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On the Existence of Eigenvalues
of the Schrodinger Operator H— AW in a Gap of o(H)
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Abstract. The authors prove a number of results asserting the existence of
eigenvalues of the Schroédinger operator H—AW in a gap of g(H), where
H=—A+YV and V and W are bounded. The existence of these eigenvalues is
an important element in the theory of the colour of crystals. The basic theorems
are proved in R”; stronger results for v=1 are also presented.

Introduction
In the quantum theory of crystals one studies periodic Schrodinger operators
H=—-4+4V, Vx+a=V(x), aeAd,

where A is a lattice in R". The operator H is the basic ingredient in the so-called
one-electron model (cf. Reed and Simon [14, Sect. XII1.16, p. 312], Kittel [8], and
Ziman [20]) describing the energy levels of an electron in a pure crystal. The main
feature of the model is that “allowed” energies for an electron moving in the crystal
lattice lie in o(H), the spectrum of H, which consists of bands. In a typical insulator,
there is a gap of some electron volts between the first and second bands, and
absorption of photons from incoming electromagnetic radiation is possible only if
the energy of the photon is greater than the gap (in this theory, all electron states in
the first band are assumed to be filled, so that the electron has to “jump” over the
gap by absorbing the photon energy). If impurities are present in the crystal, new
energy levels may appear in the gaps of o(H) (“impurity levels”), which effectively
reduce the width of the gaps and lead to a selective absorption of certain photon
energies (cf. Stoneham [18] and Townsend and Kelly [19]). Perhaps the most
appealing example in nature is the Al,O, crystal (Corundum), which has a large
gap between the first and second bands and is transparent and colourless. By
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replacing some of the Al**-ions by Cr®" (respectively Ti*"*), one obtains Ruby
(respectively Sapphire). The impurity levels lead to absorption of green (respectively
yellow) light, and the crystal appears in the familiar complementary colour red
(respectively blue) (cf. e.g. Ludwig [10, pp. 372f.]).

The situation seems to be much the same for glasses, where one assumes that
the “pure glass” is described by H = — A + V, where V'is no longer periodic, but has
some “short range order,” which produces gaps in o(H) (cf. Townsend and Kelly
[197). In general, we will not assume V to be periodic.

In this paper, we consider the following model problem for the one-electron
theory of solids: let H= — A4 + V'be the Schrodinger operator of the pure “crystal”
and let the potential W describe the “impurity.”

Question. Given an energy E € R\o(H), does there exist a (real) coupling constant A
so that E€ a(H—AW)?

If W(x) decays and

(i) W(x) is of one sign,
or

(ii) E<info(H),

the problem of the existence of real A’s reduces in a standard way (cf. Reed and
Simon [14, p. 99]) to the classical existence theory for real, nonzero eigenvalues of
the nonzero, compact, selfadjoint operators |W|Y*(H—E) Y|W|'? and
(H—E) '?W(H—E)™ /2, respectively (see also Klaus [9]). If E is in a gap, and W
changes sign, then the above reduction leads to the nonselfadjoint operators
sgn(W)|W|V2(H—E)~Y|W|'? and sgn(H—E)|H—E|”Y?W|H—E| ' respec-
tively, and the existence of real, nonzero eigenvalues no longer follows on abstract

grounds. Indeed, even in the case of matrices (cf. also Klaus [9]), for H : = <(1) (1)>,

W: = <(1) (1)>, the eigenvalues of H— AW are E= +]/1+ A%, which lie outside the
gap (—1,1) of o(H) for all real A.

In the theorems that follow, we will always assume that V and W are real-
valued, bounded and measurable. We normalize V(x)=1, so that H>1 and if E
lies in a gap of a(H), then necessarily E > 1. The assumption of boundedness for V'
and W is made mainly for convenience; many of the proofs that follow can be
extended to include local singularities by using standard techniques from the
theory of Schrodinger operators.

Definition. Let V and W be as above, H: = —A+V, and let SCR.
(a) We say that the triple (H, W, S) is complete, if for each E € R\c(H) there
exists l=/1(E) € S such that E e o(H — AW).

(b) Let U 0., 1 £N £ w0, be the decomposition of IR\c(H) into a union of

disjoint, open 1ntervals (i.e. gaps). We say that the triple (H, W, S) is essentially
complete, if, for each k, there exists at most one energy E, €O, such that
E.¢ U o(H—AW). The E,’s, should they exist, are called exceptional levels.

AeS
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The notion of essential completeness arises in a natural way. As we will see, at
the technical level, the proofs of Theorems 1 and 3 below proceed by showing that
U o(H—AW) is dense in R\o(H); this implies that the triple (H, W,R,) is

A>0
essentially complete, as first observed, in the case where W is relatively compact

with respect to — 4, by Klaus [9]: for, if O, is a gap in o(H) and E, < E; are two
exceptional levels in O,, then, by denseness, o(H — AW)N(E,, E;)*0, for some
4>0.But o(H)N(E,, E;) =0, so that by continuity of the spectrum, ¢(H — AW) has
to cross either E, or E;, as 4]0, which is a contradiction. In other words, if

(J o(H—AW) is dense in R\c(H), there is at most one exceptional level per gap.
A>0
Exceptional levels can arise even in 1-dimension, if we allow W to be a

S-function. Let E be an energy in a gap of o(—d?/dx*+ V) and let f, be the
(unique) solutions of —fi +(V—E)f. =0 which are square integrable at + oo,
respectively. The existence of such solutions is a standard result in limit-
point/limit-circle theory; note that f,, f_ are linearly independent as E ¢ o(H).
Since E >infa(H), it is also clear that f, must have a zero at some point x = x,. Set
W:=46,,. Any possible L,-eigenfunction u of (H—/AW)u=Eu is necessarily a
multiple of f, for x> x,, and a multiple of f/_ for x <x,. The matching conditions
ay fr(xg)=a_f_(xo), ay fi(xo)=a_fl(xo)—Aay fi(xo)=a_f (x,) now imply
that a, =a_=0.

Our results are as follows: In Sect. 1, we prove that (H, W,IR ) is essentially
complete, provided |x|*W(x)—0, |x|— o0, and W(x)=h>0, for x in some ball B
(Theorem 1). We also show that, fi W has compact support and E, is an
exceptional level, then necessarily E, is an eigenvalue of the Dirichlet operator
H=—A+V in R"\supp W (Theorem 2).

If W(x)=const=+0, then clearly (H, W, R) is trivially complete. In Sect. 2, we
show that (H, W, R) is essentially complete, provided W does not oscillate too
much; see Theorem 3.

In Sect. 3, we consider complex E (but V and W still real) and show that for all
but a discrete set of E’s belonging to g¢(H), there exists a AeC such that
Eeo(H—AW), provided W(—A4+1)"'eB,(L,(R"), the g™ Schatten ideal, for
some g€ [1, ) (Theorem 4).

Finally, in Sect. 4, we show that for a variety of situations in 1-dimension,
exceptional levels do not occur. In particular, this is true if

(i) W(x) has compact support (Theorem 5),
or

(i) W changes sign a finite number of times, sgn W(x)=sgn W(—x) for x
sufficiently large, and W is relatively compact with respect to — A (Theorem 6),
or

(iii) W changes sign precisely once and |W(x)|<c(1+|x|)~?, for some p>2
(Theorem 7).

The proof of Theorem 7 involves the interesting question of estimating the
growth rate of generalized eigenvalues 4, of (H — E)u, = A4, Wi, on L, (0, 00), both as
A— + 00 and A,— — o0, in the case where W is positive and E lies in a gap of a(H).
Standard techniques (Reed and Simon [14, Sect. XII1.15]; see also Fleckinger-
Pelle [5] and Mingarelli [12]) do not apply as H — E has essential spectrum above
and below zero and Dirichlet-Neumann-bracketing is no longer useful. We obtain
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certain “phase space” bounds (see [ 14, loc. cit.]) for the 4,’s in the body of the text.
In the appendix, using Dirichlet-Dirichlet-bracketing, we prove a Weyl’s law for
Ax— + 0. The precise asymptotics for A,— — oo remains open.

Remark. In all our results (except Theorem 3), W is relatively compact with respect
to —Asothat o (H— AW) =0 (H), for all 4, by Weyl’s theorem. This means that
if E lies in a gap of 6(H) and E € 6(H — AW), then necessarily E is an eigenvalue of
H—AW.

1. W Decays an Infinity

The following Theorem 1 is our main result on the existence of eigenvalues of
H—AW in a gap of o(H), where H:=—A4+V acts in (real) L,(R"), ve N
={1,2,...}.

Theorem 1. Let ve N and V, W:R"— R be bounded. Suppose that W(x)=h>0, for
x in some ball BCR’, and that |x|*W(x)—0 as |x|->c0. Then (H,W,R,) is
essentially complete.

