(H — E)~1\W\1/2 and
(H-Ey 1/2W(H-Ey1/2, respectively (see also Klaus [9]). If £ is in a gap, and W
changes sign, then the above reduction leads to the nonselfadjoint operators
sgniW^Wf^H-Ey^W^2 and sgn(H-E)\H-E\~ 1/2W\H-E\~1/2 respec-
tively, and the existence of real, nonzero eigenvalues no longer follows on abstract

grounds. Indeed, even in the case of matrices (cf. also Klaus [9]), for H: =
1 Oy

W: = ( , the eigenvalues of H — λW are E = ± l / l + A 2 , which lie outside the

\0 - 1 /
gap (-1,1) of σ{H) for all real λ.

In the theorems that follow, we will always assume that V and W are real-
valued, bounded and measurable. We normalize F(x)^ 1, so that H^ 1 and if £
lies in a gap of σ(H), then necessarily £ > 1. The assumption of boundedness for V
and W is made mainly for convenience; many of the proofs that follow can be
extended to include local singularities by using standard techniques from the
theory of Schrόdinger operators.

Definition. Let V and W be as above, H: = -A + V, and let
(a) We say that the triple (H, W, S) is complete, if for each E e ΊR\σ(H) there

exists λ = λ(E)eS such that Eeσ(H-λW).
N

(b) Let U Ok, l^AΓ^oo, be the decomposition of R\σ(Ή) into a union of

disjoint, open intervals (i.e. gaps). We say that the triple (H, W, S) is essentially
complete, if, for each k, there exists at most one energy Eke0k such that
Ekφ U σ(H — λW). The £fc's, should they exist, are called exceptional levels.

λeS
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The notion of essential completeness arises in a natural way. As we will see, at
the technical level, the proofs of Theorems 1 and 3 below proceed by showing that
U σ(H-λW) is dense in R\σ(#); this implies that the triple (#, P^R+) is

λ>0

essentially complete, as first observed, in the case where W is relatively compact
with respect to — A, by Klaus [9]: for, if Ok is a gap in σ(H) and Ek<Ek are two
exceptional levels in Ofe, then, by denseness, σ(H — λW)n(Ek,E'k) + φ, for some
λ > 0. But σ(H)n(Ekf Ek) = 0, so that by continuity of the spectrum, σ(H — λW) has
to cross either Ek or E'k, as Λ,jO, which is a contradiction. In other words, if
U σ(H — λW) is dense in R\σ(/ί), there is at most one exceptional level per gap.

λ>0

Exceptional levels can arise even in 1-dimension, if we allow W to be a
(5-function. Let E be an energy in a gap of σ{ — d2/dx2 + V) and let /+ be the
(unique) solutions of —f++(V—E)f+=0 which are square integrable at +oo,
respectively. The existence of such solutions is a standard result in limit-
point/limit-circle theory; note that / + , / _ are linearly independent as Eφσ(H).
Since E > inϊσ(H), it is also clear that /+ must have a zero at some point x = x0. Set
W:=δXo. Any possible L2-eigenfunction u of (H — λW)u = Eu is necessarily a
multiple of/+ for x > x0, and a multiple of/_ for x < x0. The matching conditions
0 + /+(xo) = 0-/-(xo)> a + f+(xo) = a-f-(xo)-λa+f+(xo) = a_f^(xo) now imply
that a+ =a_=0.

Our results are as follows: In Sect. 1, we prove that (H, W,IR+) is essentially
complete, provided |x|2P^(x)->0, |x|->oo, and W(x)^:h>0, for x in some ball B
(Theorem 1). We also show that, fi W has compact support and Eo is an
exceptional level, then necessarily Eo is an eigenvalue of the Dirichlet operator
H=-Δ + Vin Rv\sιφp w (Theorem 2).

If W(x) = constφθ, then clearly (//, W,ΊR) is trivially complete. In Sect. 2, we
show that (H, W, R) is essentially complete, provided W does not oscillate too
much; see Theorem 3.

In Sect. 3, we consider complex E (but V and W still real) and show that for all
but a discrete set of E's belonging to ρ(H), there exists a λe(£ such that
Eeσ(H-λW), provided W(-A + 1 ) " 1 eBq(L2(Rv)% the qth Schatten ideal, for
some q e [1, oo) (Theorem 4).

Finally, in Sect. 4, we show that for a variety of situations in 1-dimension,
exceptional levels do not occur. In particular, this is true if

(i) W(x) has compact support (Theorem 5),
or

(ii) W changes sign a finite number of times, sgn W(x) = sgn W( — x) for x
sufficiently large, and W is relatively compact with respect to —A (Theorem 6),
or

(iii) W changes sign precisely once and |FF(x)|^c(l+ |x|)"p, for some p>2
(Theorem 7).

The proof of Theorem 7 involves the interesting question of estimating the
growth rate of generalized eigenvalues λk of (if — E)uk = λk Wuk on L2(0, co), both as
λk^ + oo and λk-+ — oo, in the case where Wis positive and E lies in a gap of σ(H).
Standard techniques (Reed and Simon [14, Sect. XIII. 15]; see also Fleckinger-
Pelle [5] and Mingarelli [12]) do not apply as H — E has essential spectrum above
and below zero and Dirichlet-Neumann-bracketing is no longer useful. We obtain
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certain "phase space" bounds (see [14, loc. cit.]) for the λk's in the body of the text.
In the appendix, using Dirichlet-Dirίchlet-bmckGting, we prove a WeyΓs law for
λk-> + oo. The precise asymptotics for λk-> — oo remains open.

Remark. In all our results (except Theorem 3), Wis relatively compact with respect
to — A so that σess(H — λW) = σess(H), for all λ9 by WeyΓs theorem. This means that
if E lies in a gap of σ(H) and E e σ(H — λW), then necessarily E is an eigenvalue of
H-λW.

1. W Decays an Infinity

The following Theorem 1 is our main result on the existence of eigenvalues of
H-λW in a gap of σ(H), where H: = -Δ + V acts in (real) L2(RV), v e N
-{1,2,...}.

Theorem 1. Let v e N and V, W: RV->]R be bounded. Suppose that W(x) ^ h > 0, for
x in some ball #C]RV, and that \x\2W(x)-+0 as |x|->oo. Then (H, J^IR + ) is
essentially complete.

The idea of the proof is most easily described in the special case where V is
periodic and Whas compact support: let £ be a fixed energy in a gap (a, b) of σ(H)
and let Πn be the parallelepiped built of (2π+ l) v lattice cells, centered at 0, and
finally let Hn p: = — A + F, acting in L2(i7π), with periodic boundary conditions.
Note that any gap in σ(H) is also a gap in σ{Hnp), for any n. By a simple
compactness argument [cf. Remark (c) following the proof of Lemma 3 below],
there exist λn>0 and fneD(HHtP)9 | |/J | = 1, such that (Hn,p-λnW-E)fn = 0. As
(a, b)nσ(HntP) = φ9 fn is concentrated near the support of W, and therefore we can
find cutoff-functions ψn e C^(Πn) such that ( t f ^ - ^ - E ) (%/J-^O and \\ψnfn\\
-> 1 as n-> oo. But HntP(ψnfn) = H(ψnfn), and it follows that H — Λ,w FT must have an
eigenvalue close to E.

When V is not periodic, the ideas outlined above must be modified in a rather
substantial way. As we will see, there are two main problems: first, we have to
construct approximating operators Hn which have the same gap (α, b) as H, and
second, we have to provide an estimate on the coupling constants λn which is
complementary to the decay rate of W.

Proof of Theorem 1. We need only consider real E φ σ(H). Without restriction, we
may assume B = BQ, for some ρ>0, where BQ\ ={xeRv; |x |<ρ}. Let a<b, [_a,b~]
nσ(H) = Φ, Ee(a,b). We first construct an approximating operator Hn\ let
Hn\ = —A + V, acting in L2(Bn), with Dirichlet boundary condition; in other
words, Hn is the Friedrichs extension of — A + V\CQ{BΪ). Recall that Hn is self-
adjoint and CQ(BH) is a form core.

