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The Loop Expansion for the Effective Potential
in the P(¢), Quantum Field Theory*

Gordon Slade
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Abstract. We study the loop expansion for the effective potential, defined as the
Fenchel transform (convex conjugate) of the pressure in an external field, in the
P(¢), quantum field theory. For values of the classical field a for which the
classical potential U,(a)=P(a)+3m*a® equals its convex hull and has
nonvanishing curvature we prove that the 1-PI loop expansion is asymptotic as
# | 0. We also give an example of a double well classical potential for which the
1-PI loop expansion fails to be asymptotic, and find the true asymptotics.

1. Introduction

The effective potential for the P(¢), Euclidean quantum field theory is defined as
the Fenchel transform of the pressure in an external field:

V(h,a)= sup [ua—p(h, p)]. (1.1)

Here the positive parameter # is Planck’s constant divided by 27, the classical field
a is real, and p(#, ) is given by

p(h =1 lim —Inexp [J § 1P [dne, (12
atr? 4] h a4

where C = (— 4 +m?*)~ ! for some m* >0, du, is Gaussian measure on #(IR?) with
covariance #C, the Wick order is with respect to #C, and 41 R? through a
sequence of rectangles. In [14] the limit (1.2) is shown to exist for a wide variety of
boundary conditions on 04, in particular for periodic boundary conditions which
we will use unless otherwise indicated.

The importance of the effective potential is that it characterizes the occurrence
of phase transitions in the theory [2, 16]: linear portions of V(#, - ) are in a one-

*  This paper is a condensed version of the author’s Ph.D. thesis for the Department of
Mathematics, University of British Columbia, Vancouver, B.C., Canada V6T 1Y4
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one correspondence with points of nondifferentiability of p(#, - ), and hence with
discontinuities in the one point function D,p(#, -) [9].

Since p(#, -) is strictly convex [9], if the supremum in Eq. (1.1) is attained it is
attained at a unique u(#, a). But by the large external field cluster expansion of [19]
if n(u) is the location of the unique (for large |u|) minimum of P(x)—ux then
|D,p(h, ) —n(w)| is bounded uniformly in large ||, and hence, D3 p(h, u)— + oo as
u— + 0. It follows that the supremum in (1.1) is attained for all #, a, at the unique p
for which ae [D; p(h, w), D5 p(h, p)], where DS denotes the right (left) derivative.

The most common method for calculation of the effective potential is to
approximate it by the first few terms of the loop expansion [2, 15], which provides

N
apower seriesin #: V(h,a)~ > v,(a)#". In[2, 15]itis argued that the coefficients
n=0

v(a) are given by sums of one-particle irreducible (1-PI) n-loop Feynman
diagrams. In particular, v,(a) is given by the classical potential Uy(a)=P(a)
+1m?a? so that V(#, a) is in some sense a quantum analogue of Ugy(a). The main
results of this paper are a proof that for the P(¢), model the usual loop expansion is
asymptotic as # | Q for those values of a at which U, has nonvanishing second
derivative and is equal to its convex hull, and an example of a double well classical
potential for which the usual expansion fails to be asymptotic. In the example it is
shown that for values of the classical field lying between the minima of the classical
potential the true asymptotic expansion of V(#, a) involves connected rather than
1-PI n-loop diagrams.

Before stating the main results we describe the graph notation used in this
paper. To begin with an example and a fixed translation invariant covariance

M
C(x,y)=C(x—y), the graph N @)\ is by definition equal to
2 3
M
O, =ik JandaC0. )00 x)Ctm xR (1Y
2 3

The right side of (1.3) is obtained from the left side by identifying any one vertex as
the origin in IR? and associating with the remaining vertices the variables x, and
x,. To every line there corresponds a factor of C evaluated at the endpoints of the
line. These factors are multiplied by the vertex factors 4;. This procedure is
followed to obtain the value of any graph. Usually the vertex factors depend only
on the number of lines emanating from a vertex and are understood to be part of
the graph without writing them explicitly. Graphs also usually include com-
binatoric factors as explained below. Some standard terminology is: A self-lineis a
line connecting a vertex to itself, a connected graph is a graph for which any two
vertices are path connected by lines, a one-particle irreducible (1-PI) graph is a
connected graph such that the removal of any one line leaves a connected graph, a
one-particle reducible (1-PR) graphis a graph that is not 1-PI, and a graph having L
lines and V vertices is an n-loop graph, where n=L—V + 1. Finally, we need the
following definition.
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Definition 1.1. Given a graph 4 and d € IR, the d-renormalized graph %, is the graph

obtained by removing all self-lines from ¥, introducing a vertex factor d for each

removed self-line, and introducing a factor ¢, ; for every k-legged vertex of ¥
k!

having j self-lines, where ¢, ;= k=)

For example,

5:OO=Gd = (4 d Q

G

o ©
&
bl
S

3
Ce3d

The following definition introduces the set B governing the asymptotics of
V(#,a); conv f denotes the convex hull of a function f.

Definition 1.2. For Uy(a)=P(a)+5m?*a?, define
Bi={aeR: Uy(a)*+(convUy)(a)}, B,={acR:Uja)=0}, B=B,;UB,.

In the remainder of this section we state the main results and comment on their
proofs.

Theorem A. },if% V(#,a)=(convU,)(a).

This theorem is proved in Sect. 4 by first using the elementary convex analysis
of Sect. 2 to show that the limit can be taken under the supremum, reducing the
problem to finding ;ilng p(#, ). This limit is found to be —m(u)= — min U (x),

where U ,(x) = U(x)— pux, by translating the field ¢ in the functional integral (1.2)
by the location &(u) of the global minimum of U, (which is unique for all but
finitely many p) to obtain

n pk)
p(#, u)——m(u)+h hm /1” lnfexp[ lf ; P (é('u)).qﬁ :ldﬂha (1.4)

where we drop the variable x of integration from the interaction. For those u such
that U, has a uniquely attained global minimum and U,(£(u)) #0 it will be shown
in Sect. 4 using an estimate of Sect. 3 that the argument of the logarithm in (1.4) can
be bounded above uniformly in 4 and small % by X!, using the fact that for some
o(u)>0,

i P""(C(u)) gl

k=2

3m*x? =U (x+ (1) — U, (&) > d(u) (x> +x7),

where n=degP. Since by Jensen’s inequality the argument of the logarithm is
bounded below by 1, %ilné p(h, )= —m(w).
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Theorem B. (a) Let a¢ B. Then there exists a y>0 such that V(#, a) is analytic in #i
for iie(0,y). Moreover, V(f,a) is C* at i=0%, and so the expansion V(#,a)
~ Y v,(a)#" is asymptotic, where v,(a)=D}V(0*,a)/n!.