The idea of the proof is most easily described in the special case where V is
periodic and W has compact support: let E be a fixed energy in a gap (a, b) of a(H)
and let IT, be the parallelepiped built of (2n+ 1) lattice cells, centered at 0, and
finally let H, ,:= —A+V, acting in L,(I1,), with periodic boundary conditions.
Note that any gap in o(H) is also a gap in o(H, ,), for any n. By a simple
compactness argument [cf. Remark (c) following the proof of Lemma 3 below],
there exist 4,>0 and f,e D(H,, ,), | f,l[=1, such that (H, ,—4,W—E)f,=0. As
(a,b)no(H,, ,) =0, f,is concentrated near the support of W, and therefore we can
find cutoff-functions y, € C¢°(I1,) such that (H, ,—4,W —E) (v, f,)—0 and ||y, f,|l
—1asn—oo0.But H, ,(v,f,)=H(y,f,), and it follows that H — 4,W must have an
eigenvalue close to E.

When V is not periodic, the ideas outlined above must be modified in a rather
substantial way. As we will see, there are two main problems: first, we have to
construct approximating operators H, which have the same gap (a, b) as H, and
second, we have to provide an estimate on the coupling constants 4, which is
complementary to the decay rate of W.

Proof of Theorem 1. We need only consider real E ¢ g(H). Without restriction, we
may assume B=B,, for some ¢ >0, where B,: ={x € R";|x|<g}. Let a<b, [a,b]
no(H)=0, E€(a,b). We first construct an approximating operator H,: let
H,:=—A+YV, acting in L,(B,), with Dirichlet boundary condition; in other
words, H, is the Friedrichs extension of — A4+ V [Cg(B,). Recall that H, is self-
adjoint and Cg(B,) is a form core.

Let E,;, i=1,...,m(n), be the (repeated) eigenvalues of H, in (a,b), with
associated normalized eigenfunctions u,; € D(H,), | u%=1. Now introduce

m(n)

Pn L= 'Zl (uni’ ')uni

and

~

H,.=H,+((b—-a)P,.
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Clearly,
o(H,)N(a,b)=0. (1.1)

By Lemma 3 below, there exists 0<4,<cn? such that Eeo(H,—A,W); let
f,e D(H,)=D(H,) be a normalized elgenfuncuon j f2=1. Using (1.1), we will

deduce that f, is small near dB, in the sense that, for any O<a<l,

S, 0, n—o00, (1.2)

(x4 denotes the characteristic function of a set A CIR”). To prove (1.2), fix a € (0, 1)
and let ne C*(R") satisfy #[B,,=0, n[(R"\B,)=1, and 0=<#=<1 otherwise.
Defining 7, : =#(x/n), it is sufficient to show

Hfu—0, n—o00. (1.3)
Let 6: =min{|E—al,|[E—b|}. As H, is selfadjoint,

Sl ful S NCH, = E) ()N = W(H, = 2, W—E) ()1 + | 2 Wit £l

the last term goes to 0, as n— oo, since ||4,Wy, ||, —0, n—co, by Lemma 3 and the
decay rate of W. Further,

I(H,— 2, W—E) (1, )N = Ino(H, = A, W—=E) £, + 2| V1,71,
+ 1A, ful + O =) [Py 1]l full 5

where [ -, -] denotes the commutator. The first term on the right-hand side is zero.
The terms ||V, Vf, |l and [|4n,f,] go to zero, as ||Vn,ll,<cn™', [[4An,]|,<cn™?,
”fn” = 1$ Supp(Vrln)CBan\Ban/Z’ and ”(an)l(Ban\Ban/Z)” éCOIlSt, by Lemma 4 belOW.
Finally, defining y,: =1-—4,, we have

m(n) m(n)

[Pm nn]f;l = igl (uni’ nnf;l)wn Upi— Z (unw 1*pnfn)rln - [Pm wn]ﬁl s

which goes to 0 since, by Lemma 6 below, |[y,u,|<e”*, and m(n)<cn’, by
Lemma 5, and (1.3) follows. In particular, |y,f,|—1, n—oco, and as above

(H,—3,W=E) (w,f,)= — (H,~ 2,W—E) (1,1,)>0.
Again by Lemmas 5 and 6, it is clear that
P.f)—0, n—o.
Now fix £€(0,d), e< 1. Then there is n=n(¢) such that
lpuful 21—e/2,

I(H = 2, W—E) W, )l £ (H,, — 2, W= E) (0o )| + (b= )| P S
Sef2<ellwatul »

implying that o(H —A,W)N(E—¢, E+¢)+0, which proves denseness. Essential
completeness follows by the continuity argument given in the introduction. [
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Remarks. (a) Since we have no uniform bound 4, < const, we cannot hope to obtain
a nonzero solution f by defining f: =w-limf,.

(b) It is clear from the proof of Lemma 3 that in fact there exist an infinite
number of A’s such that o(H—AW)N(E—¢, E+¢) 0.

In the following lemmas, we always assume that the conditions of Theorem 1
hold, and we will use the notations of the proof of Theorem 1 without further
comment.

The first step in finding 4, >0, 4, < cn?, is an upper estimate on the eigenvalues
of H, Y*(W+ uE)H, '/* which are greater than or equal to y, for x>0.

Lemma 1. For 20 and any n, let §,,(1)Z7,2(0)= ... denote the nonnegative
eigenvalues of H, Y"*(W+ uE)H, */* ordered by the min-max principle. Let pe N,
p>v/2. Then there exists a constant C such that for u>0,

F{7nt); YW 2} =C- 0 (|W| o +_E)? - 7P,  nelN.

In particular, for i=Cn’EP+ 1, the eigenvalue branch v, (1), 1=0, crosses the
diagonal.

Proof. Writing G,(u): =H, Y*(W+ uE)H, '/, we have
B 3 (T P 2 p} = .ZN TP =1(Gu() 411 5

where G,(u) ., is the positive part of G,(1) and | - ||; denotes the trace norm. Now
we can estimate
G Pl AW o+ REY I H, Pl (W | o + HE)? | H, P
=(|Wllo+uE) | GP(x,x)dx,

B,

where G%(x, y) is the integral kernel of (—A4+1), 7, and (—4+1), is —4+1,
acting in L,(B,), with Dirichlet boundary condition. But, by the maximum
principle, the integral kernel of (—4+1), ! is dominated (pointwise a.e.) by the
integral kernel of (— 4+ 1)~ !. Calling G)(x, y) the kernel of (— A +1)7?, we see
that

| GP(x,x)dx < § GP(x, x)dx<cn’,
B,

n n

since
oo 0
GP(x,x)=c, | e "(x,x)e " tdt=c, [ t e " 1dt. [
0 0

By comparison with an eigenvalue problem on the ball B, we find a lower
bound for the 7,;(x), which is independent of both n and . This is the (only) place
where we use that W[B=h>0.

Lemma 2. Assume that W B,=h>0. Then there is a constant ¢>0 such that
?ni(#)gCi_zw’ n, iENa (14)

where the 7,{(1)’s are defined as in Lemma 1.
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Proof. Let H,: = —A+V, acting in L,(B,), with Dirichlet boundary conditions
[ie., H,is the Friedrichs extension of (— A4+ V) [C§(B,)], and let y,; =7,,= ... be
the positive eigenvalues of H, !. We claim that

. h .
Fui(l) 2 m)’gia nieN, (1.5)

and that there exists a constant ¢’>0 such that
yei;c’i“z/”, ieN. (1.6)

Clearly, (1.5) and (1.6) imply (1.4). We first prove (1.5): let O; denote a j-dimensional
subspace of a Hilbert space. As C3(B,) is a core of H. 1/2 we have

(A 1/2(W+uE)H U2y )

Tu(w)=  inf sup{ ;0+uel,(B,), ulo,_ 1}

0;-1CL2(Bp) u
_ . (W4 pE),v) "
_Oi—lgnré%(Bn)Sup{ (ﬁnv’ U) s O#DECO (Bn)’ UJ—O{_I
h (v.v)
>
T 14+b—a 0i-1cc¥®Bn up {(Hn v,v)° ; 0+0e CF(B,), v1O;- 1}
> " inf  sup (©,0) ; 0ve C®(B,), v10;
T 1+b—aoi-,ccy®n (H v,0)° 0\ Fo/> i—1
___h . (v,v)
_l+b—ao,~_11cléf2‘)°(39)su {(H ) ; 00 GCO(BQ) vl10;_ 1}
__
T itb—a’®

which proves (1.5).
By Weyl’s law (cf. Reed and Simon [14, Theorem XII1.78]) and the inequality
—A+V< —A44V,, there exist constants ¢ >0 and A, >0 such that, for 1= 4,,

#{&;; &, eigenvalue of H,,0<& <A} =2,

This means that the first [cA"/?] eigenvalues Vot of H, ! satisfy y,, =41, for 1> 4,.
Hence, there exists an i, € N, such that y,, > ¢'i~*””, for i i,, and (1.6) follows. [

The existence of a positive 4,<cn? is now an easy consequence of Lemmas 1
and 2, combined with an argument of Fleckinger-Pelle [5] and Fleckinger and
Mingarelli [6] which connects our generalized eigenvalue problem with the
spectrum of H, '?(W+ uE)H, /2.

Lemma 3. For any n, the indefinite generalized eigenvalue problem (H,— E)u= /Wi
has an eigenvalue J,, satisfying the estimate 0 <A, <cn?.