Let Eni, i= 1, ...,m(n), be the (repeated) eigenvalues of Hn in (a,b), with
associated normalized eigenfunctions unieD(Hn), J M^ = 1. NOW introduce

Bn

m(n)

Pn' = Σ (uni,-)uni
i=ί

and
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Clearly,

σ(Hn)n(a,b) = φ. (1.1)

By Lemma 3 below, there exists 0<λnScn2, such that Eeσ(Hn — λnW)\ let

/„ G D(Hn) = D(ίΓπ) be a normalized eigenfunction, f /π

2 = 1. Using (1.1), we will
Bn

deduce that /„ is small near dBn in the sense that, for any 0 < α < 1,

/«Zan\Ben"»0, n-^oo, (1.2)

(χ^ denotes the characteristic function of a set A ClRv). To prove (1.2), fix α G (0,1)
and let η eC00(IRV) satisfy ηΓBα/2 = O, ?z|<ΊRv\JBα)= 1, and 0^7/^1 otherwise.
Defining ηn: = η(x/ri), it is sufficient to show

*/„/„-(>, n - o o . (1.3)

Let (5: = min{|£ —α|, |E —ί?|}. As i ϊ π is selfadjoint,

δ\\ηjn\\ Z \\(Hn-E)(ηnfn)\\ Z \\{Hn-λnW-E){ηnfn)\\ + \\λnWηnfn\\

the last term goes to 0, as n^>oo, since Wλ^ηJ^^O, n-^oo, by Lemma 3 and the
decay rate of W. Further,

\\φn-λnW-E){ηnfn)\\ S \\ηn(Hn-λnW-E)fn\\ +2\\VηnVfn\\

+ \\Aηnfn\\+(b-a)\\lPH,ηn\\fn\\9

where [ , •] denotes the commutator. The first term on the right-hand side is zero.
The terms \\VηnVfn\\ and \\Aηnfn\\ go to zero, as H ^ J ^ ^ c n " 1 , \\Δηn\\^cn~2,
II/JI = 1, s u p p ( P ^ n ) c 5 α n \ ^ / 2 ? and Wfn)\{Ban\Banl2)\\ ^const, by Lemma 4 below.
Finally, defining \pn: — \ — y\n, we have

m{n) m(«)

ίPn^n]fn= Σ (μni9ηnfn)ψnUni- Σ (Uni,ψnfn)ηnuni= -[P^Xp^fn,
i=l i = 1

which goes to 0 since, by Lemma 6 below, Ht/ŷ -H ̂ e ~ α n , and m(n)^cnv, by
Lemma 5, and (1.3) follows. In particular, ||v>w/J|-»l, rc->oo, and as above

Again by Lemmas 5 and 6, it is clear that

Now fix ε G (0, δ), ε < 1. Then there is n = n(ε) such that

implying that σ(H — λnW)n(E — ε, £ + ε) + 0, which proves denseness. Essential
completeness follows by the continuity argument given in the introduction. D
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Remarks, (a) Since we have no uniform bound λn ^ const, we cannot hope to obtain
a nonzero solution / by defining / : =w-lim/n.

(b) It is clear from the proof of Lemma 3 that in fact there exist an infinite
number of /Γs such that σ(H-λW)n(E-ε,E + ε) + 0.

In the following lemmas, we always assume that the conditions of Theorem 1
hold, and we will use the notations of the proof of Theorem 1 without further
comment.

The first step in finding λn > 0, λn ^ en2, is an upper estimate on the eigenvalues
of H~ll2(W+μE)H~1/2 which are greater than or equal to μ, for μ>0.

Lemma 1. For μ^O and any n, let yw l(μ)^7n 2(μ)^ ... denote the nonnegative
eigenvalues ofH~ί/2(W+μE)H~ί/2 ordered by the min-max principle. Let p e N ,
p > v/2. Then there exists a constant C such that for μ > 0,

In particular, for i^:CnvEp+ 1, the eigenvalue branch yn/(μ), μ^O, crosses the
diagonal.

Proof. Writing Gn(μ): = H;ίl2(W+μE)H;1/2, we have

^ μ } ^ Σ 7n&Y= \\(GH(μ)+Y\\i

where Gn(μ)+ is the positive part of Gn(μ) and || || x denotes the trace norm. Now
we can estimate

= (\\W\\aΰ+μE)p i
Bn

where G{

n

p)(x,y) is the integral kernel of (-A + l)~p, and ( — Δ + ΐ)nis —A + l,
acting in L2(Bn), with Dirichlet boundary condition. But, by the maximum
principle, the integral kernel of ( — A + 1 ) " 1 is dominated (pointwise a.e.) by the
integral kernel of {-Δ +1)" 1 . Calling Gip)(x, y) the kernel of {-A + l)~p, we see
that

Bn Bn

since

x) = cp) e-tΛ(x,x)e-ψ'1dt = c'p\ Γ^e-ψ-Ht. D
0 0

By comparison with an eigenvalue problem on the ball B, we find a lower
bound for the yni(μ), which is independent of both n and μ. This is the (only) place
where we use that W\B^h>0.

Lemma 2. Assume that W\Bρ^h>0. Then there is a constant c>0 such that

Uμ)^cι-2I\ « , ieN, (1.4)

where the fnί(μ)'s are defined as in Lemma 1.
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Proof. Let Hρ: = —A + V, acting in L2(Bρ), with Dirichlet boundary conditions
[i.e., HQ is the Friedrichs extension of ( — A + V) \Co(BβJ], and let yρί ^ y ρ 2 ^ ... be
the positive eigenvalues of if"1. We claim that

MN (1.5)

and that there exists a constant d > 0 such that

yρί^cT2/\ IGN. (1.6)

Clearly, (1.5) and (1.6) imply (1.4). We first prove (1.5): let Oj denote ay-dimensional
subspace of a Hubert space. As CQ(BH) is a core of Hi12, we have

= l n f
o,-

inf
7 | ^ ;

l(Hnv,v)

inf |

l+b — aOi-iccg>(Be) \(Hev, v)'

h

which proves (1.5).
By WeyPs law (cf. Reed and Simon [14, Theorem XIII.78]) and the inequality

— A + V^ —A + V^, there exist constants c > 0 and λo>0 such that, for λ^λ0,

# {ξi; ξt eigenvalue of Hβ, 0 < ξt Sλ) ^ cλvl2 .

This means that the first [cΛ,v/2] eigenvalues γρi oίH'1 satisfy y^^/l" 1 , for λ^λ0.
Hence, there exists an i0 e N, such that yρi ^ di~2/v, for i ̂  i0, and (1.6) follows. D

The existence of a positive λn ^ en2 is now an easy consequence of Lemmas 1
and 2, combined with an argument of Fleckinger-Pelle [5] and Fleckinger and
Mingarelli [6] which connects our generalized eigenvalue problem with the
spectrum of E~ ίl2(W+μE)H;1/2.

Lemma 3. For any n, the indefinite generalized eigenvalue problem (Hn — E)u = λWu
has an eigenvalue λn satisfying the estimate 0<λn^cn2.

Proof For λ>0, (Hn — E)u = λWu, for some wφO, is equivalent to

βHu = (λW+E)u = λ(W+λ-1E)u,

which in turn is equivalent to

lί2), μ:=λ~\
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i.e. μ = yπi(μ), for some ieN. But by Lemma 1, we know that, for any ί^cnv, the
(continuous) branch yni(μ), μ^O, must cross the diagonal; hence, for i^cnv, there
exists at least one μt > 0 such that yni(μi) = μ{. Therefore, by Lemma 2,

Inserting i = in: = [erf'] +1, we get μiγ^ic"n~2, which proves the lemma. D

Remark (c). The fact that for each n there exists 0<μeσ(H;1/2(W+μE)H~1/2)
follows immediately from compactness. Indeed, for μ > 0, only a finite number of
branches yni(μ), μ^μ, can lie above the diagonal. On the other hand, there exists an
infinite number of yni(0) > 0, since the quadratic form (H~ 1I2WH~ 1/2φ, φ) is strictly
positive on the oo-dimensional space HII2(CQ(BJ). The point of Lemmas 1-3 is to
provide estimates which are "complementary" to the decay rate of FT for the proof
of Theorem 1. In the case where W has compact support, these estimates are not
necessary [cf. Theorem 5 and Remark (c), following the proof of Theorem 5].

The following method for obtaining a gradient estimate is taken from
Lemma C.2.1 in Simon [17].