n=0

(b) Let a¢ B. Then vy(a)=Uqy(a) and

.1 P’
i@ =—@=— fim, omfex| - [ 7D e

Fornz2, —v,(a) is the ( finite) sum of all d(a)-renormalized 1-PI n-loop diagrams

with k-legged vertices taking factors —P®(a)/k! (3<k<degP) and lines corre-

Uo@)
>

1
sponding to the free covariance of mass Ug(a)'/?, where d(a)= — Elog

combinatorial factor is associated with each graph — see Remark 1 below.

Remark 1. The renormalized graphs in —v,(a) are to be understood to include
combinatorial factors. Given a renormalized graph, let V;; be the number of
vertices that originally had k legs and have been renormalized with the removal of
j =0 self-lines. The combinatorial factor for the graph is the factor associated with
the graph by chk’s theorem divided by H Vi!. For example, the combinatorial

factor of @ 1S — 1728 288.

Asan example of Theorem B we obtain a renormalized (and rigorous) version
of a result of [15]. Let Uy(x)=x*+21x? and P(x)=x*. Then B=¢ and for d(a)

1
= — —log(1+12a?

v = (D8 1w = (D + 3002

(D00 D@00 Il
O s DO Q@ - st O

Lines are (— 4+ 1)~ ! lines and 3- and 4-legged vertices take factors —4a and —1,
respectively. Amputated legs have been partly drawn to keep clear what the vertex
factors should be.

The proof of Theorem B(a), given in Sect. 4, involves translation of the field ¢ in
p(h, 1) in (1.1) by a to obtain a new pressure having vertices as in Theorem B(b),
together with some elementary convex analysis (Sect. 2) which reduces the study of
smoothness of V(#, a) in # to smoothness of the translated pressure in both # and
the external field. Smoothness of the translated pressure is obtained via a high
temperature cluster expansion [12] whose convergence is shown to follow in
Sect. 3 from the eX! upper bound on the partition function used in the proof of
Theorem A. The a ¢ B requirement is needed for this bound. Theorem B(b) is
proved in Sect. 5 using an irreducibility analysis in the spirit of [3].

Similar methods can be used to show that for any compact K C B there is a
0>0 such that V(#, -) is analytic in an open neighborhood of K, for all z <.

and

-vz{a)l



Loop Expansion for Effective Potential in P(¢), 429

Finally, in Sect 6 we prove the following result which gives an asymptotic
expansion for V(#,a) when a is the bad set B, for the classical potential Uy(a)
— @

Theorem C. Let V(fi,a) denote the effective potential for m=1 and P(x)

1\? 1 1
=<x2—§> —%xz. Thenfor]a|<—,D1V(0+,a)=—y( >=O,andf0rng2,

V8 /B
— ED’{ V(0*, a)is given by the sum of all n-loop connected graphs with no self-lines,

—1 1
with three- and four-legged vertices taking factors ?P“’(—) = —]/5 and

Vs
;—‘1 P® <%> = — 1, respectively, and lines corresponding to the free covariance of

mass 1. Graphs take combinatorial factors as per Remark 1.

A number of authors [ 10, 1, 4] have recently calculated the O(#) contribution to
the effective potential corresponding to the classical potential considered in
Theorem C, and find it to be the straight line interpolation of the O(#)

o . 1 . .
approximation given for |a|> 7 by Theorem B. Theorem C gives a rigorous

justification of this fact; the proof is an easy consequence of using the Fenchel
transform to define V(#, a) and the known fact that there is a phase transition in
this model if # is sufficiently small [13].

2. Preliminaries

In this section we prove some elementary theorems that will be used to reduce the
study of smoothness of the effective potential to smoothness of the corresponding
pressure, and comment on some properties of the classical potential.

For f:R—IR, its convex conjugate or Fenchel transform f* is given by

[*@)= sup Lua—f(w]. 2.1

Denote by %, the set of strictly convex functions f for which lirP DEf(u) =+ 0.
= I oo

Then for fe¥, the supremum in (2.1) is finite and attained at the unique u for
which ae[D™f(u), D" f(w)].

Theorem 2.1. Suppose f(h, -) and f are in €, for all >0, and suppose 11'{1(1) fh,

h
=f(u) for all u. Denote by u(h, a) and p(a) the unique values of u where pa— f(h, )
and pa— f(u) attain their suprema. Then },if[cl) w(h, a)=w(a) and }liln(q) f*(h,a)=f*(a).
Proof. We first prove that lim u(#, a) = u(a). Fix a€ R and ¢>0. Choose ¢ €(0, ¢)
hloO
such that Df(u(a)+ o) exist. Let

a=3min{Df (u(a) +¢)— D" f(u(@)), D" f(u(@)) — Df (n(a)— )} -
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Since f is strictly convex, a>0. Then Df(u(a)+0)>D" f(u(a))+a=a+a and

similarly Df(u(a)— o) <a—a. By convexity, ﬁfr}) D3 f(h, )= Df () if Df (1) exists,
h

so there is a 6 >0 such that
D% f(h, w(@) £0)~Df (@) L)l < 5 for all h<d.

Therefore, D f(h, wa)—o)<a<D3yf(h,u(a)+¢) for all #<dé and so
u(h, a) € [u(a) — o, u(a) +¢] for all <, and hence ;liln(l) wuh, a)= u(a).

Now
|f*(h, a)—f*(a)| = sup [ua—f(h,w)]— sup [ua—f(w]
= sup |f (7, 1) —f (0

T pelu@) - e, p@) +el

for any <. Since f(#, p)— f(u) uniformly in compact intervals, the right side
goes to zero as 1} 0.