Proof. For A>0, (H,— E)u=AWau, for some u=0, is equivalent to
Hu=(W+Eu=M W+ 'E)u,
which in turn is equivalent to

peo(H, VP(W+uE)H; Y3,  p:i=i"1,
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ie. u=7,(u), for some ie N. But by Lemma 1, we know that, for any i=cn’, the
(continuous) branch §,,(1), =0, must cross the diagonal; hence, for i = cn’, there
exists at least one ;>0 such that 7,,(x;) = ;. Therefore, by Lemma 2,

w=du)2ci"?, neN, izen’.
Inserting i=i,: =[cn"]+ 1, we get y; =c’n"?, which proves the lemma. [

Remark (c). The fact that for each n there exists 0<ueo(H,; Y3 (W+ uE)H, /%)
follows immediately from compactness. Indeed, for >0, only a finite number of
branches y,(1), = i, can lie above the diagonal. On the other hand, there exists an
infinite number of y,(0) > 0, since the quadratic form (H, *?WH, /*¢, ¢)is strictly
positive on the co-dimensional space H:/*(CZ (B »)- The point of Lemmas 1-3is to
provide estimates which are “complementary” to the decay rate of W for the proof
of Theorem 1. In the case where W has compact support, these estimates are not
necessary [cf. Theorem 5 and Remark (c), following the proof of Theorem 5].

The following method for obtaining a gradient estimate is taken from
Lemma C.2.1 in Simon [17].

Lemma 4. Let 0<f'<f<1, A,:=By,\Bg,, and f,€L,(B,) be a solution of
(H,—E)f,=,Wf,, with | f,||=1 and |4,| <cn*. Then

(VST Al = C=C(B, B).

Proof. Choose a cutoff-function ¢ satisfying ¢(x) =1, for p’'<|x| <, ¢(x) =0, for
|x|<p/2 and for |x|>(f+1)/2, 0Zd(x)<1 else; let ¢,(x):=¢(x/n). As in
Lemma C.2.1 of Simon [17], the identity

le(¢"f;, Vf;: _%V¢nfnz) = ¢n(l7(n)2 + ¢nf;1Af;l —_%A ¢nfnz s
Bj¢nl‘7fn|2§%g 1A¢nlf;12+l§ Gl ALl -
But [44,|,<c-n"% | f,]=1, and

I(4fisupp .l < IVl + 2. WIsupp dull o - [ £l
+E| £l +(b—a)| P,]| - [| full = const,

yields

as W decays quadratically [

To control the projection operator P,, we first give an estimate on m(n) using
Weyl’s law, and then we show (in Lemma 6), that the eigenfunctions u,; of H, live
close to 0B,, the boundary of B,. More precisely, the exponential decay of the
resolvent kernel of (H — E) ™! implies that the u,;’s are exponentially small on balls
By, 0<f<1, as n—co.

Lemma 5. Let m(n) be the number of (repeated) eigenvalues of H, lying in (a, b).
Then there exists a constant ¢ such that m(n) < cn’.

Proof. Let 4, be the Dirichlet operator on B,. Since V=1, we have
m(n) < # {4;; 4; eigenvalue of —4,, 4, <b}
=% {A}; A/ eigenvalue of —A,,A/<bn*},

by scaling. By Weyl’s law (cf. Reed and Simon [14, Theorem XII1.78]), the last
number is bounded by ¢'(n?b)"2. O
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Lemma 6. Let u,;, i=1,...,m(n), be the normalized eigenfunctions, | u%=1,

Bn
associated with the eigenvalues E,; of H, lying in (a,b), where [a,b]no(H)=0. Let
pe(0,1). Then there exist a=0(f)>0 and ny=ny(f)>0 such that

s, <e™ ™, nzng, i=1,...,mn).
Proof. For n=2, let {,e C3(B,) be such that {,[B,_;=1, 0={,<1 else, and
W+ 148,01 = Cy, with C,, independent of n. Then, for i=1, ..., m(n),

(Hn - Eni) (Cuuni) =2 VCn Vuni + Aénuni = hni .

But [|Vu,|?= | (—=V+E,)uy<const, implying |h,|<c, n=2, i=1,...,m(n).
B,

Clearly: Cnuni € D(H)a and (H - Eni) (Cnuni) = (Hn - Eni) (Cnuni)' AS Eni € Q(H)7 we get

Cathyy=(H—E,) " 'hy, 122, i=1,..,m(n) (1.7)
with

“hni “ éC and SupphnicBn\Bn* 1-

Since we want an estimate for |u,xp, [, and h,; is supported in B,\B,_, the
exponential decay in |x — y| of the integral kernel G(x, y; E,;) of (H—E,;) ! (which
is uniform in E € [a, b]) will give the desired result. For example, Eq. (4) of Simon

[17, Theorem B.7.2] tells us that |G(x, y; E)| < Ce™**7I for |x—y|=1. Now, for
n2ne, we have {,u,; !By, =u,;[Bg,, and it follows from (1.7) that

luni(x)léB \.'! IG(X, y:Em)”hm(y)’dy§ Ce—av’ XEB[;’n'
Since the proof of Theorem B.7.2 in Simon [17] is rather lengthy and complicated,
we include the following direct argument for the reader’s convenience.

For ¢eR", we have e ®**(H—E)e* *=H—E—2¢-V—¢* [for simplicity of
notation, we write ¢ - x instead of (¢, x)]. As ||V(H — E) ~ ! | is uniformly bounded for
Ee[a,b], and

H—E-2:.V—e*=(1-2¢-V+e*)(H—E) ") (H—E),
it follows that, for |¢| <¢,, we have [a, b]Co(e *"*He**), and
le™**(H—E)"'e"|=|l(e"**He**~E) '|SC, Ee[a,b]l, [l<e.
(1.8)

Clearly, (1.8) still holds true if we replace e**'* by e*#'*~*)_and the constant will
not depend on x;, € R*. Now we split B,\B, _; into sets D, of diameter <2:

s(n)
Bn\Bn‘l =kU1 Dy,

where D,nD;=0, k=1, diamD, <2 and s(n)<c-n*"!; also let y, € D,. Then

s(n)
”XB,,,,(H —E,) thy|* S en”! k§1 ”XBﬁ,.(H —E,)" l(hniXDk)” 2

s(n)
é cn'” 1 kZI ”XB/;nesk A yk)e_gk . (x_yk)(H - Eni) !

.esk'(x—yk)e—sk'(x—yk)hniXDkHZ =:D,
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where we have chosen & =gyl 'y,. But for xeBg, & (x—y)
< —go(n—pPn—1), and for yeD,, e % @7 <e?® Now, using (1.8), we may
estimate

s(n)
D=Cn™! k; 125, ()€™ E 7%, - le ™5 CTI(H — E,) ™ et || 2

. ||e—ek-(x—yk)h ”2

niXDk

s(n)
é C/nv — le_ 2¢e0(n—np— 1)C26480 kzl “hniXDk ” 2 : D

In the case where W has compact support and is sufficiently regular, we can
characterize exceptional levels as Dirichlet eigenvalues of the operator — A4+ V in
L,(R*\supp W). The basic piece of information needed for the characterization is
obtained by looking at eigenvalue branches emerging from the lower edge of a gap
and close to the exceptional level E,. Here one finds 4, E,, and u, such that E,TE,,
(H— i, W—E)u,=0 and (Wu,,u,) <0, so that ||Vu,|*><const; in particular, we
find a function u such that u,—u, weakly in H3(RR").

Theorem 2. In addition to the assumptions of Theorem 1, suppose that W has
compact  support, R \suppW satisfies the segment condition and
meas{x e supp W, W(x)=0}=0. Let Q be the unbounded component of R*\supp W,
and let Hg,: = — A+ V, acting in L,(Q) with Dirichlet boundary conditions. Then we
have: if E, is real and does not belong to \) o(H — AW), then E,, is an eigenvalue of
Ho,. 420

Proof. (a) Let (a, b) be the gap in o(H) around E,, let E,1E,, E, € (a, E,), and let 4,
be the smallest (positive) coupling constant such that E,eo(H—21,W); the
existence of 4, is guaranteed by Theorem 1. By regular perturbation theory, there
exist ¢,> 0 and analytic functions u,(4), E,(4), defined for A in (4, —¢,, 4, +¢,), such
that

and E,(4,)=E,. Now, E,(4,)>0; otherwise, for some 0</,<4,, we would have
E,(4,)> E,(4,)=E,. On the other hand, as A decreases to 0, the branch E,(-) can be
continued until it is absorbed at the point a [note that E,(-) cannot cross the level
E,]. It follows that there would exist 0 <A,</,<4, such that E,(1)=E,(4,),
contradicting the minimality assumption on 1,

Hence

(Wit (4,), un(A0)) = — E(2,) 0.
But then, writing u,: =u,(4,),
V|| * +(J Viig) = E, = 2 ( Wity u,) <0,
which implies ||Vu,|?< [V, +b. Hence there exists a function ue H3(IR") such
that u, —u weakly in Hy(R”), u, »u in L, ,,(R”), and u,,—u, a.c., for a suitable
subsequence (u, ) C(u,), which we will again call (u,).

(b) Now first suppose that the 1,’s are bounded. Then it is clear from (1.9) that
| Au,|| < const, and it follows that u,—u weakly in H3(IR"), and hence (H— AW )u
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=E,u, for some A< 0. But u=0; otherwise we would have u, [supp W—0 and
A,Wu,—0, in contradiction to

14, Wi, || = |(H — E,)u, || 2 dist(E,, 6(H))26>0, n=n,.