Lemma 4. Let 0<β'<β<\, An: =Bβn\Bβ,n, and fneL2(Bn) be a solution of
(Hn-E)fn = λnWfn, with ||/J| = 1 and \λn\^cn2. Then

Proof Choose a cutoff-function φ satisfying φ(x) = 1, for β'^\x\^β, φ(x) = 0, for
\x\<β'/2 and for \x\>(β+\)/2, 0 ^ 0 ) ^ 1 else; let φn(x):=φ(x/ή). As in
Lemma C.2.1 of Simon [17], the identity

yields
!φHBn Bn

s \\vfn\\ + μ^isupp^L \\fn\\

as W decays quadratically D

To control the projection operator Pn9 we first give an estimate on m(ή) using
WeyΓs law, and then we show (in Lemma 6), that the eigenfunctions uni oϊHn live
close to dBn, the boundary of Bn. More precisely, the exponential decay of the
resolvent kernel of (H — E)~ι implies that the uni's are exponentially small on balls
Bβn9 0<β< 1, as n^oo.

Lemma 5. Let m(n) be the number of (repeated) eigenvalues of Hn lying in (a, b).
Then there exists a constant c such that m(ή)^cnv.

Proof Let Δn be the Dirichlet operator on Bn. Since V^ 1, we have

m(n)^ Φlλi λi eigenvalue of —Δ^

= #Uί; λ\ eigenvalue of —A^

by scaling. By Weyl's law (cf. Reed and Simon [14, Theorem XIII.78]), the last
number is bounded by c\n2b)vl2. D
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Lemma 6. Let uni9 i = l , ...,m(n), be the normalized eigenfunctions, j u2

t=\,

associated with the eigenvalues Eni of Hn lying in {a, i>), where [α, b~]nσ(H) = 0. Let
jβe(O,1). Then there exist α = α(/?)>0 ami no = no(β)>0 such that

Proof. For n ^ 2 , let ζneC$(Bn) be such that ζ j β ^ ^ l , 0 ^ ζ π ^ l else, and
CJIOO^CQ. w i t n c o independent of n. Then, for i = l , ...,m(n),

, = : hni.

But \\Vuni\\2=S(-V+Eni)u2

ni^comt, implying | | ^ | | ^ c ? n ^ 2 , i=l , . . . ,m(n).

Clearly, ζnuni e D(H), and (H - Eni) (ζnuni) = (Hn - Eni) (ζnuni). As Eni e ρ(H), we get

i=l, . . . ,m(n) (1.7)

with

| |λ π i | | ^c and

Since we want an estimate for \\uniχBβn\\, and hni is supported in 5 n \5 π _ 1 , the
exponential decay in \x — y\ of the integral kernel G(x, y Eni) of (H — Ewί) ~x (which
is uniform in Ee [α, bj) will give the desired result. For example, Eq. (4) of Simon
[17, Theorem B.7.2] tells us that | G ( x , j ; ; £ ) | ^ C e " β | x " y | , for \x-y\^\. Now, for
n^n0, we have ζnuni\Bβn = uni\Bβtv and it follows from (1.7) that

\uni(x)\ ^ f |G(x, y; £ m )| \hnί(y)\dyS Ce~™, x e ^ ,

Since the proof of Theorem B.7.2 in Simon [17] is rather lengthy and complicated,
we include the following direct argument for the reader's convenience.

For ε e £ v , we have e~ε'x(H~E)eε'x = H-E-2εV-ε2 [for simplicity of
notation, we write s x instead of (ε, x)]. As || V(H — E) ~11| is uniformly bounded for
Es[a, /?], and

it follows that, for | ε |^ε 0 , we have [α, b~]Cρ(e~ε xHeεx), and

(1.8)

Clearly, (1.8) still holds true if we replace e±ε'x by e

±ε (χ-χ*>9 and the constant will
not depend on xkeRv. Now we split Bn\Bn_1 into sets Dk of diameter ^ 2 :

s(n)

BB\B»-1=U O*,

where DknD, = Φ, /cφ/, diam£»k^2 and s ^ ^ c π 1 "" 1 ; also let ykeDk. Then

Σ
k- 1

t hBJH-Em)~\hniχDl

h v i | 2 _ . r \
nniADk\\ — u i



470 P. Deift and R. Hempel

where we have chosen εk: =so\\yk\\~1yk. But for xeBβn, % ( x ~ y/c)
^—εo(n — βn—l), and for yeDk, e-^ (y-yk)<^e

2εot Now, using (1.8), we may
estimate

"1 Σ \\χBβ

 ( ) 2 { \ 1 i ψ
k ι

k=l

\\hniχD\\2. D

In the case where W has compact support and is sufficiently regular, we can
characterize exceptional levels as Dirichlet eigenvalues of the operator — A + V in
L2(]Rv\supp W). The basic piece of information needed for the characterization is
obtained by looking at eigenvalue branches emerging from the lower edge of a gap
and close to the exceptional level Eo. Here one finds λn, En, and un such that EJE0,
(H-λnW-En)un = 0 and (Wun9un)^09 so that \\Vun\\2Sconst; in particular, we
find a function u such that un->u, weakly in

Theorem 2. In addition to the assumptions of Theorem 7, suppose that W has
compact support, ]Rv\suppW satisfies the segment condition and
meas {x e supp W; W(x) = 0} = 0. Let Ω be the unbounded component of #v\supp W,
and let HΩ : = —A + V, acting in L2(Ω) with Dirichlet boundary conditions. Then we
have: if Eo is real and does not belong to [j σ(H — λW), then Eo is an eigenvalue of
TT λ>0

HΩ.

Proof (a) Let (a, b) be the gap in σ(H) around Eo, let En]E0, En e (a, Eo), and let λn

be the smallest (positive) coupling constant such that Eneσ(H-λnW); the
existence of λn is guaranteed by Theorem 1. By regular perturbation theory, there
exist sn > 0 and analytic functions un(λ), En(λ), defined for λ in (λn — εn9 λn + επ), such
that

(H-λW)un(λ) = En(λ)un(λ), \\un(λ)\\ = 1, (1.9)

and En(λn) = En. Now, E'n(λn)>0; otherwise, for some 0<λn<λn, we would have
En(K) > En(λn) = En. On the other hand, as λ decreases to 0, the branch En{ ) can be
continued until it is absorbed at the point a [note that En{ ) cannot cross the level
EQ]. It follows that there would exist 0 <λ'n<λn<λn such that En(λ/

n) = En(λn),
contradicting the minimality assumption on λn.

Hence

(Wun(λn),un(λn))=-E'n(λn)ϊ0.

But then, writing un: =un(λn),

II Vun||
2 + (j Vul) -En = λn(Wun, un) S 0 ,

which implies | | F Ί / J | 2 ^ IIFII^ + b. Hence there exists a function ueHlQSC) such
that un.-^u weakly in H\(β?\ un.-+u in L 2 l o c(R v), and un -*u, a.e., for a suitable
subsequence (μn )C(un), which we will again call (un).

(b) Now first suppose that the λn's are bounded. Then it is clear from (1.9) that
\\Aun\\ ^const, and it follows that un->u weakly in HlQSZJ), and hence (H — λW)u
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= Eou, for some λ<co. But wΦO; otherwise we would have wπfsuppJ/F->O and
λnWun->0, in contradiction to

So we see that u satisfies (H—λW)u=Eou, z/φO, contradicting the assumption
about £ 0 .

(c) Assume λn-+oo. As {(H-E)φ9un) = λn(Wφ9un)9 φeC^QRJ), we see that
u = 0, for all φeC^^R") and hence ιφuppW=0, a.e. (here we use the

assumption meas {x e supp W; W(x) = 0} = 0). We claim that

U\ΩEH\{Ω), (1.10)

Ω), (1.11)

uφO. (1.12)

Then, clearly, tt6D(fffl) = ̂ n H | ( R v ) and, for φeC$(Ω)9

(uΛHΩ~Eo)φ)=\im(un,(H-En)φ)=}im(un,λnWφ) = 0,

implying HΩu = Eou, wφO. It remains to show (1.10)—(1.12). Clearly, (1.11) follows
from the inequality

To show (1.12), note that u = 0 would imply ww->0 in L2 ? l 0 C(Rv). Now let
ηn 6 C°°(1RV) be the cutoff-function used in the proof of Theorem 1. Then, with δ > 0
as above,

* - i

But, as (1 — ηm)un-+0, n-+cc, the above inequality is incompatible with \\un\\ = 1.
Finally, (1.10) is clear from Lemma 7 below, which we apply to G:=Ω and

v\Ω:=u, v ϊ(]Rv\f2): = 0 ; as Ω satisfies the segment condition, it is easy to check
^IRv). D

Lemma 7. Let G = G c R v satisfy the segment condition, and let V
v\ΈC\G = 0. Thenυ\GeHl(G).