Theorem 2.2. Suppose f(#, - ) and f belong to the set €, with lifn fh, wy=f(w) for
alO

all pe R. Fix a and suppose that for some 4. >0 there is an open interval I containing
wa), such that f is analytic in (h, )€ (0,4) x ICC? and

IDZf(h,w)|=C>0 for every (f,u)e(0,2)x1. (2.2)

Then for some y'>0, f*(h,a) is analytic in fie(0,y"). If, in addition, there are
constants M,, , such that

‘Drlanf(hau)'éMm,n fOV every (h,u)E(O,y)XI; m,n=0,1,2,...,
2.3)
then f*(#,a) is C* at h=0".

Proof. By Theorem 2.1 we can choose y'<y such that u(f,a)el if A<y’
Also, it follows from analyticity of f and the bound (2.1) that there is a neigh-

borhood 0,2(0,y) xI on which [D3f(#,u)l> g Let g, u)= % [ua—f(#, w)l

=a—D,f(h,p) for (h,p)eV, where we set V,=0,n{(fu)eC*: 0<Refi<y’}.
Then p(#,a) is uniquely defined by g(#, u(f, a)) =0, for <y’ By the fact that

D3 f(h, u)g% in 0, and the implicit function theorem it follows that u(#,a) is

analytic in # in an open neighborhood U, >(0,y’), with (%, u(%, a)) € V,, for all
fie U,.. Therefore, f*(h, a)=uh, a)a— f(h, u(f, a)) is analytic in e U,,.
Differentiating the equation g(#, u(#, a)) =0 with respect to % gives

=D, D, f(h, u(h, a))
Dyu(h,a)= D3 f(h, u(h,a))

The bounds (2.2) and (2.3) imply that |D, u(#, a)| is bounded uniformly in 7 € (0, y").
Repeated differentiation shows that | D} u(#, a)| is also bounded in # € (0, y). These
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bounds on D}u(#,a) and the bound (2.3) imply that |D} f*(%4,a)| is bounded
uniformly in % € (0,7") and hence D} f*(0™, a) exists and equals liln(l) D% f*(h,a). O
h

We now turn our attention to establishing some elementary properties of the
classical potential U,. For Ugy(x)=P(x)+3m?x?, let U, (x)=Uy(x)—px. Let
G,={uelR: U, has a uniquely attained global minimum}, and for e G, denote
the location of the minimum by &(u). It is not hard to see that G is finite. Define
F={ueGy: Uj(&w)=0} and G=G,\F. Since ¢ is strictly increasing, F is finite,
and hence G° is finite. Let m(u)= mxin U,(x). Then for pe Gy, m(u)=U (E(w)).

Lemma 2.3. The functions m and ¢ are analytic on G, with m'(u)= —&(u) and

s 1
W= TrEw

discontinuous on G, Iirp Eu)=+ o0, and —me%,
u=>t oo

. Furthermore, & is strictly increasing on G, continuous on G, and

Proof. The derivative U} is an entire function, and for pe G, Uy(&(w)=u and
Ug(E(w)) > 0. By the Inverse Function Theorem there are open neighborhoods O
containing u and V containing &(u) such that Uj)|, is invertible and the inverse is
analytic on O. This inverse is an extension of ¢. Since for pe G, m(u)=U (&(w))
=Uo(&(p)) — pé(p), mis also analytic on G with m’(u) = — &(u). To calculate £'(u),

. . . . 1
differentiate the equation Ug(&(un)) = p with respect to p to obtain &'(u) = m
olGH

The fact that ¢ is strictly increasing and discontinuous on G is clear from the
definition of &. It is also easy to see that £ is continuous on F, and hence on G,. For
large p, &(p) is the unique root of Ug(x) = u. As u— + oo that root diverges to + oo,

SO 1ir+n &(u)= =+ 0. This last fact, together with the strict monotonicity of £ and
u—>t oo

the equation —m’(u)=E&(u), implies that —me ¥, O

Lemma 24. B°=¢(G).

Proof. Suppose ae &(G). Then there is a p, € G such that &(u,)=a. Since Ug(a)
=Ug(&(u,)) >0, a¢B,. We now show a¢B;. Now (convU,)(a)=UE*(a)
= sup [pua— UF(p)]. Since

n

Ud(w) = sup [ux—Uo(x)] = —min U(x) = —m(), 24

(convU,)(a)= sup [ua+m(u)]. But —m is differentiable at u, and D(—m)(u,)
"
=¢(u,)=a. Since —me€ ¥, this implies that

(convUo)(@) = paa +m(pa) = poa+ U, (E(1a) = Uo(l(a) = Ug(@) . (2.5)

Since G is a union of open intervals and ¢ is strictly increasing and continuous on
G, £(G) is a union of open intervals. Together with Eq. (2.5), this implies that a¢ B;.
Hence &(G)C B

On the other hand, let a € B®. Suppose contrary to the statement of the lemma
that a¢ &(G), ie., acé(F) or ae&(G,). If ae&(F), then Uj(a)=0 so aeB,.
Therefore, aeé(G,). By Lemma 2.3 there must be a py,eG{ for which
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ae[E(ug), E(ug )] CE(G, ). The interval [E(ug ), E(ug )] is nontrivial since pg € G is
a point where ¢ undergoes a jump discontinuity. Since £(ug)=D*(—m)(u,) by
Lemma 2.3, ae [D~(—m)(up), D+ (—m) ()] CE(G,)". It follows from the fact that
a€ B and Eq. (2.4) that

Uo(a)=Ug*(a)=(—m)*(a)
=poa+m(u,) forall ae[D™(—m)(uo), DF(—m)(uo)]-
But this is impossible because U, cannot have a linear segment. [J

Definition 2.5. For 6,L>0 denote by Z; ; the set of all polynomials
T(x)= Y tux* with |f|SL (k=2,...,n)
k=2
and T(x)=d(x"+x%) forall x.

Lemma 2.6. Suppose T(x)= Y. t,x* attains its global minimum at x =0 only, where
k=2
tyt3>0. Then there exist 6, L>0 such that Te T ;.