So we see that u satisfies (H—AW)u=E,u, u#0, contradicting the assumption
about E,.

(c) Assume A,—o0. As (H—E)$,u,)=4,Wo,u,), ¢ CP(R"), we see that
| Wou=0, for all e CP(RR*) and hence ulsuppW=0, a.e. (here we use the
assumption meas{x € supp W; W(x)=0}=0). We claim that

ulQe H{(Q), (1.10)
ulQe H3(Q), (1.11)
u=0. (1.12)

Then, clearly, ue D(H,)=HinH2(R’) and, for ¢ e C2(Q),
(u, (Ho— Eq)$)=lim (u,, (H — E,)¢) =1im (u,, 1,W$) =0,

implying Hqu = Eyu, u=0. It remains to show (1.10)(1.12). Clearly, (1.11) follows
from the inequality

|4, 12| = |(E, = V)u, [ S Eo+ |V ] -

To show (1.12), note that u=0 would imply u,—0 in L, ,(R"). Now let
1, € C*(IR") be the cutoff-function used in the proof of Theorem 1. Then, with § >0
as above,

Ot | = | CH — Ep) (it ) | S 20Vl o0 | Vtk | + 1| A1 | 5 1| S € -7

n=n,, mM=mg.

But, as (1-7,,)u,—0, n— oo, the above inequality is incompatible with [u,|=1.

Finally, (1.10) is clear from Lemma 7 below, which we apply to G:=Q and
v1Q:=u, v](IR"\Q): =0; as Q satisfies the segment condition, it is easy to check
that ve HY(RY). O

Lemma7. Let G=G CR” satisfy the segment condition, and let ve H3(R"),
o]R\G=0. Then vG e HY(G).

The proof of this lemma is standard (cf. Adams [1, Proof of Theorem 3.18,
p. 54f.]) and omitted.

2. The Oscillation of W is Small

The following Theorem 3 describes a different mechanism to produce spectrum of
H—AW in a gap of o(H). As mentioned in the introduction, (H, W, R) is trivially
complete if W is a nonzero constant. As we will see, (H, W,IR) is essentially
complete if W does not oscillate too much, in a sense to be made precise below. The
main idea of the proof is to construct approximate eigenfunctions which live in
regions where W is nearly constant.
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Recall that, if QCIR®, W:IR*->RR, then
osc W: =sup W—inf W.
Q Ie) 2

Theorem 3. Let V, W:IR*— R be bounded and assume that, for any neN,
0sc W/inf W—0, i-ow, 2.1)

Ani Ani
where A,;:={xeR";(i—DnZ|x|<(i+2)n}. Then (H,W,IR) is essentially
complete.

Remarks. (a) It is an easy exercise to check thatif (2.1) holds, then W is eventually of
one sign.
(b) Condition (2.1) is satisfied, for example, if W(x)=c,(c,+|x|)~*for |x| = R,
and some a>0.
(c) If V is periodic, condition (2.1) can be replaced by the weaker condition
osc W/ inf |W|—-0, n-ow, (2.2)
Buxn) | Butxn)
where x,— o0 and B,(x,) = {x € R"; |x — x,| <n}, and where W has one sign in each
ball B,(x,); see also Remark (d) below.
The proof of Theorem 3 is based on the following Lemma 8, which constructs
sequences, similar to Weyl (singular) sequences, with special support properties.
We defer the proof of this lemma to the end of the section.

Lemma 8. Let V:IR*—>R be bounded, H:= —A+V acting in L,(R"). Then, for
eachn=1,2, ..., there exist sequences (i );eny C N, i, — 00 as k— 0, (A ken Co(H),
M*nk| é C1> and (unk)ke]NCD(H)’ “unk” = 1’ such that ”(H'—/lnk)unk “ é Co”_ 1’ and
Suppty CA, ;.. With co,c; independent of n, k, and A,; being defined as in
Theorem 3.

Remark (d). If V is periodic and W satisfies condition (2.2), then it is rather easy to
construct a singular sequence (u,) such that ||(H — A)u, | —0, for some A € g.(H),
|u,| =1, and suppu,C B,(x,), where x,— o0 as n— oo (cf. e.g. Hempel [7, proof of
Theorem 3.1]). This construction would then replace (the rather complicated)
Lemma 8.

Proof of Theorem 3. Let (a, b)na(H) =0, and assume, without loss of generality,
that W(x)>0 for |x|>R,. With the notation of Lemma 8 and the definition

tnie> = (A — E) (Ainf W)" 1

we have, for n=1,2, ...,
[(H = W — E)tte | S 1 (H — Ao thiel| + | (e — ose W — E Dtk |
<con '+ |An—E|- “1 — W(Ainf W)“

n, nk

il

[ee)

<con”t+c, osc W/ inf W—»Con™', k-,

n, i n, e

by (2.1) and Lemma 8. As in the proof of Theorem 1, this implies that (a, b)
No(H — p W) +0, for n,k sufficiently large. Finally, denseness together with
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continuity of the spectrum gives the result (cf. the remarks in the
introduction). [J

The idea behind Lemma 8 is simply to take a generalized eigenfunction of
— A+ V and use a cutoff-procedure to get the right support properties. In order to
control the error introduced by cutting off the eigenfucntion, we first show,
following ideas of Sch’nol [16] (see also Simon [17, p. 5017]) that there exist
“enough” regions A,, such that cutoff is possible with a function y,;, € CF(R"),
Yk rAnk =1.

Proof of Lemma 8. Let ne N be fixed, and define
Ci:={xeR"nig|x|Z<n(i+1)}.

By the generalized eigenfunction expansion form of the spectral theorem (cf. e.g.
Simon [17, Corollary C.5.5]), there exist polynomially bounded solutions ¢(x, 1)
of (—4+V)gp=41¢, for Aeo(—A4+V) (spectrally a.e.). We have to consider two
main cases:

Case A. Suppose, that there exists at least one such ¢ +0 which is not an L,(R")-
function.
Consider the sequence (o;), given by

% =0y(4): = C! 1gCx, HPPdox. (2.3)

Note, that by unique continuation, o;>0. We will now show that there is a
sequence of integers (i), i,— oo as k— oo, such that

o, 2 Fmax{o;, 1,0, 41}, keN. (2.4)

The sequence («;, ) is either eventually monotonic (nonincreasing or nondecreasing)
or has an infinite number of local maxima =0. In the latter case, (2.4) follows
immediately.

Assume (o;) is eventually nondecreasing. Then, for an infinite number of indices

i, we must have o, , <2, ; otherwise [ [g|>=c 2", i=i,, which con-

ir?
o=|x|=i

tradicts the polynomial bound on ¢.
Finally, if («;) is eventually nonincreasing, then, for an infinite number of i,, we

must have

lk 1 _2alk s

otherwise we would have ¢ € L,(R"), contradiction! Hence (2.4) is proven.
Now let y;: =y;, be the characteristic function of the set

{xeR;(i—1/3)n=|x|=(i+4/3)n}

and y;: =y;,: =J; *j,3, Where j, is the usual Friedrichs mollifier. In particular,
v [C;=1and |V, <cn™ Y, |Apll, Sen™ !, ¢ independent of n,i. We define

i =W A bl Y A=A, =0,
with (i) as in (2 4). Then, clearly, suppu,, Csuppy;, CA4, ;. and
[(H = A tbe || < [2I| Vil o V@ Isupp Vipy | + 49l o | ¢ Tsuppwy |11 1w bl "
T [V tsupp V[l +]/ Se, T - 0, M2
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By the arguments in the proof of Lemma 4, Sect. 1, we can estimate

V¢ tsupp Vi, || = CligT A4, ., I = C)/ 5o,

where C can be chosen independent of k and n. Hence ||(H — A,)u | £¢’n™ !, with
C” independent of k, n.

Case B. Suppose that all ¢(x, 1) which occur in the eigenfunction expansion
theorem are L,-functions. In this case necessarily H has pure point spectrum and
all the ¢’s are ordinary eigenfunctions; in particular, (4(-, A), #(-, ) =0, for A== 1".
As V is bounded, 0. (— 4)=+0 implies o.,,(H) +0, by min-max, and there exists a
sequence ¢;: =¢(-,4;), with A;ea(H), A;#4; (j*Jj), and |4/ <const. Without
restriction, we may assume (¢;, ¢ )=0,;, 50 that ¢;—0 weakly, as j—oco. As the 4;’s
are bounded, [|V'¢;|| <const, and by compactness it follows that

$;—0 in L, (R"), j—ooo. (2.5
Let C; be as above and define
o =gi |§12dx .
As in Case A, we have to consider several possibilities:

Case BI. For each ke N there exists a j, such that (;,;);> is not monotonic. This
means, that for every ke N, we can find j, € N and i, =k such that

ajkik;%max{ajk,ik~laajk,ik+ 1) (2.6)

Case B2. There exists k, € N such that («;;); >, is nondecreasing or nonincreasing
forallj. As ¢; € L,(IR"), only the latter possibility occurs, and we have the following
(final) two subcases (of Case B2):

Case B2a. 3k, = k,, VjeN, Vizk, :ocjé%ocj -1
Case B2b. Yk=k,, Jj,eN, iy =k:a;

Jklk— jk ik—1°

In Case B2b, we immediately have (2.6), since, by monotonicity, «;, ;, +1 < oy,
But Case B2a implies that for any &> 0, there exists R>0 such that | |¢ |?<e,
|x|2

for all j [note that o, <1 and a; ;, 1+, <(3)";,, in Case B2a]. Together w1th (2.5)
this would imply ¢;—0, in contradiction to ||¢;| =1.