The proof of this lemma is standard (cf. Adams [1, Proof of Theorem 3.18,
p. 54f.]) and omitted.

2. The Oscillation of W is Small

The following Theorem 3 describes a different mechanism to produce spectrum of
H — λ W in a gap of σ(H). As mentioned in the introduction, (JJ, W, 1R) is trivially
complete if W is a nonzero constant. As we will see, (//, W9 R) is essentially
complete if W does not oscillate too much, in a sense to be made precise below. The
main idea of the proof is to construct approximate eigenfunctions which live in
regions where W is nearly constant.
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Recall that, if ΩcΈi\ W: JRV->R, then

osc W: = sup W— inf W.
Ω Ω Ω

Theorem 3. Let V, W:RV->IR be bounded and assume that, for any weN,

oscWlmϊW-^0, i->oo, (2.1)
Ani I Ani

where Ani\={xeWC;(i-\)n^\x\^(i + 2)n}. Then (H, W,K) is essentially
complete.

Remarks, (a) It is an easy exercise to check that if (2.1) holds, then Wis eventually of
one sign.

(b) Condition (2.1) is satisfied, for example, if W(x) = cγ(c2 + |x|)~α for |x| ;> Ro

and some α > 0.
(c) If V is periodic, condition (2.1) can be replaced by the weaker condition

osc Wl inf \W\-+0, n^oo, (2.2)
Bn{xn) j Bn{xn)

where xn-> oo and Bn(xn) = {x e R v |x — xn\ < n}, and where W has one sign in each
ball Bn(xn); see also Remark (d) below.

The proof of Theorem 3 is based on the following Lemma 8, which constructs
sequences, similar to Weyl (singular) sequences, with special support properties.
We defer the proof of this lemma to the end of the section.

Lemma 8. Let F:RV-+]R be bounded, H: = -A + V acting in L2(IRV). Then, for
each n = 1,2,..., there exist sequences (ink)keNCN, ink-+ oo as k-> oo, (λnk)kGN C σ(H),
\λnk\^Cu and (unk)ke^CD(H), \\unk\\ = l, such that \\(H-λnk)unk\\ ^C^n'1, and
snppunkcΛnink, with co,cί independent of n, k, and Ani being defined as in
Theorem 3.

Remark (d). If V is periodic and W satisfies condition (2.2), then it is rather easy to
construct a singular sequence (un) such that \\(H — λ)un\\ ~>Ό, for some λ e σess(H),
| | κ j = 1, and suppuncBn(xn), where xn->oo as rc-»oo (cf. e.g. Hempel [7, proof of
Theorem 3.1]). This construction would then replace (the rather complicated)
Lemma 8.

Proof of Theorem 3. Let (a,b)nσ(H) = Φ, and assume, without loss of generality,
that W(x)>0 for |x|>.Ro With the notation of Lemma 8 and the definition

μnk:=(λnk-E)(mf
\An,ίnk

we have, for n= 1,2,...,

\\(H-μnkW-E)unk\\ S \\(H-λnk)unk\\ + \\(λnk-μnkW-E)unk

tif W w

^ C Q Π " 1 +CX OSC Wl inf

A I A

by (2.1) and Lemma 8. As in the proof of Theorem 1, this implies that (a,b)
nσ(H — μnkW)φφ, for n, k sufficiently large. Finally, denseness together with
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continuity of the spectrum gives the result (cf. the remarks in the
introduction). D

The idea behind Lemma 8 is simply to take a generalized eigenfunction of
— Δ + V and use a cutoff-procedure to get the right support properties. In order to
control the error introduced by cutting off the eigenfucntion, we first show,
following ideas of Sch'nol [16] (see also Simon [17, p. 501]) that there exist
"enough" regions Ank such that cutoff is possible with a function ψnk e CQ(ΊR.V\

Proof of Lemma8. Let n e N b e fixed, and define

By the generalized eigenfunction expansion form of the spectral theorem (cf. e.g.
Simon [17, Corollary C.5.5]), there exist polynomially bounded solutions φ(x9 λ)
of (— Δ + V)φ = λφ, for λ e σ( — Δ + V) (spectrally a.e.). We have to consider two
main cases:

Case A. Suppose, that there exists at least one such ^ Φ θ which is not an L2(RV)-
function.

Consider the sequence (αf), given by

*t:=*m- = l\<l>{x,X)\2dx. (2.3)
Ci

Note, that by unique continuation, α f>0. We will now show that there is a
sequence of integers (ik), ik-»oo as fc->oo, such that

α i k ^imax{α f k _ 1 ,α i k + 1 }, fceN. (2.4)

The sequence (αik) is either eventually monotonic (nonincreasing or nondecreasing)
or has an infinite number of local maxima φ 0. In the latter case, (2.4) follows
immediately.

Assume (αf) is eventually nondecreasing. Then, for an infinite number of indices
ik we must have α / k + 1 ^2α / k ; otherwise f \φ\2^c-2ι~ι°, z^zθ5 which con-

tradicts the polynomial bound on φ.
Finally, if (αt ) is eventually nonincreasing, then, for an infinite number of ίk9 we

must have

otherwise we would have φ e L2(RV), contradiction! Hence (2.4) is proven.
Now let χι: = χin be the characteristic function of the set

and ψt: =ψin: =Xi*jn/3, where jε is the usual Friedrichs mollifier. In particular,
\Pi\C~\ and HFφJ^^cw" 1 , WΔψ^^cn'1, c independent of n,i. We define

««fc: =ΨiJ>(' >λ)' \\ΨiJ\\ ~^ hk =λ, ink' = h,

with (ik) as in (2.4). Then, clearly, suppw^Csuppψ^C^^, and

\\{H~λnk)unk\\ £[21|PtyiJoo|| Vφ tsuppVxpik\\
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By the arguments in the proof of Lemma 4, Sect. 1, we can estimate

||VφtsuppVψJ SC\\φ\AnΛk\\ Sq/5^Γ,

where C can be chosen independent of k and n. Hence \\(H — λnk)unk|| ^ d'n~γ, with
C" independent of fc, n.

CaseB. Suppose that all φ(x,λ) which occur in the eigenfunction expansion
theorem are L2-functions. In this case necessarily H has pure point spectrum and
all the ^'s are ordinary eigenfunctions in particular, (φ( ,λ),φ(-,λ')) = 0, for λφλ'.
As V is bounded, σ e s s ( - J ) φ 0 implies σess(ίf) φ 0, by min-max, and there exists a
sequence φj'.=φ( ,λj), with λjGσ(H), λjή=λr (/Φ/)> a n d \^j\ = const. Without
restriction, we may assume (φj9 φr) = δjr, so that φj-+O weakly, as j - • oo. As the λ/s
are bounded, \\Vφj\\ ^ const, and by compactness it follows that

φj-^O in L 2, l 0 C(R v) ? J —oo. (2.5)

Let Ct be as above and define

Ci

As in Case A, we have to consider several possibilities:

Case Bl. For each fceN there exists a;fc such that (ocΛί)^fc is not monotonic. This
means, that for every k e N, we can find j k e N and ik ^ k such that

α J. f c i k^imax{α J.k f i k_ 1,α J.k i i k + 1}. (2.6)

Case B2. There exists k0 e N such that (α^)£^ko is nondecreasing or nonincreasing
for all). As φ-} e L2(IRV), only the latter possibility occurs, and we have the following
(final) two subcases (of Case B2):

Case B2a. 3/cx ^ k0, VjeN, Vz ̂  /cx: α^ ̂ -^α^ f _ x

Cαs^ i?2fo. Vfc ^ fc0, 3/k 6 N, 3/k ̂  fe: α ^ ^ -^a^ ί k _ x.
In Case B2b, we immediately have (2.6), since, by monotonicity, otjk>ik+ί ^ otjkik.

But Case B2a implies that for any ε > 0, there exists R > 0 such that f \φj\2 £Ξ ε,

for all; [note that otjkιS 1 and α M l + m ^(i) w α 7 7 c i , in Case B2a]. Together with (2.5)
this would imply φj-+O, in contradiction to | | ^ || = 1.

Hence we have found (jk), (ik) such that (oίjkik)ke^ satisfies (2.6), and as in Case A,
we can now define

Unh: = Ψ i k Φ ( ' , λ j k ) | | ψ i k φ ( , λ j k ) W ' 1 , λ n k : = λ j k , ink = ik.