Proof. Let L=max{|t,]: 2<k=<n}. For large |x|, say |x|> 4, there is a , >0 such
that T(x) is bounded below by J,x", while for small |x|, say |x| <e, thereisa ,>0
such that T(x) is bounded below by J,x* Let a= min T(x)>0. Then for

s<|x]<A

(x*+x"). Let 6= mm{ Oty = (52, 2A”} O

Ixlele, 4], T(x)zaz 2A,,

3. The Main Estimates

To prove analyticity in # for the effective potential and obtain the desired form for
the derivatives at =0 it is convenient to perform a change of variable, so as to
explicitly isolate the leading term. Let C=(—A4+m?) ! with periodic BC on 04
and recall that U (x) Ug(x)—pux, where Uy(x)=P(x)++m?x% Fix aeR.
Translating ¢ by a gives [11]

foxp| S0 1P~ [dnuc

-1 -1 .| & U0 1 ).
=exp [7 |A|Uu(a)} Jexp [7 ,j1 [k; o gk ~3 —m? % | | dpye.
(3.1)
Here and throughout this paper the Wick dots appearing in an integrand are with

respect to the covariance of the measure unless otherwise indicated. By definition
of the pressure in Eq. (1.2), Eq. (3.1) implies

p(h, )= —U (@) + 1o (h, u—Uj(a)) , (3.2)

where

(k)
,hi)= lim 1n§exp[—f [_ZP g —jasﬂduﬁc. (33)
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Inserting Eq. (3.2) in the definition of V in Eq. (1.1) gives
V(h,a)= sup (ua+U (a)—ho(h, n—Ug(a))]
=Uy(a)+ il:g [—#o,(h, W)]. (3.4)

Next, we perform a mass shift so as to explicitly isolate the O(#) contribution to
the effective potential. Let m?=Up(a)=P"(a)+m?* For a¢ B, m?>0. For the
remainder of this section we assume a ¢ B. Let C, =(— 4 +m?) ™! with periodic BC
on 0. By a mass shift [11] it follows from Eq. (3.3) that

1 (k)
ay(h, p)= AI lnfeXP[—ILstfa)-aﬁ —u¢ﬂduhcl

+ hm I—jl—lln fexp [:h-l §1 P”z(a) (2 :] Aty . (3.5)
Introducing
y(a)—hmI—A—lln {exp [— [ P@. ]d,u,,c, (3.6)
it is clear by scaling ¢—#'/?¢ that y is independent of #>0.
Let
(5, )= lim Lo fexp [1—1- | [ 5 P (k)(“) g —mpﬂ dye,. ()
[A] h K=3
Then by Egs. (3.4) and (3.5),
V@)= Uola) — (@) + supl —hash, ). (3.8)

The next step is to Wick re-order the interaction in ¢, to match the covariance
C,. Writing a,=P®(a)/k! (k=3, ...,n) and using the standard Wick reordering
formula [11]

WX, = Z cnk[5C(X)]k ¢ M),

. n! . .
where 0C(x) = y_rg [Cy(x,y)—C(x,y)] and ¢, = PR (1= 201 the interaction in
a,(#,0) can be rewritten as

Y g te= 3 qih) 3¢k3hc, > 3.9)
k=3 k=0

. . n—1-k]. -1, m}
where each g, is a polynomial of degree 5 infid=h e log ") plusan

#i-independent term that goes to zero as A 1 R? |. To simplify the notation we drop

the A-dependent term (which is insignificant for large A and disappears in the
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A1 R? limit). The g,’s obey

ao(h)=0(1*), q,(=0(), q,(N)=0), qh)=a,+0(h) (B=k=n).
(3.10)
Explicitly,

nf2
qo(h)= kgl CZk,kazk(hd)k . (3.11)

Writing u, for the unique element of G satisfying &(u,) = a (which exists by Lemma
2.4) we have

3 ORI =U, (4 E) U (&),
so by Lemma 2.6 there exists J, L >0 such that
léz q(0)x* + %m%xz €T
Inserting Eq. (3.9) in Eq. (3.7) gives

1 1 [
fioa(h, )= —qo(#) +hlim —In fexp [7 £ L;Z gy 14" —(u—ql)féﬂ dpiye, -

1]
(3.12)
Let
- . 1 - 1 " k .
o(h,j)=lim —Infexp| —= || 3 q,:¢*: —jé | |duc, , (3.13)
4 4] hoali=2
so that
hoy(h, u) = — qo(h) +ho(h, p—q,(h)) . (3.14)
Inserting Eq. (3.14) into Eq. (3.8) gives
V(h,a)=Uo(a)—Hy(a) +qo(h) + sup [—ho(h, W], a¢B. (3.15)
Dkqo(o) ko .
Observe that TS a2, d" gives the value of the d-renormalized k loop

graph with a single 2k legged vertex a,, and legs joined up in pairs. To show that
the translated effective potential

E(h) = sup [ — ol 1] (3.16)

is analytic in small #>0 and C* at i=0", we will use Theorem 2.2 to reduce the
problem to the study of #ia(#, ). This pressure is studied using a high temperature
cluster expansion.

Convergence of the cluster expansion follows from upper and lower bounds on
a partition function. We now give the first steps towards obtaining these bounds.
The idea for the proof of Lemma 3.1 below originated in work of Spencer [19].
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After this research was completed the author learned of a paper by Eckmann [7]
where an estimate very similar to Eq. (3.17) was obtained by essentially the same
method.

Let Sy ,={zeC: O<Rez<y, 0< |Argz| <0}, and denote by dpu,.(s) the
Gaussian measure on & *(IR?) with covariance

> IIs [T A=s)(=4"+m*)™",
I'c#4 bel' belc

where 4 , is the set of all bonds joining nearest neighbor sites in the periodic lattice
AnZ?* and 4™ is the Laplacian with Dirichlet BC on I and PBC on 4.

Lemma 3.1. Let T(#,x)= i a(h)x* and a,(h)=0"'"?), where the a, are
k=2

continuous in Sy, for some ',y >0. Suppose Re T(0, -)€ T, ;. for some 6,L>0.
Then there exist 0,y>0 such that

fexp [ — l:h‘ LT, 2V2¢): +a,(h)g— %mz P2 ﬂ dumz(s)l <ekV
(3.17)

foreveryheS, ,and for every s, and for every finite union V of lattice squares in A.
The constant K depends on 6 and L.