Hence we have found (j,), (i,) such that («; )ke]N satisfies (2.6), and asin Case A,
we can now define

Unge - =5 (-5 450 - [ 9(- jk)”_l At =Rjs b=l

The proofis finished as in Case A; when estimating || V¢(-, 4;,) Isupp V', || one has
to use the fact that the 4;’s belong to a bounded set. [J

Jiik

3. Complex E and A
The main result of this section is Theorem 4 below.

Lemma 9. Let H be a Hilbert space, D CC a domain and q€[1, o). Suppose that
B:D—B,(H) is holomorphic. Then the set M : ={ze€ D; o(B(2))={0}} is either a
discrete subset of D, or M =D.
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Proof. Assume there exists a sequence (z,) CM, z,—z, € D. Choose v, € N so large
that B(z)" € B,(H), and let A(z): =B(2)", zeD. Then D3z A(z) is a holo-
morphic map D— B,(H), and, by the spectral mapping theorem,

0(A(z,))={0}, for mnyv=1,2,....
By a theorem of Lidskij (cf. Reed, Simon [14; p. 328]), this implies
tr(A(z,)")=0, n,v=1,2,...,

and hence tr(A(z)")=0, for all z € D, since z+—>tr(A(z)") is analytic. By the Plemelj-
Smithies theorem ([14, Theorem XII1.108], e.g.), it follows that

det(1+puA(z))=1, ueC, zeD,

implying o(A(z))={0}, ze D, by [14, Theorem XII1.105]. Hence, by the spectral
mapping theorem, o(B(z)) ={0}, for ze D.

Theorem 4. In the complex Hilbert space H:=L,(R”), let H:=—A+V, with
V:R' >R  bounded. Assume that W:R'->R, W=£0, is such that
W(—A4+1)"'eB,(H), for some ge[1, x0). Then Q(H)\ U o(H—AW)is a discrete
subset of o(H). :

ieC
Proof. It is enough to show that the set of E such that o(W(H —E)"H={0} is
discrete. By variational principles, there exists E<info(H) which belongs to

U o(H—1W). Hence o(W(H —E)™ ')+ {0}. For E € o(H) (which is connected),
AeR
we write

B(E):=WH—-E) '=W(—A+1) " Y (—=A+1)(H—-E)™ !,
and see that B(E) is analytic from o(H) to B(H), and the result follows from
Lemma9. O

Remark. Conditions on W which guarantee that W(—4+1)~' € B,(H), may be
found in Reed and Simon [13, p. 47]; e.g. [W(x)| < C(1 +|x]) % for some o >0, will
do.

4. Completeness in 1-Dimension

In this section, we use o.d.e. techniques to show that, under suitable assumptions
on V and W, exceptional levels do not occur. Our first result is

Theorem 5. Let V, W:IR—IR be bounded, W of compact support and W(x)=h>0
for —p<x<yn. Let H:=—d*/dx*+V, acting in L,(R). Then (H,W,R") is
complete.

Proof. Once again, consider real E ¢ o(H). By limit-point/limit-circle theory (cf.
Coddington, Levinson [2]), there exist solutions f. (unique up to scalar multiples)

of —f7+Vf. =Ef,,with f, square integrable at + oo, respectively. Fix R >0 such
that suppWC(—R, R) and f,(+R)=+0. Let

oy =fL(ER)/f:(£R),
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and Hy: = —d?*/dx*+V, acting in L,(— R, R), with boundary conditions #'(+ R)
=o,u(+R), ue D(Hg).

By Remark (c) following the proof of Lemma 3 in Sect. 1, there exist Az >0 and
O==ug e D(Hy) such that (Hg— AgW)ug = Euy [here one has to find

O<peo((Hg+o) A(W+ME+c)(He+0) "),
where we have chosen ¢ such that Hz +c=1]. Now, defining

(ur(—=R)/f-(=R))f-(x), x=—R,

w(x): =1 ug(x), —R=x=ZR,
(ur(R)/f+(R) f+(x) , x=R,
it is easy to see that we D(H) and (H—AzW—Ew=0. U

Remarks. (a) Unfortunately, this proof does not generalize to IR".

(b) This theorem also shows that one cannot “smoothe out” the d-function in
the example given in the introduction.

(c) By using a more detailed analysis following Lemmas 1-3 in Sect. 1, it is
possible to give an estimate on the smallest coupling constant 1 (for a given E),
under the additional assumption that V is periodic. In particular one finds that 1

2
n (E(R+IT)+ 1), where IT is the period of V.

4hn?

(d) Theorem 5 is nearly contained in Theorem 6 below, but its proof is so
simple that we have chosen to present it as a separate result.

In the remaining theorems of this section, we will assume that W is continuous
and has a finite number k of changes of sign. More precisely, we assume that there
exist k points x; <x, < ... <X, for which W(x;)=0,i=1,...,k, and W(x)=0 for
xé¢{xy,...,x.}. The results below extend to the case W(x)=0 or W(x) <0 in each
interval (x;_1, X;), but involve additional technicalities.

The following Theorem 6 considers the case where sgn W(x)=sgn W(—x) for
x sufficiently large. The proof uses solutions u, = (4 (x, 4) of —u% +(V—AW)u,
= Eu,,u, square integrable at + oo, respectively, and shows that, as A increases, a
zero of u, has to meet a zero of u_, giving rise to a solution of our problem. The
intricate estimates needed to control the behaviour of the zeros of u,(x, A), are
based on results of Richardson [15].

Theorem 6. Let V:R—IR be bounded and =1, H: = —d*/dx*+ V. Suppose that
We C(R) is relatively compact with respect to — A and has a finite number k of
changes of sign, k even. Then (H, W,R) is complete.

can be chosen less than

An essential ingredient in the proof of Theorem 6 is the following extremely
interesting lemma due to Richardson [157; we give a complete proof as some of the
details are omitted in Richardson’s original text.

Lemma 10. Let V and W be as above, E> 1. Suppose — oo <a<b<oo and W(x)
< —h<0, for a£x<b. Then there exists Ay>0 such that A= 1, implies

b
fu?+(V—-Eu*>0,

Sor all solutions u of —u”+(V—E)=AWu in (a,b).
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Proof. Choose A, >0 such that A,h+V—EZ=E, for xe[a, b]. It follows that any
solution u of the differential equation as above, with A= 4,, has at most one zero
in [a,b]. Indeed, if u(x)>0 for asa<x<f=b, u(@)=u(f)=0, then
W =(—AW+V—-EuzEu>0 in (x, f), which is a contradiction. Hence there are
two cases:

(i) u(n)=0, for precisely one ne[a,b],

(i) u(x)>0, for a<x=b.

Case (i). Assume first, that a<n<b; the cases where y=a or n=> are similar.
Without loss, suppose u(x) >0 for n <x <b, u(x)<0fora<x<y. Forn<x<b, we
have u” >0 so that u’(x)>0 and hence

1 x x F
w2 Juw ZEfuu=Zu(x)*;
thus

b b
fu?+(V—EWw?*= [(E+V—-Eu?>0,
n n

as V=1. A similar argument shows that Jqu’z-i—(V— E)u?>0, and we are done.

a

Case (ii). Let g,:=(b—a)/4; choose A=1, such that lh+1—E>0 and
(Ah+1—E)e3/2=1. Now consider A= 1 and let ¢=¢(4) solve

(Ah+1—E)e*2=1. 4.1)
Clearly,e<eq=(b—a)/4,sothata<a+e<b—e<b. Letne[a, b] be a point where
the solution u above obtains its minimum, so that u(x)=u(n)>0, xe[a,b].

Assume first that a+e<n<b—e¢, and set M =M(A): =Ah+1—E. Then u" = Mu,
and integrating once, one obtains

w(x)z2Mu(n) (x—n), n=x=b, (4.2)
as w(7)=0, and integrating again, u(x)=u(n)(1+M(x—n)*/2), n<x=b.
Moreover, as Me?/2=1, we have

u(x)=2u(n), n+e<x=b. (4.3)

From (4.2), we see that u’(x) is positive in [#, b], so that
W()? 22 wa Z2M [ wuz MG —u() 23Mu(x?,  (4d)
n n
by (4.3). Thus

b
| w?+(V—Ew?= | GM+V—-Eu?.
n+te nte

Combining this result with a similar calculation in (a, ), one obtains that

[ iu'2+(V—E)ng"fs+ [ eM+v—Epe. @.5)

+
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On the other hand, u” < ku, where k: =A|W| , + | V| ., and hence, forn —e < x
<n+e,  u(x)Su(n)expl/ke*. But, by (41), A=h"'Q+(E—-1)E)
Sh '+ (E—1)d); thus u(x)<yu(n), n—e<x<n+e¢, where

yr=exp[(h"'Q2+(E—Ded) [W],+edllVIe) "]
Thus

' (VB < (B—1)2e9%u(n)’ (4.6)

n—e

Now choose 4,24 such that
IM()+1—E>0 and 8GM(Ae)+1—E)eo2]/2/M() - 29(E—1).