The proof is finished as in Case A; when estimating || Vφ(-, λjk) fsupp Vψik\\ one has
to use the fact that the λjks belong to a bounded set. D

3. Complex E and λ

The main result of this section is Theorem 4 below.

Lemma 9. Let H be a Hίlbert space, D c C a domain and qe [1, oo). Suppose that
B:D^Bq(H) is holomorphic. Then the set M:={zeD; σ(B(z)) = {0}} is either a
discrete subset of D, or M = D.
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Proof. Assume there exists a sequence (zπ) CM, zn-+z0 ε D. Choose v0 ε N so large
that B(Z) V O GB 1 (H), and let A(z): = £(z)Vo, zeD. Then /)9zι-»i4(z) is a holo-
morphic map D^BX(H), and, by the spectral mapping theorem,

σ(A(znγ) = {0}, for n,v=l,2,.. . .

By a theorem of Lidskij (cf. Reed, Simon [14; p. 328]), this implies

and hence tr(A(z)v) = 0, for all zeD, since zh^tr(A(z)v) is analytic. By the Plemelj-
Smithies theorem ([14, Theorem XIΠ.108], e.g.), it follows that

det(l+μ4(z))=l, με<E, zeD,

implying σ(A(z)) = {0}, zeD, by [14, Theorem XIIL105]. Hence, by the spectral
mapping theorem, σ(B(z)) = {0}, for zeD.

Theorem 4. In the complex Hίlbert space H: = L2(IRV), let H: = —Δ + V, with
F:RV->1R bounded. Assume that W:RV->IR, P^φO, is such that
Wi-Δ + iy^BJtH), for some qe[l,ao). Then ρ(H)\ U σ(H-λW) is a discrete
subset of ρ(H). U e C

Proo/. It is enough to show that the set of E such that σ(W(H-E)~1) = {0} is
discrete. By variational principles, there exists E<infσ(H) which belongs to
U σ(H-λW). Hence σίWiH-Ey1)*^}. For Eeρ(H) (which is connected),

λeΊR.

we write

and see that B(E) is analytic from ρ(£f) to B(H), and the result follows from
Lemma 9. D

Remark. Conditions on W which guarantee that W( — Δ + I ) " 1 εBq(H), may be
found in Reed and Simon [13, p. 47]; e.g. \W(x)\ S C(l + MΓα, for some α>0, will
do.

4. Completeness in 1-Dimension

In this section, we use o.d.e. techniques to show that, under suitable assumptions
on V and W, exceptional levels do not occur. Our first result is

Theorem 5. Let V, W: IR—>IR be bounded, W of compact support and W
for -η<x<η. Let H: = -d2/dx2 + V9 acting in L2(R). Then (H,W9ΈL+) is
complete.

Proof. Once again, consider real Eφσ(H). By limit-point/limit-circle theory (cf.
Coddington, Levinson [2]), there exist solutions /+ (unique up to scalar multiples)
of —/+ + Vf+ = Ef±, with /+ square integrable at + oo, respectively. Fix R > 0 such
that suppFFC ( - # , # ) and / ± (±Λ)φ0. Let
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and HR: = —d2/dx2 + V, acting in L2( — R,R), with boundary conditions u\±R)
= a±u(±R),ueD(HR).

By Remark (c) following the proof of Lemma 3 in Sect. 1, there exist λR > 0 and
Oή=uReD(HR) such that (HR — λRW)uR = EuR [here one has to find

where we have chosen c such that HR + c^ 1]. Now, defining

: = | uR(x),

it is easy to see that weD(H) and (H-λRW-E)w = 0. D

Remarks, (a) Unfortunately, this proof does not generalize to 1RΛ
(b) This theorem also shows that one cannot "smoothe out" the (S-function in

the example given in the introduction.
(c) By using a more detailed analysis following Lemmas 1-3 in Sect. 1, it is

possible to give an estimate on the smallest coupling constant λ (for a given £),
under the additional assumption that V is periodic. In particular one finds that λ

can be chosen less than 2 (E(R + Π) + I)2, where Π is the period of V.

(d) Theorem 5 is nearly contained in Theorem 6 below, but its proof is so
simple that we have chosen to present it as a separate result.

In the remaining theorems of this section, we will assume that W is continuous
and has a finite number k of changes of sign. More precisely, we assume that there
exist k points xx < x2 < ... < xk, for which W(xt) = 0, i = 1,..., fe, and W(x) + 0 for
xφ{xι,...,xk}. The results below extend to the case W(x)^0 or W(x)^0 in each
interval {xt_ux^ but involve additional technicalities.

The following Theorem 6 considers the case where sgn W{x) = sgn W( — x) for
x sufficiently large. The proof uses solutions u±=(u±(x,λ) of —u"± +(V—λW)u±

= Eu±,u+ square integrable at ± GO, respectively, and shows that, as λ increases, a
zero of u+ has to meet a zero of M_, giving rise to a solution of our problem. The
intricate estimates needed to control the behaviour of the zeros oΐu + (x,λ), are
based on results of Richardson [15].

Theorem 6. Let V: R-+R be bounded and ^ 1, H: = -d2/dx2 + V. Suppose that
We C(R) is relatively compact with respect to —A and has a finite number k of
changes of sign, k even. Then (H, W, R) is complete.

An essential ingredient in the proof of Theorem 6 is the following extremely
interesting lemma due to Richardson [15] we give a complete proof as some of the
details are omitted in Richardson's original text.

Lemma 10. Let V and W be as above, E>\. Suppose —co<a<b<co and W(x)
0, for a^x ^b. Then there exists λo>0 such that λ^λ0 implies

for all solutions u of —u" + (V—E) = λWu in (a,b).
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Proof. Choose λi>0 such that λγh-\-V—E^E, for x e [α, ft]. It follows that any
solution u of the differential equation as above, with λ^λu has at most one zero
in [α,ft]. Indeed, if u(x)>0 for a^oc<x<β^b, u(a) = u(β) = 0, then
u" = ( — λW+ V—E)u^Eu>0 in (α,β), which is a contradiction. Hence there are
two cases:

(i) u(η) = 0, for precisely one ^ e [α, ft],
(ii) w(x)>0, for a^x^b.

Case(ϊ). Assume first, that a<η<b; the cases where η = a or η = b are similar.
Without loss, suppose u( x) > 0 for η < x ̂  ft, w(x) < 0 for a ̂  x < η.
have u" > 0 so that w'(x) > 0 and hence

1 * x E
-u'(x)2Ξ> f M V ^ E $ U ' U = — U(X)2

2 η η 2

thus

as F ^ 1. A similar argument shows that }u/2 + (V—E)u2>0, and we are done.
a

Case (ii). Let ε0 : = (ft — α)/4; choose X^ λx such that X/i + 1 — E > 0 and
(λh+ 1 —E)SQ/2= 1. Now consider /Inland let ε = ε(/l) solve

(2/z+l-E)ε 2/2=l. (4.1)

Clearly, ε ̂  ε0 = (ft - α)/4, so that α < a + ε < b - ε < ft. Let η e [α, ft] be a point where
the solution u above obtains its minimum, so that u(x)^u(η)>0, xe[α,ft].
Assume first that a + ε^η^b — ε, and set M = M(/l): = λh +1 — E. Then w"^Mu,
and integrating once, one obtains

u\x)^Mφ)(x-η) , ηύ*Sb, (4.2)

as 1/(77) = 0, a n d integrating again, M(X)^M(^)(1 +M(x-fy)2/2), η^x^
Moreover, as Mε2/2= 1, we have

η + ε^x^b. (4.3)

From (4.2), we see that u\x) is positive in [/?, ft], so that

ι/(;c)2 ̂  2 f M V ^ 2M J w'w ̂  M(w(x)2 - u(η)2) ̂  |Mw(x)2, (4.4)
η η

by (4.3). Thus

f u/2 + (V-E)u2^ J ( |M+F-E)w 2 .
r/ + ε /7 + ε

Combining this result with a similar calculation in (α, η), one obtains that

7 ' + ί u/2 + (V~E)u2^η]E + j (|M+F-£)w2. (4.5)
+
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On the other hand, v!' ̂  ku, where k: = λ\\ W\\ ^ + || V\\«,, and hence, for η - ε <. x

x)^κfa)exp}/fa?. But, by (4.1), λε2 = h'1(2 + (E- l)ε2)

-l)ε^); thus u(x)^γu(η), η-ε^x^η + ε, where

(4.6)

1 -£)ε 0 ^]/2/M(A o ) 2 y 2 ( £ - 1 ) .