Proof. Itis not hard to see that without loss of generality we may take # and the g,
to be real. Furthermore, by conditioning [14] we may take s= 1, corresponding to
the covariance (—4+m?) ™! with PBC on dA. By performing a mass shift we
obtain

jexp|:— | I:l (T(h, 12 ¢): +a,(h)¢— lm2 :¢2:j| At
v A 2

jexp[—if/[%:T(h,h1/2¢):mz+a1(h)¢—%m2:¢2:mz}}axp[ 1§/< m —~> $? ‘5:|du

jexp[—£<;m —*> ER ]d,ﬁ, (3.18)

where dp’ is the Gaussian measure with periodic covariance
(— A+ 6y, +m?y4y) "' Wick order with respect to dy’ is denoted : :°. Applying
Jensen’s inequality to the denominator of the right side of Eq. (3.18) we obtain

fexp[— f[%:rrm,hm@: ca gL ¢ﬂ s fexp] - [+ A
14 14
where

:A(¢):5=h’1:T(h,h1/2¢):m2+a1(h)¢——%m2:¢2:m2+ (;m ——) ¢,
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The polynomial A4 has the form
n—2
A(x)=h"1 T(h, h**x)— gxz-%— Y amn*xx, (3.19)
k=0

with the g, bounded in absolute value by a constant depending only on ¢ and L.
We now introduce the momentum cutoff field ¢,(x)= | ¢(3)3,, .(y)dy, where
3, «(»)=r*h(r(x — y)) with he C7(R?),h =0, h(0) >0 and | h(y)dy =1, and obtain a
lower bound on :A4(¢,):’ as follows. Let ¢,(x)= {4, .(y)C(y, 2)d, (z)dydz. Then
a,(x)=0(logr) as r—co. Using Eq. (3.19) and undoing the Wick order gives
k

n—2 n—k
iA(¢r)25=h‘1T(h,h”2¢r)—gcﬁf + 3 alh,ni?a,2 ¢
k=0

with |c,(#,7)| uniformly bounded in small # and large r. Since T(0, -)e 7, it
follows that for # sufficiently small T(%,-)e 7 4, and hence
2’ 2

n_ n—2 n—k S n—2
:A(¢,):";éh2 Faa) %o, 2 ¢'§ZG¢'/2[~X"+ 2 Ckxk],
2 k=0 2 k=0

where x=#"'?g, 1/2¢,. Therefore, there is a constant independent of small 7 and
large r such that

: A(¢,):* = —(const)(logr)"?. (3.20)
The estimate (3.17) follows from (3.20) by a standard result [6]. [
Thg following theorem gives bounds which imply convergence of the cluster
expansion.
Theorem 3.2. Let T(#,x)= i a (F)x* and a,(h)=O0(k'?), where the a, are
continuousin S, for some 0/, ;’=>20. Suppose Re T(0, x) € 5 ; for some 6, L>0, and

fix m,&e>0. Then there exist 0,y,b>0 such that if |a,(0)—3m?|<b, then

<&l (321)

fexp [ - ‘j/ [% (T, 72 g): +a,(h)d— %mz i/ :H di(s)

foreveryheS, ,, for everys, and for every finite union V of unit lattice squares in A.
Moreover,

§ exp[~ ] [%:T(h,h”zq}): +a,(h)p— %mz :¢2:ﬂ i (s)| = % (3.22)

or every he S, .. for every s, and for every unit lattice square A.
y 0,7 Y q

Proof. The proof follows [19].
For ACV we define

iy =exp[— i[:% T(h,h*?¢): +a,(h)p — %mz :¢2:I| —1. (3.23)
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Then
JeXp[ i[ T(h,h'%¢): +al(ﬁ)¢—-m 9% ]]dumz(S)
=TI I V(w 4+ Ddpya(s) = Z § H Y 4dla(S) - (3.24)

We claim that there is a y=1v(g, d, L) such that for i<y,
lf I1 wAdumz(s)’ <l (3.25)
ACX

Given (3.25), it follows from (3.24) that

Iexp[— ‘I/[% T(h,h'*@): +a,(h)d— %mz :¢2:]] dp,,»(s)

Xcv m=

14
<y M-y (‘Z')smg(l+s)'”§esm,
0

which proves (3.21). The bound (3.22) follows from (3.25) with X = 4.
It remains only to prove the inequality (3.25). To simplify the notation, let

S(V): —f[ (T(h,#'%4): +a (ﬁ)¢—*m ¢2:|

By the Fundamental Theorem of Calculus.

1
Wa,=— [ dA;:S(4;): exp[—4;:5(4):]. (3.26)
0
By Eq. (3.26) and Holder’s inequality
I 11 wAd#mz(S)l = “H:S(Ai): sup eXp[— Z?tiZS(Ai)I] , (327)
ACX i p 0SAis1 i »

where p>1 will be chosen below to be near one. The norm || - ||, is the norm in
LP(dppa(s)).

By assumption the coefficients of S are O(%'/%) or O(b). For A<y, it follows from
standard estimates on Gaussian integrals [11] that for given fixed p’,

)il Z(max{y'? b} M) (3.28)

for some constant M independent of # and s.

To bound the other factor on the right side of Eq. (3.27), we cannot use Lemma
3.1 directly because when 1;=0 the classical potential will not be in any J; ;.
However, the proof of Lemma 3.1 can be modified to overcome this difficulty, as we
will now show. As in the proof of Lemma 3.1 we assume that 7 and T are real and
that s=1. Note that for p>1 and y€(0,m?),

Jexp[—pAi:S(V)im2] exp[—%(mz—v) i 1¢2i] dw
JCXP[—%(mZ—v)iraﬁz:Jduy

<] CXP[-P& 1S(V) i —3(m* —7) £1¢21}d1ﬂ

fexp[—pA;:S(V):Jdp,: =
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by Jensen’s inequality. But
pii[:h_ ! T(h’ h1/2¢r):m2 +a1(ﬁ)¢r_%m2 ¢3 :mz:l +%(m2 _y) ¢3 7

—>._—/1i [ph_l : T(h’ h1/2¢r):m2+pa1(h)¢r— g:¢r2:m2j|

+[A<g—§ >+ (m? —y)] 2pa—C.

If T(0, -) e 7 1, thenfor pe(1,2), pT(0, -) € 7,1, so the estimates of the proof of
Lemma 3.1 shows that

P T 124 Yot pas (A, — 02 — My (logr™.