Then, as u(x)=2u(y) for x¢(n—e,n+e), one verifies, using (4.5), (4.6) and
M(A)e(A)* =2, that

b
Ju?+(V—Eu*>0.

The case where e (b—¢,b) or ye(a,a+c¢) is similar and left to the reader.
Finally, when  =a or n=b, then u'(y) is not necessarily zero. However, in the case
n=a, say u’ is positive in [a, b], so that (4.4) holds true for x€[a,b], and the
estimates

b
J uw?+(V=EW?*=CM+1—-E)(b—a—ceu(a+e)?,
ate

ate

— [ w?*+(V—EW?<Eeu(a+e)?,

are clearly sufficient, provided M =M(A)>%Q2E—1). O

Proof of Theorem 6. Suppose W changes sign at the points x, ..., x,. Without loss
of generality, we assume that W(x) > 0for x <x; and x > x,. Foreachreal E ¢ 6(H),
we will produce a positive A for which E € 6(H —AW).

(1) Wefirst note that there exists ¢, >0 such that foranyae Rand all0<¢<¢,

ate
[ v+ (V=En*>0, (4.7)

for all ve AC[a, a+¢] such that v(a) =0; here AC denotes the space of absolutely
continuous functions. Inequality (4.7) follows immediately from the inequality

fw?<e?[w?, valid for we AC[0, ¢], w(0)=0.
0 0

(2) Let y; <y, <y, be fixed points strictly to the right of x,, and let ¢, >0 be a
number such that 2¢; is smaller than any of the numbers &y, y3—y,, VoY1,
y1—X, and x;—x;_;, j=1,...,k—1. Choose 4,>0 such that for 1=4,, any
solution u of —u”+(V —E)=AWu has at least one zero in each of the intervals
(x1—e1, X1 —81/2), (X +81/2, Xy +&1), (X3—&y, X3—&1/2), (X4 +81/2, X4+8), ...,
(x,+21/2, x,+¢,), and in (y4, y,), (¥2, y3)- [This is possible by Sturm oscillation
theory: choose 4, such that Ach+E— V|, > A, where A=4n?/e} is the lowest
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Dirichlet eigenvalue of —d?/dx* in L,(0,¢,/2), and h is the minimum of W over
all above intervals. h is the minimum of W over all above intervals.]

(3) Now, since WH ~ ! is compact, we have o (H — AW) =0, (H), for any 4, by
Weyl’s theorem. Again by limit-point/limit-circle theory (see e.g. Coddington and
Levinson [2]), there exist solutions u, (x, ) of —u’ +(V—E)u, =AWu,, with u,
square integrable at + oo, respectively. Moreover, u, (x, A) are unique up to scalar
multiples, and for each 1 there is a neighborhood N(1) where u,(x, 1) can be
chosen to depend analytically on A.

Let y;*(4) be zeros of u 4 (x, ) lying in the intervals (x; —&;, x;—¢&,/2),j odd, and
in (x;+¢,/2,x;+¢),jeven (1=<j<k),and let y* =y *(1) be the last zero of u . (x, 1)
in (yy,y,1, v~ =7 (4) the first zero of u_(x, 1) in [y,, y3)-

Our next aim is to show that there exists A; = 4, such that 1>, implies

v v

{ W2+ (VB2 = | Wit >0, 438)
and

(W2 (V—Ep2 = | W2 >0. 4.9)

y* y*

Asu_(y )=0,and Wl(y~,©0)>0, Eq. (4.9) is immediate by partial integration;
partial integration also proves the equality in (4.8). Now we split up the integral on
the left-hand side of (4.8), and obtain, again by partial integration,

[ w2+ =Bz >0, | u?+(V—Ew2 >0, | even,

'

-
f u?+(V—Eu*>0.
Yk

Further, by (4.7),

xj+er Yy
| u?+(V—-Eu*>0, jodd, I u?+(V—Eu2>0, jeven.
Vi xXj—é1
Finally, by Lemma 10 above,

| e =Eu2 >0, jodd,

x;te1

and (4.8) follows.
(4) Differentiating the equation —u% +(V— E)u, =AWu, with respect to 4,
one obtains (0,: =0/04)

_(a}'ui)”‘l‘(V—E—iW)alui = Wui )
so that

d
d—x((alui)'ui —(Ou s us)=—Wuk.
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Integrating, we find

i Wil =0,u_(y", ) u_(7, A= Qu-) (™, ) u-(y™,2),

and
| Wil =@us )% ) u (0", )= 0us (07, ) - uw (™, 4).
.y+

Asu_(y~,)=u,(y",A)=0, it follows from (4.8), (4.9) that

Ou-( ) u-( ", >0,  Ou,(yT, ) ui(y7,4)<0. (4.10)

(5) We are now able to draw our basic conclusion that for any 4> 4,, there are
solutions u . (x, A) which are square integrable at + oo, respectively, and which
have zeros y* =y* (1) e(y,,y,] and y~ =y~ (4) €[y,, y3), respectively, such that
(4.10) holds true. Differentiating the equations u (y*(4), 1) =0 with respect to A,
we see that the above inequality imply that y ™ moves to the right and y~ moves to
the left, as A increases. A standard argument in Sturm-Liouville theory shows that
for some 1= 4, the continuations of y *(4,) and y ~(4,) must coincide at some point
7, say. Then

~

. u_(x, Z’) ulﬂ-(fa /1)9
ux): = {u+<x, DG,

is an L,-eigenfunction of H—AW—E. [

x=7,
xz7,

The above proof breaks down if W has opposite signs in (— o0, x,) and (x;, 00).
To treat this case, one needs different methods and our results are less general; in
fact, we consider only the case where W has one zero [but see Remark (h)]. The
method employed here is entirely different from our other approaches. The
essential idea is that by introducing a Dirichlet boundary condition at the zero of
W, the Birman-Schwinger kernel sgn(W)|W|2(H — E)~ }|W|!/? can be written as a
direct sum of two selfadjoint operators plus a rank-one perturbation. We have the
following theorem:

2
dx?
L,(IR), and suppose that W:IR—RR is continuous, W(x) >0 for x <0, and W(x)<0
for x> 0. Furthermore, assume that there exists p > 2 such that |x|PW(x) is bounded.
Then (H, W,R) is complete.

Theorem 7. Let V:RR—IR be periodic and bounded, H: = — +V acting in

Proof. For simplicity, we will again assume V=1 and consider E¢a(H),
E>info(H). We write W=0q?, with ¢=0, a(x)=sgn(W(x). Clearly, to find a
solution of the problem (H — E)u = AW, it is enough to find v and u=A""* such that
pw=aq(H—E)™'qy.
Again by limit-point/limit-circle theory (Coddington and Levinson [2]), there
exist solutions f, of —f% +(V—E) f+ =0, unique up to scalar multiples, which are
2

. . d .
square integrable at =+ oo, respectively. Now let H; and Hy be — Iz + ¥, acting in

L,(—00,0)and in L,(0, o), respectively, with Dirichlet boundary condition at 0,
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provided f,(0)f_(0)%0. If f,(0)f-(0)=0, choose some selfadjoint boundary
condition u(0)+ au’(0)=0 such that f,(0)+ f1(0)+0, and define H,, Hy accord-
ingly. Let Hy=H,;@®Hy; by construction, E ¢ o(H)ua(Hp). Our first goal is to
determine (H—E) ™! —(H,—E)~*:for any g € L,(R), the function h=(H—E) " 'g
—(Hp—E)™'g satisfies he L,(R), —h"(x)+(V—E)h(x)=0 for x=+0, and h(x)
+ah’(x) continuous (in the case of Dirichlet-condition at 0, take a =0). It follows
that h(x)=a_(g)f_(x), x <0, and h(x)=a . (9) f+(x), x>0, where a.(g9) e R. Since
h+ah’ is continuous, there exists a constant y € R, independent of g, such that
a_(g) =ya,(g), and we see that

(H-E)~ lg —(Hp—E)~ lg =a.(9)(f+ (X)X(o, oo)(x) + 'Vf—(x)X(— oo,O)(x)) .
By linearity, there exists w e L,(IR) such that a,(g)=(w, g). Letting
[r=(f~0)+afZ(0) £+ (X)X(0, 0)(¥) + (f+(0) + & L(0) S~ (- 0, 0)(X) »
it is clear by selfadjointness that, for some a e R, a0,
(H-E)™'—(Hp—E)"'=o(f,)f. (4.11)

For later applications in Lemma 12 and Proposition A, we do the explicit
calculations for the case of Dirichlet boundary conditions: h(x) being continuous
at 0, we have

J=1-0)f+()x0, %) +F+0) f- ()%~ o0,0/(X) -

To determine o in (4.11), take any nonzero geCg(0,00). Then
(Hp—E)™'g)(x)=0, x<0, implying

(H-E)"'g) (X)=O<(f—(0) (f) f+(y)g(y)dy> f+0)f-(x), x<0.
On the other hand, by the standard form of the Green’s function of (H—E)™1!,