, one verifies, using (4.5), (4.6) and

Thus

-ηJίεu
Now choose λo^λ such that

and

Then, as u(x)^2u(η) for
M(/l)ε(/l)2-2, that

The case where ηe{b — ε,b) or ηe(a,a + ε) is similar and left to the reader.
Finally, when η = aorη = b, then 1/(77) is not necessarily zero. However, in the case
η = a, say 1/ is positive in [α,ft], so that (4.4) holds true for x e [ α , ft], and the
estimates

- V w/2 + (F

are clearly sufficient, provided M = M(λ)>^(2E— 1). D

Proo/ 0/ Theorem 6. Suppose Wchanges sign at the points xu...,xk. Without loss
of generality, we assume that W(x) > 0 for x < x1 and x > xk. For each real E φ σ(H),
we will produce a positive λ for which Eeσ(H — λW).

(1) We first note that there exists ε0 > 0 such that for any a e 1R and all 0 < ε ̂  ε0

(4.7)

for all v e AC[α, a + ε] such that v(a) = 0; here AC denotes the space of absolutely
continuous functions. Inequality (4.7) follows immediately from the inequality

ί w2 S ε2 ί w/2, valid for w ε AC[0, ε], w(0) - 0.
0 0

(2) Let y! < y2 < y3 be fixed points strictly to the right of xk, and let ει > 0 be a
number such that 2εx is smaller than any of the numbers ε0, ^3 — 2̂? y2~yi>
yι—xk, and xj — xj_lij=l,...,k—l. Choose λo>0 such that for λ*zλ0, any

solution w of —u" + (V—E) = λWu has at least one zero in each of the intervals
( x i - ε l 9 x1-ε1/2)9 (x2 + ε1/2, x 2 +

 εi)> (X3~£n ^ 3 - £ i / 2 ) ? (x 4 +
 ε i / 2

5 ^ 4 +
 ε i ) ? ?

(xk + εiβ> /̂c + ε i ) ?

 a n d i n (3^1^2)5 CV2> J>3) [This is possible by Sturm oscillation
theory: choose /l0 such that λ0h-\-E—\\V\\O0>λ, where /I = 4π2/εf is the lowest
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Dirichlet eigenvalue of -d2/dx2 in L2(0, εJ2)9 and h is the minimum of W over
all above intervals, h is the minimum of W over all above intervals.]

(3) Now, since WH~ι is compact, we have σess(iί -λW) = σe s s(#), for any λ, by
WeyΓs theorem. Again by limit-point/limit-circle theory (see e.g. Coddington and
Levinson [2]), there exist solutions u±(x, λ) of -u"±+(V-E)u+=λWu±, with u±

square integrable at + oo, respectively. Moreover, u + (x, λ) are unique up to scalar
multiples, and for each I there is a neighborhood JV(X) where u+(x, λ) can be
chosen to depend analytically on λ.

Let yf{λ) be zeros of u+(x, λ) lying in the intervals (Xj — sl9 Xj — sJ2)J odd, and
in (xy + βi/2, Xj + εJJ even (1 ̂ j^fc), and let y+ =y+(λ) be the last zero of u+(x, λ)
in (yl9y2]5 7~=y~W the first zero of w_(x,A) in [y2?}

;3)
Our next aim is to show that there exists λx^λ0 such that λ>λ1 implies

-£)u 2 _= "j Wul>0, (4.8)

and

ϊ u/2+(V-E)u2

+= 1 WΪΛ\>Q. (4.9)
+

As M_(iy~) = O, and FΓ^y", oo)>0, Eq. (4.9) is immediate by partial integration;
partial integration also proves the equality in (4.8). Now we split up the integral on
the left-hand side of (4.8), and obtain, again by partial integration,

jeven,

Further, by (4.7),

Xy + Ei I*

J u'l + (V-E)ul>Q9 jodd, J u'? + (V-E)u2_>0, jeven.
yj xj-εi

Finally, by Lemma 10 above,

>0, jodd,

and (4.8) follows.
(4) Differentiating the equation —u"±+(V—E)u±=λWu± with respect to λ,

one obtains (dλ: = d/dλ)

-{dλu±γ+(y-E-λW)dλu± = m±,

so that
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Integrating, we find

and

Asu_(y~,λ) = u + (y + ,λ) = O,it follows from (4.8), (4.9) that

dλu-(y-9λ) u'-(γ-9λ)>θ, dλu + {y + ,λ) u\{y\λ)<Q. (4.10)

(5) We are now able to draw our basic conclusion that for any λ^λu there are
solutions u+(x, λ) which are square integrable at +oo, respectively, and which
have zeros y+ = y + (λ)e(y1,y2] and y~ = y~{λ)e[y2,y3), respectively, such that
(4.10) holds true. Differentiating the equations u + (y±(λ),λ) = 0 with respect to λ,
we see that the above inequality imply that γ + moves to the right and y ~ moves to
the left, as λ increases. A standard argument in Sturm-Liouville theory shows that
for some λ^λ, the continuations of y+{λί) and y~(/li) must coincide at some point
y, say. Then

u_(x,λ) u'+(y,λ), x^h

is an L2-eigenfunction oϊ H — λW—E. D

The above proof breaks down if FFhas opposite signs in (— oo, x x) and (xk, oo).
To treat this case, one needs different methods and our results are less general; in
fact, we consider only the case where W has one zero [but see Remark (h)]. The
method employed here is entirely different from our other approaches. The
essential idea is that by introducing a Dirichlet boundary condition at the zero of
W, the Birman-Schwinger kernel sgn( W) \ W\ ί/2(H - E) ~x | W\1/2 can be written as a
direct sum of two self adjoint operators plus a rank-one perturbation. We have the
following theorem:

Theorem 7. Let V: IR-^R be periodic and bounded, H: = — — ^ + V acting in

L2(1R), and suppose that W: 1R->]R is continuous, W(x) > 0 for x < 0, and W(x) < 0
for x>0. Furthermore, assume that there existsp>2 such that \x\pW(x) is bounded.
Then (H, W, R) is complete.

Proof For simplicity, we will again assume F ^ l and consider Eφσ(H),
E>inϊσ(H). We write W=σq2, with q^O, σ(x) = sgn(W(x). Clearly, to find a
solution of the problem (H — E)u — XWu, it is enough to find v and μ = λ ~1 such that
μv = σq(H — E)~1qy.

Again by limit-point/limit-circle theory (Coddington and Levinson [2]), there
exist solutions f± of —/+ + (V— E)f+ = 0, unique up to scalar multiples, which are

square integrable at + oo, respectively. Now let HL and HR be — —-^ + V, acting in

L2(— oo, 0) and in L2(0, oo), respectively, with Dirichlet boundary condition at 0,
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provided /+(0)/_(0)φ0. If /+(0)/_(0) = 0, choose some selfadjoint boundary
condition uφ) + au'φ) = 0 such that /±(0)+/;(0)Φ0, and define HL,HR accord-
ingly. Let HD = HL®HR\ by construction, Eφσ(H)vσ(HD). Our first goal is to
determine {H - E)"1 - (HD - E)"1: for any # e L2(R), the function h = (H-E)~1g
-(HD-E)-χg satisfies fteL2(R), -ft"(x) + (7--£)ft(x) = 0 for xφO, and ft(x)
+ α/ϊ'(x) continuous (in the case of Dirichlet-condition at 0, take α = 0). It follows
that h(x) = a_ (#)/_ (x), x < 0, and h(x) = a+(g)f+ (x), x > 0, where α+(g) e R. Since
h + ah' is continuous, there exists a constant y e R, independent of ^, such that

), and we see that

By linearity, there exists weL2(R) such that a+(g) = (w9g). Letting

it is clear by selfadjointness that, for some αeR, αφO,

(H-Eyι-{HD-E)-ι=^.)f. (4.11)

For later applications in Lemma 12 and Proposition A, we do the explicit
calculations for the case of Dirichlet boundary conditions: h(x) being continuous
at 0, we have

To determine α in (4.11), take any nonzero geC^(0, oo). Then
((HD-Ey1g)(x) = 0, x<0, implying