2
1
Choosing p=1+ 52 and y=min {n; g} gives /; <é - I—)m2> + §(m2 —7) 20 for

2 2
A:€[0,1]. Therefore,
pALAT T 7Y 29, e+ a ()G, —3m* 1§72 ,2]
+3(m*—y) 14772 — My(logr)"?,
so by [6]
<KXl (3.29)

p

sup
0<Ast

exp[—;lizsui):]

Using the bounds (3.29) and (3.28), Eq. (3.25) follows from Eq. (3.27) by taking b
and v sufficiently small. [J

Theorem 3.2 and standard results [12, 5], together with a standard scaling
argument, imply the following corollary:

Corollary 3.3. For aninteraction T and a function a ()= O(#*'?) as in Theorem 3.2,

1
there exist 0, y, b >0 such that the cluster expansion for the interaction 7 T(h, %)

+a,(h)p— %mzq}z and mass m converges with bounds depending only onm, , and L,
independent of A and of heS, ,. In particular, truncated expectations of the form
] /1| Cf(A); o ¢4 (A) 2y, 4 are bounded in absolute value uniformly in A and
heS,, ,, where (- ), 4denotes the expectation corresponding to the given interaction
in a periodic volume A. [

The following theorem, whose proof relies on Corollary 3.3, is the key to the
proof of Theorem B(a).
Theorem 3.4. Let T(h,x)= 3 a,(h)x*, where the a, are analytic in an interval (0, @)
k=2
and C* at 0%, and T(0, - ) € T ;. Then for |a,(0) —3m?| sufficiently small there exist
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y>0 and complex open neighborhoods 0,2(0,y) and D containing 0 such that
fre(h, Wy=hlimz(h, p)
A

4 |4

is jointly analytic in (h,u)€0,x D and C* at h=07, with uniformly bounded
derivatives. Moreover, there is a ¢>0 such that

ID3he(h, wl=c  for all (h,p)e0,xD. (3.30)

Proof. Since T(0,-)eJ; , there exist y,¢'>0 such that for ue(—¢’,¢’) and
e (0,7, T,(A, x)=T(h, x)— ux has a uniquely attained global minimum, at say
&(h, W), with

=#lim —l-lnfexp[—%£ /fl {:T(h, ¢): — %mz P2 —,u¢]} dtyc

S(ha H; X) = Y:t(h7 X+ 5(h> ,LL)) - T/,L(hs é(hs ,u')) € %’,L'
for all (A, w)e[0,y)x(—¢,¢).
Moreover, ¢ is analytic in ¥V, x D,,, where D, ={ze C: |z|<¢'} and V,, is an open

neighborhood of (0,7’), and C* at A=0".
Translating in t, by & and then scaling ¢—#'/%¢ gives

freo(h, ) = — T,(h, &Ch, ) + %

-lnfexp[— i[%:S(h,u; A 2¢): — %mz :¢2:]:| duc,  (3.31)

for all (A, u) eV, xD,. Since $D3S(0, u; 0)=34D3T(0, £(0, ), we can make
1D2S(0, u; 0) as close as desired to $m? by taking ¢ and |a,(0)—%m?| suf-
ficiently small. Then by Corollary 3.3 expectations of the form
I_/11—| (g (A):; .. 47(A): )5, 4 are bounded in absolute value independent of 4,7, u,
where 5

S(HY2, s x)=h" " S(h, p; h'2x) —hmx

and
|-exp [ — £ :P(¢):] Aty
Fexp[ — §-P@): | dupe '

<'>P,A=

The first term on the right side of Eq. (3.31) is analyticin (%, u) € V,, x D, and C*
at#=0", and does not depend on A. Its derivatives are uniformly bounded. To see
that 7it(#, p) is analytic, we note that the infinite volume limit of the second term on
the right side of (3.31) is analytic in small (4'/2, u) by Corollary 3.3 and Vitali’s
theorem. To see that Az(h,u) is C* at #=0", we need only show that odd
derivatives of

1 ~
Catts = prinTexpl = 80 )] due



440 G. Slade

with respect to t vanish as t—0. Now
DHHIDLe (t, )= IAI 92 % a<£:D|1"“D'2""§:;...;
[ :DlmIDleIS; | Dlewmi= il :D'2"1°"§:> (3.32)
A A A

5,45

where 2, is the set of partitions of {1, ..., n}, m; are the elements of a partition =, ¢,
are positive integers, and |o], ..., |0}, | may be zero. Since

3 R GRIGND) e 245

St 9= 3 = S,

the t=0 contribution to D}DS is a linear combination of terms of the form
c(u)g'(A), where ris odd if jis odd and ris even if jis even. By Corollary 3.3,as t—0
the right side of Eq. (3.32) approaches uniformly in 4 a sum of terms of the form

(W (A5 1A Ds50,5), 45 (3.33)

wherwhere 74, ..., 7|, have the same parity as |y, .o |7pyls @0d 74 q5 .51 @l
equal 2. Since In1|+ +|n|n|l—2k+1 is odd, Pt g is also odd The
expectation in (3.33) is invariant under ¢— — ¢ since S(0, »; -) is quadratic, and
hence equals zero.

It remains to prove the lower bound (3.30). By differentiating under the integral
sign, translating by &(h, p) and scaling ¢—+h” 2¢ it is seen

AD3x(h, i) = lim -~ | AI <H(A); HA))s, 45

which approaches lim I—/lll— {P(A); p(A)D50. 4. 1,4 a8 | 0 by Corollary 3.3. This last
A
quantity is continuous in u and equals [ (—4+42a,(0))”'(x)dx for u=0.
R2
Therefore, taking ¢ and y smaller if necessary, the lower bound (3.30) holds. [

4. Proofs of Theorems A and B(a)
Theorem A. }'iln(x) V(#,a)=(convU,)(a).
Proof. As was pointed out in Sect. 1, p(h,-) is strictly convex [9] and
uEI_'I_loo D,p(fi, p)= + o0, so p(f, -)e €, In Theorem 4.1 below we will show that
;lilng p(h, 1) = —m(p) for all u. Using this, and the fact that —m e %, by Lemma 2.3, it
follows from Theorem 2.1 and Eq. (2.4) that for all ae R,
}liflg V(#h,a)= —m*(a)=Uf§*(a)=(convU,)(a).
We now prove the promised limit, which is a Laplace’s method type result for

functional integrals on &%’(R?). For related results in the context of Gaussian
integrals on C[0,1], see [8, 18].