(H=E) ') ()=1-(9) | o)L~ 1]
and therefore
T ROVROIVAVA @12

with [f_, f.]=f_f. —f_f+ denoting the Wronskian of f_ and f,.
Returning to the proof of Theorem 7, it follows from (4.11) that

oq(H—E)™'q=0q(H,—E) ™ 'q+o(qf, )odf;

we write B: =oq(H—E) 'q, A: =0q(H,— E) ™~ 'q, and note that 4, B e B,(L,(IR))
[as g(—d?/dx*+ 1)~ /2 is Hilbert-Schmidt]. It follows that

1—B/z B—z

[ 17, =det - =det(l +[ataf Jogf HA~2) ")

=1+a(gf,(4—2)"'oqf).

det
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Decomposing A into its left and right parts 4; and A, we get
A=A4,04r, (A-2)"'=(4,—2) '®Ah—-2)"",

with 4, Ay selfadjoint. Furthermore,

i:i @A) @ =D e @1

with (-,-); and (-,-)z denoting the scalar product in L,(—c0,0) and L,(0, o0),
respectively. Let v ; (vg;) denote the negative eigenvalues of 4, and Ay, respectively,
with (normalized) eigenfunctions n; ; and ng;, and let 4, ; and ug; denote the positive
eigenvalues of 4; and Ag, respectively, with (normalized) eigenfunctions m;; and
myg;; without restriction, let us assume vy; <vp ;i 1, Vri <Vr,i+1> BLi>Hp,i+1, and

Hri=> g i+ 1
Expanding the right-hand side of (4.13), we obtain
1. B—z_ (@fimaf | «(@fin )L (af, nro)i
d i i )2 ey > ""RiJR
A z ? L2 ; Ve— Xl:(CIf, My RHgi — 2 ; Vei—z

(4.14)

We are looking for real zeros z=+0 of o~ !det((B—z)/(4—z)). Consider z>0
henceforth. The second and fourth sum in the right-hand side of (4.14) are
continuous functions for z>0; between any two roots gy ;> iy ;4 4, the first sum
varies monotonically from — oo to + co as z increases from py ;. to py ;. If there
are no roots ug; in the interval (yy ;4 1, 4r.;), then the third sum is also continuous,
for py ;41 <z<py;, and it is then clear that o~ ! det((B—z)/(4 —z)) must have a
real zero in this interval. But it follows from Lemmas 11 and 12 below, that in fact
“most” intervals (ug ;. 4, py;) are free of roots ug;, and we are done. [

The following lemma establishes a lower bound for the positive eigenvalues of
- u;/ + (V_E)ul = AiWui, on ( - OO, 0).

Lemma 11. Let V:(—00,0)—»IR be bounded, V=1, and let H:= —d*/dx*+7V,
acting in L,(—o0,0), with some fixed selfadjoint boundary condition at 0. Let
W:(—0,0]-R be continuous, W(x)>0, for —oo<x<0, and suppose that

0
| |/ W <o0. Fix E€R, and let
N.(A):=#{l;(H—Eu=3,Wu,0<1,< A},
for 2>0. Then
1 9 =
. . A1/2>_
llmglfN+(i)/A z- _fw /W

Proof. For neNN, let

W(X), —néxéoa
0, x<-—n,

Wn(X):={
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and let A% denote the positive eigenvalues of (H — E)u{® = A® W,u; we also define
NQ@A): = #{A";0< A" <A},

for A>0. We first remark that /1§"’_Z/15,~i= 1,2, ..., for all n. To prove this, let
W) :=(1—-t)W+tW,, and consider (H— E)u,(t)=4,&)W(t)ut); as the eigen-
values A(-) are clearly simple, they are differentiable, and it follows that

(H — E— AW (0))iy= L O W (0)u(t) + AW (Duy(D) ,

where the dot means 0/0¢r; multiplying by u(f) and using
(H—E—1(0)W(t)u(t) =0, we get

0= Zt) (u(z), W (eyu()) + 2:(2) (u(®), W(t)u(0)) ,

and therefore 4,(t)/4,(t) > 0. Hence it is enough to consider the asymptotics of the
A0,

If u;=u{ satisfies (H — Eyu, = A" W,u,, then necessarily ((H — E)u,) (x) =0, for
x<-—n, and hence wu(x)=c;f (x), for x<—n, where f_ solves
—f7+(V—E)f-=0, f_ square integrable at — oo; the existence of f_ is again
guaranteed by limit-point/limit-circle theory. This implies that u; = u{ satisfies the
selfadjoint boundary condition

- (=mu(=n)—fL(=nu(—m) =0,

independently of i=1,2, .... Conversely, it is clear that cach eigenfunction u; of
—u/+(V—=E)u;=Au; on (—n,0), satisfying the above boundary conditions,
extends to an eigenfunction on (— o0, 0). It follows then by standard min-max-
arguments using Dirichiet-Neumann bracketing (cf. e.g. Reed and Simon [14,
Sect. XIII.15] and Courant and Hilbert [3]) that

1 0
; () 12 _ -
lim N®(2)/2"? = — _In]/W,
and we see that, for any ne NN,

fyw,

n

Q| —

liminf N, (2)/2"2 2 lim NY(1)/112 =

and the result follows. [

To obtain an upper bound on the negative eigenvalues J, [for the interval (0, c0),
where W> 0], we first show that we can insert an infinite number of equidistant
Dirichlet points x, in such a way, that all eigenvalues 4; go up. The decay of W then
gives the bound on the number of negative eigenvalues contributed by each
interval (x, X +1)-

Lemma 12. Let 1 £ V: R R be bounded and periodic, and let We C([0, o0)) be such
that 0 S W(x)<c(1+|x|)77,0< x < o0, for some p>2. Let H = —d?/dx*+ V, acting
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in L,(0, c0), with boundary condition cos 6u(0) +sin0u’(0) =0, for some fixed 6 € R.
Then, for any E € R\c(H), there exists a constant C such that for all 1>0

N_(A):=#{A: (H—Eyu= Wi, — A< 1, <0} SCAP,

Remarks. (e) Clearly, N _(1) =0if E <inf a(I-z ). (f) A slight modification of the proof
shows that the result is also true if E € 6(H).

Proof. For simplicity of notation, we will assume that ¥ has period 1. Again, let f,
be the (unique) solutions of —f{ +(V—E)f, =0, f, square integrable at + oo,
respectively. Without loss, assume that the Wronskian [ f, f, ] is positive.

(1) Inthis the first step, we wish to insert an infinite number of Dirichlet points
Xy, X — 00, in such a way that the 4,’s go up. So let us first analyze what happens if
we add a Dirichlet condition at some point x">0:

Let a,be R be such that ¢: =af, +bf_ satisfies the boundary condition

cos6¢(0) +sin6gp’(0)=0.
As in the proof of Theorem 7 [see Eqs. (4.11) and (4.12)], it follows that

H-E)'=(H~E) "+ ()[4, [ D 0. ),

where
v(x) : =1 (XX 10, x(X) + (X)) [+ ), 00)(X) 5

and H':=—d?/dx*+V in L,(0,x)@®L,(x’,0) with the boundary conditions
cos0u(0) +sin6u’(0) =0 and u(x") =0, for allu € D(H"). Without restriction, we may
again assume that [¢, f,.]>0.
(2) Now let us first consider the case where H is Dirichlet at 0: as E ¢ o(H), we
necessarily have £, (0)+0. We distinguish between the following two cases:
(2a): f1(0)f_(0)>0: Let H,: = —d?/dx*+V in Ly(k—1,k), k=1,2, ..., with
Dirichlet boundary condition at k—1 and at k. We claim that

E¢o(Hy) and (H—E) 'z @ (H—E)". 4.15)
k=1

To see this, let H,: = —d?/dx? + V in L,(k, oo) with Dirichlet boundary condition
at k. Then, by step (1),
(H—E) '=H,—E)"'®Hy—E) '+ @) [ () [ f:]) @),

and we only have to check that ¢(1)f,(1)>0. Note that E ¢o(H) implies
E¢o(H ), since H, is a translate of H, and E ¢ o(H,), since ¢(1)*0, as we will
now see: By definition, ¢ =1, (0)f_(x)—f, (x) f_(0), and hence

DS+ [, [+ 1=([+0)f-0) (z- =z )z, f2O) [ f-, f+]
=f{O LS~ f+1f+(0)f-(0) (1 -23)>0,

wherez,, |z, | <1,|z_|>1, are the multipliers of f, respectively (cf. Eastham [4]).
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Hence (H—E) ' =(H,—E) '®(H;,—E)~'. By periodicity,
(ﬁ"E)ﬁl :(H(l)—E)_l >

and (4.15) follows. Writing D : = @ q(H,—E)"'q, g=]/W, we see that
k=1

gq(H—E)"'q=D. (4.16)
By a now familiar calculation (u=4"1>0),
N_(2)= #{u; p; eigenvalue of g(H—E) ™ 'q, ;< —u<0}
< #{y;; 7; eigenvalue of D, y;< —u<0}

=% N, .17)
k=1

where we have used (4.16) in the second step, and
Ni(1): = 4 {7 7w cigenvalue of g(H,—E)™'q, pu< —p<0}.  (4.18)
We will show that there exist constants m and ¢, such that
NW=m, k=1,2,...,u>0, 4.19)
and
N, (=0, k=cou . (4.20)
From (4.17)-(4.20) it is clear that
N_(D)Emeou™ VP =me A7

We claim that N, (u) <m, where m is the number of negative eigenvalues of
H,— E (=order of the gap containing E = number of zeros of f, or f_in [0, 1)); see
also Mingarelli [11].