On the other hand, by the standard form of the Green's function of (H — E) 1,

00

((H — E)~ 1g)(x)=f-(x) J f+(y)9(y)dy/ίf-,f+~\ 5
0

and therefore

/ + ] , (4.12)

with [/_,/+] =/-/+ —/-/I denoting the Wronskian of /_ and / + .
Returning to the proof of Theorem 7, it follows from (4.11) that

we write B: =σq(H-E)~ιq, A: = σq(HD~Eyιq, and note that A,BeB^
[as q(-d2/dx2 + 1)" 1 / 2 is Hilbert-Schmidt]. It follows that

dt ^ f ί d t^
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Decomposing A into its left and right parts ΛL and AR, we get

with Ah, AR selfadjoint. Furthermore,

l = - +(qf,(AL-zΓ1qf)L-(qfΛAR-zy1qf)R, (4.13)
CC /x — Z CC

with ( , )L a n d ( , )R denoting the scalar product in L2(— oo,0) and L2(0, oo),
respectively. Let v u (vRi) denote the negative eigenvalues of AL and AR, respectively,
with (normalized) eigenfunctions nu and nRi, and let μu and μRi denote the positive
eigenvalues of AL and AR, respectively, with (normalized) eigenfunctions mu and
mRi; without restriction, let us assume v L i <v L > ί + 1 , vR i<vR > ί

Expanding the right-hand side of (4.13), we obtain

α A - z α i μ L ί - z / vLi —z / i vRi —z

(4.14)

We are looking for real zeros zφO of aι~1det((B — z)/(A — z)). Consider z > 0
henceforth. The second and fourth sum in the right-hand side of (4.14) are
continuous functions for z > 0 ; between any two roots μLi>^L,i + i? the first s u m

varies monotonically from — oo to + oo as z increases from μLti+1 to μLi. If there
are no roots μRi in the interval (μui+1? μLf), then the third sum is also continuous,
for μluj+ι<z<μu, and it is then clear that α " 1 det((J5 — z)/(A — z)) must have a
real zero in this interval. But it follows from Lemmas 11 and 12 below, that in fact
"most" intervals (μL>i+i,μLi) a r e free °f roots μRb and we are done. D

The following lemma establishes a lower bound for the positive eigenvalues of
-u'ί + iV-fyu^λiWUi, on (-oo,0).

Lemma 11. Let K:(-oo,0)-»R be bounded, F ^ l , and let H: = -d2/dx2 + V,
acting in L2(—oo,0), with some fixed selfadjoint boundary condition at 0. Let
W:(— oo,0]->]R be continuous, W(x)>0, for — o o < x < 0 , and suppose that
o
ί ]/W<oo. FixEeΈL, and let

for λ>0. Then

liminfJV+(A)/A1 / 2^- ?
A^ oo 7Γ - o o

Proof For n e N, let

x < — n,
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and let λ\n) denote the positive eigenvalues of (H - E)u\n) = λ\n) Wnu\n) we also define

for λ>0. We first remark that λ^n)^λi? i=l,2,. . . , for all n. To prove this, let
W(t):=(l-t)W+tWn9 and consider (H-E)ui(t) = λi(t)W(t)ui(t); as the eigen-
values λl ) are clearly simple, they are differentiable, and it follows that

(H-E- λt(t) W(t))ύt = Ut) W(t)Ui(t) + λlt) W(t)Ui(t),

where the dot means d/dt; multiplying by u(t) and using
(H-E-λi(t)W(t))u(t) = O, we get

0 = Ut) (μ(t), W(t)u(ή) + λlt) (u(t), W(t)u(ή),

and therefore λi(i)/λi(i)>0. Hence it is enough to consider the asymptotics of the
λ^s.

If u. = Mj») satisfies (H - E)w£ = A(

f"
}Wnub then necessarily ((7? - E)ut) (x) = 0, for

x < — n, and hence u^x) = ctf, (x), for x < — n, where /_ solves
—f!+(V—E)f- =0, /_ square integrable at — oo; the existence of/_ is again
guaranteed by limit-point/limit-circle theory. This implies that ut = u^ satisfies the
selfadjoint boundary condition

independently of ί= 1,2,.... Conversely, it is clear that each eigenfunction ut of
— u'l + iy—fyu^k-Ui on (-w,0), satisfying the above boundary conditions,
extends to an eigenfunction on (-oo,0). It follows then by standard min-max-
arguments using Dirichlet-Neumann bracketing (cf. e.g. Reed and Simon [14,
Sect. XIII. 15] and Courant and Hubert [3]) that

2

and we see that, for any ne*N,

liminϊN+(λ)/λί/2^lim N^(λ)/λ1/2=- j

and the result follows. D

To obtain an upper bound on the negative eigenvalues λi [for the interval (0, oo),
where P^>0], we first show that we can insert an infinite number of equidistant
Dirichlet points xk in such a way, that all eigenvalues λ{ go up. The decay of W then
gives the bound on the number of negative eigenvalues contributed by each
interval (xk,xk + 1).

Lemma 12. Let 1 ^ V: IR^IR be bounded and periodic, and let WG C([0, OO)) be such
thatO^W(x)^c(\ + \x\yp,0<,x< oo, for some p>2. Let H = -d2/dx2 + V, acting
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in L2(0, oo), with boundary condition cos θu(0) + sin θu\0) = 0, for some fixed ΘGR.
Then,for any EsR\σ(H), there exists a constant C such that for all λ>0

Remarks, (e) Clearly, JV_(λ) = 0 if E < inf σ(H). (f) A slight modification of the proof
shows that the result is also true if Eeσ(H).

Proof. For simplicity of notation, we will assume that Fhas period 1. Again, let /+
be the (unique) solutions of —/+ + (F— E)f± =0, f+ square integrable at + oo,
respectively. Without loss, assume that the Wronskian [/,/+] is positive.

(1) In this the first step, we wish to insert an infinite number of Dirichlet points
xk, xk^>oo, in such a way that the λ{s go up. So let us first analyze what happens if
we add a Dirichlet condition at some point x'>0:

Let a, b e ]R be such that φ: = af+ + £>/_ satisfies the boundary condition

cos 0 (̂0) +sin 0̂ '(O) = O.

As in the proof of Theorem 7 [see Eqs. (4.11) and (4.12)], it follows that

where

v(x): =f+(*')Φ(x)X{o,x') (, )

and H': = —d2/dx2 + V in L2(0, x/)φL2(x\ oo) with the boundary conditions
cos θu(0) + sin θu'(0) = 0 and u(x') = 0, for all u e D(H% Without restriction, we may
again assume that [^,/+]>0.

(2) Now let us first consider the case where ίί is Dirichlet at 0: as E φ σ(H), we
necessarily have /+(0)Φ0. We distinguish between the following two cases:

(2a): /+(0)/_(0)>0: Let Hk: = -d2/dx2 + V in L2(/c-l,fc), fe=l,2,..., with
Dirichlet boundary condition at k— 1 and at fe. We claim that

Eφσ(Hk) and (H-Ey1 > 0 (H.-Ey1. (4.15)
k = i

To see this, let H(k): = —d2/dx2 + Fin L2(fe, oo) with Dirichlet boundary condition
at k. Then, by step (1),

and we only have to check that <^(l)/+(l)>0. Note that Eφσ{H) implies
Eφσ(H(1))9 since H{1) is a translate of H, and Eφσ(Hx), since ^(l)φθ, as we will
now see: By definition, φ=f+(0)f_(x)— /+(x)/_(0), and hence

where z ±, |z +1 < 1, \z _ | > 1, are the multipliers of /+, respectively (cf. Eastham [4]).
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Hence (H-Ey^iH^Ey^iH^-Ey1. By periodicity,

and (4.15) follows. Writing D: = @ q(Hk-Ey1q, q = ]/W, we see that

q(ίϊ-Eyιq^D. (4.16)

By a now familiar calculation (μ = λ~1>0),

N.(λ)=Φ{μt; μt eigenvalue olqift-fy^q, μ^ ~μ<0}

^ #{?/; Ύi eigenvalue of D, yt^-μ<0}

= ΣNk(μ), (4.17)

where we have used (4.16) in the second step, and

Nk(μ): = *{yki; yki eigenvalue oίq{Hk-Eyιq, ykiS ~μ<0} . (4.18)

We will show that there exist constants m and c0 such that

Nk(μ)^m9 fc=l,2,...,μ>0, (4.19)

and

JVk(μ) = 0, fc^co/i"1^. (4.20)

From (4.17H4.20) it is clear that

We claim that JVfc(μ) ̂  m, where m is the number of negative eigenvalues of
Hk — E( = order of the gap containing E = number of zeros of /+ or/_ in [0, l));see
also Mingarelli [11].