Loop Expansion for Effective Potential in P(¢), 441
Theorem 4.1. liflg p(h, )= —m(w), for all peR.
i

Proof. Let
pah, p)= mlnf exp [~ [ [:P(9): u¢]:| dine »

and fix pe G. Let T(x) = U ,(x+ &(1)) — U({(n)). By Lemma 2.6, Te 7; | for some
0, L>0. Translating the field by &(u) gives

palth 1) = —U,(EG0) +h 1nfexp{ih—1£ [T(qﬁ) S i ﬂdu,,c. (@)

By Jensen’s inequality the argument of the logarithm on the right side of Eq. (4.1) is
bounded below by one, and by Lemma 3.1 it is bounded above by eXI4l if # is
sufficiently small. These bounds and Eq. (4.1) show that |p,(#, u)+m(w)]—0
uniformly in A, as 4| 0, for u e G. But since G* is finite, hm p(#, )= —m(u) for all
uelR by convexity. I

Theorem B(a). Let a¢ B. There exists a y >0 such that V(#, a) is analytic in # for
fe(0,7). Moreover, V(h,a) is C* at #=0", and so the expansion V(h,a)
® . ) DiV(0*,a)
~ > v(@)#" is asymptotic, where v,(a)= T
n=0 .

Proof. Recall Eq. (3.15)
V(#, a)=Uo(a)—hy(a)+q0(h) + sup [—ho(h, )], a¢B,
where g, and ¢ are functions of a. Fix a¢ B. Since ¢, is a polynomial we need only
show that E(#)= sup [ —#io(#, p)] is analytic on (0,y) and C* at #=0". We show
u

this using Theorem 2.2.
Note that it suffices to show that

},if% ho(h, u)= —my(n), forall peR, 4.2)

2
cient, note that by Lemma 2.3 the location of the supremum in

. n 1 .
where mo(,u)zmln[ > g (0)x*+ ~mfx2~ux] To see that this is suffi-
x k=3

1 .
3 m?x?* — ux attains

its global minimum at zero. Since a¢ B, there are 6, L>0 such that

sup [ +mg(u)] is the unique p, say u(0), for which Y q,(0)x*+
I k=3

" 1
¥ g0+ smixie 7y,

and so p(0)=0. Now given Eq. (4.2), it follows from Theorem 3.4 that fio(#, 1)
satisfies the analyticity requirements of Theorem 2.2, as well as the necessary
bounds on the derivatives, and hence E is analytic in (0,y) and C* at A=0". It
remains to prove Eq. (4.2).
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We show that (4.2) holds for e G(0), where for A >0

" 1
G(A)= {y eR: Y q(A)xF+ 3 mix® — pux
k=3
has a uniquely attained global minimum

and has positive curvature at the minimum}.

Since G(0)° is finite, (4.2) holds for all y if it holds for ue G(0), by convexity.
Let

1 —1 . [
o 4(h, A, 1) = ol In | exp [7 £ [EZ QA gk — /xqﬁﬂ dpise

and let o, u)=0,(,h, 1), so o, p)=1limo,(#, ). By the Fundamental
A

Theorem of Calculus,
h
hio (h, W) + mo(w| = o 4(h, 0, 1) + mo(p)| + 7 g D20 (B, A, p)dA]. (4.3)

By Theorem 4.1, the infinite volume limit of the first term on the right side of (4.3)
goes to zero as 71 | 0. As for the second term, fix u € G(0) and y > 0 sufficiently small
that u € G(A) for A € (0, y). In the expectation #D,a ,(, A, 1), translate the field by the

location &(4, p) of the global minimum of i q3(A)g*+ %m%qﬁ — ug, scale the field
k=3

$—Hh'2¢, shift the quadratic term of the interaction over to the measure, and Wick
re-order the interaction to match the new measure. Then by Corollary 3.3,
#|D,o 4(A, A, )| is bounded uniformly in 4 and in small 4 and 4, and therefore, the
second term on the right side of (4.3) is O(#) uniformly in 4. [

Note that it was also proven in Theorem 2.2 that the point u(f) at which
sup [ —#io(f, p)] is attained is analytic and bounded on (0,y) and hence C* at
"

#=07. In particular,
lim pu(h) = u(0)=0. (4.4)
hiO

5. Proof of Theorem B(b)
Theorem B(b). Let a¢ B. Then vy(a)=Uy(a) and

vl(a)——y(a)——hmmlnjexp[ }(1 ”2(a) $? }d -

1
For N=2, —DN(a)— DN V(0*,a) is the ( finite) sum of all d(a)-renormalized

P(k)
1-PI N-loop diagrams with k-legged vertices taking factors (“) (3<k<degP)

and lines corresponding to the free covariance of mass (Uj (a))”z, where d(a)
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= — Elog
Remark 1 of Sect. 1.
This section contains the proof of Theorem B(b). Fix a¢ B. By Eq. (3.15),
V(#, a)=Uq(a) —fry(a)+qo(h) + E(h), (5.1)

where E(#) = sup [ —#a(h, u)] = —fio(h, u(f)) and o is given by (3.13). By Eq. (3.11)
u

U//
0( %) . A combinatorial factor is associated with each graph as per
m?

1
-7 Dk‘lo(o) =

—Copurd®, k=2,...,3(degP),
k! 0,

. 2
otherwise, (52)

. . . 1 1
ie., in the notation of Definition 1.1, _EDZ%(O): —ay [8} » —§D3qo(0)

=—ae {%} » €tc., where d= — Zlglog(Ug(a)/mz). As we will now show, E(%)

=0(#?), and for N =2, —DVE(0) is given by a sum of graphs having the specified
lines and vertices. Afterwards these graphs will be identified to be as in the
statement of Theorem B(b).