Suppose, there would exist m+ 1 eigenvalues 4,; <0 of (H; — E)uy; = A, uy;. Then
we can find u: =) buy,;, u+0, such that (u, (H,— E)u) >0. But

(u, (Hy—E)u)= Z bb (u;, (H,— E)wy,)
i,J
=2 b} (uy, (Hy— E)uy) = 2 b} Ay (i, Winy) <0,
i,J] 1

where we have used the fact that (u;, (H,—E)u;)=0, i=j, as all eigenvalues are
simple. Hence (4.19) is proven.
To show (4.20), we first remark that there exists a positive constant ¢’ such that

[(Hy—E)ull z¢'[ull, ueD(Hy), k=L12,.., (4.21)

since E¢o(H,) and all the H, are the same. Now considering the eigenvalue
equation (H, — E)uy; = A, Wiy, |lull =1, in Ly(k— 1, k), it is clear from (4.21) that
¢ = Al | Wi |l £ | Agilck ™2, by the decay property of W. Hence all 4,; satisfy |4
=c'/c- kP, which is equivalent to saying that [in the notation of (4.18)] |yl
<c/c’ k™", or N (u)=0, provided u>c/c’-k™".

This concludes our proof in the case (2a).
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(2b): f1(0)f_(0)<0. Let again ¢ =1, (0) f_(x)—f+(x)f_(0). As E lies in a gap,
f+ and f_ have zeros in (0,1); in particular, we can find x,€ (0, 1) such that
f-(x0)f+(x0)>0. By construction, E will not belong to ¢(H,)ua(H ), where
Hy:=—d*/dx*+V in (0,%,) and H g): = —d*/dx?+V in (x,, ), with Dirichlet
boundary conditions at 0 and x,. As in (2a), to get H<H,®H ), we have to
control the sign of ¢(x) f+(xo) [, f+]. But [¢, fL 1=+ (0)[f_, f,], and hence

$(x0) f+(X0) [4, [+1={f7(0) f-(x0) [+ (x0) = [2(x0) - (O) [+ (O)} [ 1, f+],

which is positive since f_(xo) f1(x0)>0, f-(0)f,(0)<0and [f_, f,]>0. Now, as
f+(x0)f-(x0)>0, we can proceed as in (2a) and insert Dirichlet boundary
conditions at the points xo+k, k=1, 2, ... [note that the function ¢ in (2a) is now
replaced by f. (xo) f-(x) —f—(xo) f+ (x)], obtaining finally an inequality analogous
to (4.16). The eigenvalues contributed by the intervals (x,+k—1,x,+k) are
estimated as in (2a), and the contribution by (0, x,) is bounded by the constant m,
as in the proof of Eq. (4.19).

(3) Finally, let us consider the case where H does not have Dirichlet boundary
condition at 0. Let ¢ : &f, + ff- satisfy the boundary condition of H at 0, and note
that f+0 as E¢ o(H). In particular, § and f, are not proportional and, as above,
we can find £e(0,1) such that §(X)f.(X)[d,f.1>0, f.(X)£0. Again by
construction, E is not in the spectrum of —d?/dx?*+ V on (0, %) (with the boundary
condition of H at 0, and Dirichlet boundary condition at %), and not in the
spectrum of —d?/dx*+V on (X, co) (with Dirichlet boundary condition at £). But
on (X, c0) we are now in the case (2a)/(2b), and the result follows, as the interval
(0, X) can contribute at most m eigenvalues. [J

Remarks. (g) In general, the folk theorem is that the asymptotic distribution of
eigenvalues is related to volumes in phase space (cf. the discussion in Reed and
Simon [14, p. 261f.]). Applied to our situation, one would expect that [assuming
W(x)>0, x>0] N (4)=the number of positive eigenvalues A; of (H,— E)u;
= 1;Wu; which are less than or equal to 4, is given asymptotically as 21— oo by

1 1
dxdp= — | dxdp

27 ((x,p); 0 p>+V —E< W} 27 (e, pE-VSp2<E—V +iW)

] ] ©
~ (f)(]/iW+E—V—1/E—V)dx~E£ AW dx

(cf. the shaded area in Fig. 1 below), and indeed we will verify this in the appendix.
Similarly, one would like to prove that the number of negative eigenvalues 4,,

— A=< 4;<0, is approximately given by
1
— | dxdp,

2n {(x,p; E-V — AW Sp2<E-V}

which behaves like constA!/?, if W(x)~c|x| ¥ for x large (cf. the shaded area in
Fig. 2 below). In this case, Lemma 12 provides only an upper bound <ci'/?’, and
the question of the precise asymptotic distribution remains open.

(h) With considerable effort it is possible to extend Theorem 7 to the case
where W has more than one change of sign. Even the case where W has only two
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changes of sign requires a proof which is far longer than the proof of Theorem 6.
Amongst the many additional difficulties, perhaps the most cumbersome is that on
inserting Dirichlet-points inductively at the zeros of W, the (k+ 1) operator is no
longer a sum of two selfadjoint operators (+ a rank-one perturbation).

2§
P
AW+E-V, A>0.
E-V
Fig. 1 -
0 X
|
x
Fig. 2
Appendix

Here we combine the method of Lemma 12 of inserting Dirichlet points with the
exact asymptotics for finite intervals, to obtain a sharp upper bound on the
number of positive eigenvalues (for W positive). Together with the lower bound of
Lemma 11, this leads to the following result:

Proposition A. Let V:R IR be bounded and periodic and let H: = —d*/dx*+V,
acting in L,(0, ), with Dirichlet boundary condition at 0. Suppose that
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We C([0, 00)) satisfies 0 < W(x) = c(1 +|x[) %, 0<x < c0, for some p>2. Defining
NQA):=#{4;:(H—Eu;=AWu,0< A, =4},
for A>0 and E € Rng(H), E>infa(H), we have

1 0
li 2= — .
it
Proof. We know already
1
lim i 2> —
iminfN(A)/AY? = - gl/ w,
by Lemma 12. In order to show the complementary inequality
1 0
li 2 —
imsupN(A)/A? < - g) /W,

we wish to insert Dirichlet points, as in the proof of Lemma 12; for simplicity, we
shall again assume that V has period 1. So let f, be as in the proof of Lemma 12,
and assume that [, (0)/_(0)+0 [if f,(0)f_(0)=0, replace E by E+¢ for some
&> 0, chosen small enough so that no 4, crosses 0; then the eigenvalues 4; = 4,(¢) will
decrease and we will have N(4; E+¢)= N(4; E)]. Proceeding as in the proof of
Lemma 12, but with reversed inequalities, we insert Dirichlet points

xei=k, k=1,2,.., if f.(0)f(0)<0,

or

x0€(0,1), S+ (o) f=(x0) <0,

xei=xo+k, k=0,1,2,..., } it f+(0/-©0)=0,

and denote by H, the Dirichlet operators on the k™ interval (x,_,,x,) (with
x_, =0, in the second case). We obtain q(H —E)*lqg@q(Hk—E)_lq, so that
N(A) =X N, (A), where
k
N(A): = #{A; (Hy— By = AWy, 0<A =A%

We will show below that there exist ;>0 such that

N, <La,, Ya<o. (4.22)

k

Using (4.22), dominated convergence implies
. . e 1
lim sup N(1)/AY2 <3 lim suka(/l)//WZ:Z% VY =;j~ /W,
A= 00 k Ao k Xk -1 0

where we have again used the standard asymptotics on the finite intervals
%k 15 X)-

It remains to prove (4.22): in the k™ interval, consider the equations
—u} +(V—Eu;=\Wuy; and —i/+(V—E)i;=ZXc(14+k)""i, with Dirichlet
boundary conditions at x, _; and x,. Then it is easy to see that 1, < A, [first increase
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W1c(l+ k)™ ? and then decrease V| 1; note that in the second step some of the A;’s
may cross zero], so that

Nk(ﬂ)éﬁk(i): = #{Ikl’; Iki§/1} .
But we can explicitly calculate the 1s; in fact,
Te(l+k)y P+E—-1=i®rn, ki=1,2,...

(and similarly for the interval (0, x,) in the second case above). It follows that

NN %]/cl(l +k)"P+E~1. (4.23)
On the other hand, by the same arguments as in the proof of Lemma 12, there
exists a constant ¢’>0 such that

Clull =I(Hy—Eull,  ueDH,), k=0,1,2,..,
which implies again that on (x,_ 4, x;), all 4; satisfy
AaZ (C[O)k?,
and hence
N (A)=0, k>c"At". (4.24)
From (4.23), (4.24), it is now easy to sce that there exists a constant ¢ such that
N () <eatPk—»2,  1>0, k=0,1,2,...,

which proves (4.22), as Y k" ??<oc0. [
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