Suppose, there would exist m +1 eigenvalues λki < 0 oϊ(Hk — E)uki = λkiuki. Then
we can find u: =Σ^Ϊ W /CP wφO, such that (u,(Hk — E)u)>0. But

(μ, (Hk - E)u) = Σ bibj(uki, (Hk - E)uk)

= Σ bf(uki9 (Hk - E)uki) = Σ bfλki(ukb Wuki) < 0,
ij i

where we have used the fact that (wf, (Hk — E)Uj) = 0, ί+j, as all eigenvalues are
simple. Hence (4.19) is proven.

To show (4.20), we first remark that there exists a positive constant d such that

| | ( H k - £ ) u | | ^ c Ί | u | | , ueD(Hk), fc=l,2,..., (4.21)

since Eφσ(Hk) and all the Hk are the same. Now considering the eigenvalue
equation (Hk — E)uki = λkiWuki, \\uki\\ = 1, in L2(k— 1, /c), it is clear from (4.21) that
c'^ |/U \\Wuki\\S\λki\ck~p, by the decay property of W. Hence all λki satisfy \λki\
^c'/c kp, which is equivalent to saying that [in the notation of (4.18)] \yki\
<.c/c' k~p, or Nk(μ) = 0, provided μ>c/c'-k~p.

This concludes our proof in the case (2a).
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(2b): /+(0)/_(0)^0. Let again ^=/+(O)/_(x)-/+(x)/_(O). As E lies in a gap,
/+ and /_ have zeros in (0,1); in particular, we can find xoe(0,1) such that
/_(x o)/+(x o)>0. By construction, E will not belong to σ(H0)uσ(H{0)), where
Ho: = - d2/dx2 + V in (0, x0) and H{0): = - d2/dx2 + V in (x0, oo), with Dirichlet
boundary conditions at 0 and x0. As in (2a), to get H^H0@H(0), we have to
control the sign of ^(x o )/ + (x o ) [^/+] . B u t ίΦJ+l=f+Φ)U-J+l and hence

Φfro)fΛxo)iΦJΛ = {fK0)fΛxo)Mxo^
which is positive since /_(x o)/+(x o)>0, /_(0)/+ (0)^0 and [/_,/+] >0. Now, as
/+(x o)/_(x o)>0, we can proceed as in (2a) and insert Dirichlet boundary
conditions at the points x0 + k, k = 1,2,... [note that the function φ in (2a) is now
replaced by /+ (x 0)/- (x) —f- (*o)/+ (x)l>obtaining finally an inequality analogous
to (4.16). The eigenvalues contributed by the intervals (xo + fc- l,xo + fc) are
estimated as in (2a), and the contribution by (0, x0) is bounded by the constant m,
as in the proof of Eq. (4.19).

(3) Finally, let us consider the case where H does not have Dirichlet boundary
condition at 0. Let φ: α/+ +βf- satisfy the boundary condition of H at 0, and note
that β + 0 as E φ σ(H). In particular, <^and /+ are not proportional and, as above,
we can find xe(0,1) such that <^(x)/+(x)[^,/+]>0, /+(x)4=0. Again by
construction, E is not in the spectrum of — d2/dx2 + V on (0, x) (with the boundary
condition of H at 0, and Dirichlet boundary condition at x), and not in the
spectrum of —d2/dx2 + V on (x, oo) (with Dirichlet boundary condition at x). But
on (x, oo) we are now in the case (2a)/(2b), and the result follows, as the interval
(0, x) can contribute at most m eigenvalues. D

Remarks, (g) In general, the folk theorem is that the asymptotic distribution of
eigenvalues is related to volumes in phase space (cf. the discussion in Reed and
Simon [14, p. 261f.]). Applied to our situation, one would expect that [assuming
W(x)>0, x>0] N+(λ) = thG number of positive eigenvalues λt of (Hp — E)^
^λiWui which are less than or equal to λ, is given asymptotically as /I-KX) by

— f dxdp=—- J dxdp
^71 2 V-E^λW} 2.% {(χ,p);E-V^p2^E-V + λW]

~ - ?a/λW+E-V-]/E-V)dx~- ]]ίλWdx
π o π o

(cf. the shaded area in Fig. 1 below), and indeed we will verify this in the appendix.
Similarly, one would like to prove that the number of negative eigenvalues λb

— λ^λi<Of is approximately given by

— j dxdp,
In {(X,p);E~V-λW^p2^E-V}

which behaves like constλ l l P, if W(x)~c\x\~p' for x large (cf. the shaded area in
Fig. 2 below). In this case, Lemma 12 provides only an upper bound ^cλί/p', and
the question of the precise asymptotic distribution remains open.

(h) With considerable effort it is possible to extend Theorem 7 to the case
where W has more than one change of sign. Even the case where W has only two
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changes of sign requires a proof which is far longer than the proof of Theorem 6.
Amongst the many additional difficulties, perhaps the most cumbersome is that on
inserting Dirichlet-points inductively at the zeros of W, the (k + l) t h operator is no
longer a sum of two selfadjoint operators (+ a rank-one perturbation).

λW + E-V, λ>0.

Fig. 1

E-V

Fig. 2

Appendix

Here we combine the method of Lemma 12 of inserting Dirichlet points with the
exact asymptotics for finite intervals, to obtain a sharp upper bound on the
number of positive eigenvalues (for W positive). Together with the lower bound of
Lemma 11, this leads to the following result:

Proposition A. Let V:IR-+1R be bounded and periodic and let H: = —d2/dx2 + V,
acting in L2(0, oo), with Dirichlet boundary condition at 0. Suppose that
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We C([0, oo)) satisfies 0 < W(x) ̂  c(l + |x|) ~Λ 0 < x < oo, for some p>2. Defining

for λ>0 and EeRnρ(H), E>inϊσ(H), we have

π o

Proof We know already

1

π

by Lemma 12. In order to show the complementary inequality

lim snpN(λ)/λ1/2 ^ - j ]/W9
π o v

we wish to insert Dirichlet points, as in the proof of Lemma 12; for simplicity, we
shall again assume that V has period 1. So let /+ be as in the proof of Lemma 12,
and assume that /+(0)/_(0)φ0 [if/+(0)/_(0) = 0, replace E by E + ε for some
ε > 0, chosen small enough so that no λ{ crosses 0; then the eigenvalues λt = λ^ε) will
decrease and we will have N(λ;E + ε)^N(λ;E)']. Proceeding as in the proof of
Lemma 12, but with reversed inequalities, we insert Dirichlet points

xk:=fe, fc=l,2,..., if

or

*oe(0,l), j

and denote by Hk the Dirichlet operators on the fcth interval (xfc_l5xk) (with
x _ 1 = 0 , in the second case). We obtain q{H-E)~1q^φq{Hk-E)~ιq, so that
N(λ)SΣNk(λ\ where V

Nk(λ): = Φ{λki; (Hk-E)uki = λkiWuki,

We will show below that there exist ak > 0 such that

(4-22)
k

Using (4.22), dominated convergence implies

pfc(l)//l1/2=Σ- ϊ
λ-^oo k 71 Xk-ι

where we have again used the standard asymptotics on the finite intervals

\Xk-UXk)

It remains to prove (4.22): in the kth interval, consider the equations
-u'ί + iV-fyu^λiWUi and -u +(V-E)ui = λic(l +k)~%9 with Dirichlet
boundary conditions at xk _ ί and xk. Then it is easy to see that λt ^ λt [first increase
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W]c{\ + k)~p and then decrease F | l ; note that in the second step some of the λt

9s
may cross zero], so that

But we can explicitly calculate the I/s; in fact,

(and similarly for the interval (0, x0) in the second case above). It follows that

Nk(λ)^Nk(λ)S ~}/cλ(l+kyp + E-Ξ\ . (4.23)

On the other hand, by the same arguments as in the proof of Lemma 12, there
exists a constant c^O such that

CΊIKII ^ W(Hk-E)u\\, ueD(Hk), fc = 0,1,2,...,

which implies again that on (xk_l9xk), all λki satisfy

and hence

Nk(λ) = 0, k>c"λ1/p. (4.24)

From (4.23), (4.24), it is now easy to see that there exists a constant c such that

Nk(λ)^cλ1/2k~p/\ λ>0, fe = 0,1,2,...,

which proves (4.22), as Σ k~p/2 < oo. D
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