Lemma 5.1. For some y>0, a(f, u(h)) is C* in i €[0,7), with a(0, u(0))=0.
Proof. By Theorem B(a) and Eq. (5.1), Eis C* in# € [0, y), so it suffices to show that

;liiln(l) a(h, u(h))=0. By (4.4) and the fact that > qk(O)x"+l
k=2

2mfxzeﬁ'u, if 7 is

sufficiently small the polynomial Q(#, -) given by
" 1
0(h,x)= k; quA)x* + EM%Xf — u(h)x

has a uniquely attained global minimum, at say &(#), with ¢ smooth and £(0)=0.
Moreover, there exist ', L'>0 such that

T(h, - )=0h, )+ - )—Qh.E(h) € T 1,
if 71 is sufficiently small. Translating by &(%) and scaling ¢—#'/%¢ in Eq. (3.13) gives

o(h, u(h)) = — ~Q(ﬁ ¢(f)) + lim l_/ll(

-lnjexp[ f[h L T(h, A2 ¢): — 1ml $? }}ducl. (5.3)

By (4.4) Q(%, &(h)) = O(h?), so the first term on the right side of (5.3) vanishes as # | 0.
Call the second term on the right side of (5.3) p(#)= 1im B 4(h). By Corollary 3.3

there is a constant M such that

pH)y—»0as A 0. O

6h‘/2BA(h)l <M for all 4 and small % and so
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Corollary 5.2. E(0)=DE(0)=0.
Writing n=degP, let

1 . . n
qkj=j—!Dqu(O) <j=0,...,§>, (5.4)

nj2
i=0

Theorem 5.3. For a¢ B and N =2, the derivative —DVE(0) is given by a linear
combination of connected graphs with no self-lines, with positive or negative
coefficients, made up of lines of mass m; and k-legged vertices taking factors — gy,

- n
k=2,3,...,n,j=0,1, SETR
Proof. Let f(t)=u(t*)t™*. By (4.4), f(t)=0(1). Let

Lalt, %)= '/Il—llnf Cxp[— J [ S gt g —xaﬁﬂ dc, s
Al k=2
and ((t,x)= li/rtn LA, x).

Then E(t?)= —t*o(t?, u(t?)) = —t2{(t, f(t)), and it sufﬁces to show that

c‘iit”’ {(t, f(t))is a sum of graphs as stated, for N > 2. Now I {4, f(2))is a sum of

pos1t1ve integers multiplied by nonnegative powers of ¢ multiplied by expressions
of the form

ﬁ (=i, ) s = i, 1 (A LGN 5 D OH M 4

(5.5)
where { - ), , is the expectation corresponding to the measure occurring in {(t, f(t))
and k;e{2,...,n},j;€ {0, 1, ...,E

2
limit of the expression (5.5) graphically by

,1=20,520, ;= 1. We denote the infinite volume

(2)
Ky . (t)

(5.6)

£ (1)

e

We now show that the vertex factors f)(0) are actually graphs which hook
onto the corresponding legs. To simplify the notation we use I)__— to denote a

linear combination of terms of the form (5.6) with vertex factors 1 instead of f¢)(t),
which linear combination will be apparent from the context. The coefficients of the
linear combination will include combinatorial factors and powers of ¢.
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Since D,o(h, u(h))=0, D,{(t, f(t))=0 and
—D,D,{(t, /(1)
D3{(t, £ (1)
Using the graph notation described in the last paragraph, Eq. (5.7) can be written

-O-

DF(t) = (-1) (5.8)

o

As explained below, differentiation of Eq. (5.8) gives

: —O= —X —6— (- —CO=
% (1) = (-1) : .
—O— —O— (—O— )

Df(t)= (5.7

—O= ‘$_+—<5—(—1) —O=

+(-1) ————
(—O—)? —O—

(5.9)

The terms on the right side of Eq. (5.9) arise as follows. The first three terms come
from differentiating the numerator —( = of Eq. (5.8): the first term comes from
differentiating ’s appearing as coefficients of —(O=; the second term from

differentiating the Y q,(t*)t*~2:¢*: part of the interaction; the third term from
K=2
differentiating the f(¢)¢ part of the interaction and using Eq. (5.8). The last term on

1
the right side of Eq. (5.9) comes from differentiating the factor . Dropping
minus signs we can rewrite Eq. (5.9) as
o
et - —X b= b = =T
 —O— —O— (—O—? (—O—1? (—O—1?
(5.10)

In the last three numerators of (5.10) note how all but one of the single legged
vertices can be matched in pairs, and that the power of —(— in the denominator
exceeds the number of matched pairs by one.

We will now show how Eq. (5.1) generalizes to higher order derivatives. By the
same reasoning used to differentiate —(= above,

2 £+ 2 —C=
BN S &
K k K —O—
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Using the formula (5.11) it follows from Eq. (5.8) and induction that D*f(¢) is a
linear combination of quotients of the form

.. }S@u...
- . Pomg...
, 5.12
(—O— " 12

where the diagram eventually terminates, M —1 is the total number of matched

pairs of legs, i.e., M =m, +m,+m3+...+ 1, and there is only one unmatched leg.

To see this, suppose D¥~f(¢) is of the form (5.12) and note that differentiation of

any factor of the numerator [using (5.11)] produces a sum of terms of the form
1

to be associated with a different

1
matched pair of legs in the numerator, differentiation of — " introduces new

(5.12). Also, considering each factor of

matched pairs of legs in the numerator and powers of —(O— in the denominator
producing terms of the form (5.12).

In the limit t—0 the measure in (5.5) becomes du.,. Hence by Wick’s theorem
D*f(0) is a linear combination of products of connected graphs without self-lines,
with vertices and lines as in the statement of the theorem as well as one-legged
vertices which match up in M—1 pairs as depicted in (5.12), divided by
( Y. Thus there is one power of for each matched pair of legs,
with one power left over. The unmatched leg in (5.12) should be thought of as being
matched to the corresponding leg of (5.6), and the extra power of in the
denominator as corresponding to these legs. As we will now show, at t=0 each
factor of in the denominator serves to link together one matched pair of
legs to create a connected graph.

We will now show that at t=0

!, %,

L L,
K,

= . (513)

ky ks

where each circle denotes a connected graph with no vertices other than those
explicitly drawn. In fact, each of the lines L, and L, must be connected to a multi-
legged vertex; choose these to be the vertices fixed at zero when evaluating the
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graphs. Then the numerator can be written

4L,
£ b :
/& - zNﬁ [fdxmo,x)]z 'mﬂﬁ (5.14)
K, k,

kz

where the dashed lines indicate the absence of L, and L,. One of the factors
[ dxC,(0, x) on the right side of Eq. (5.14) cancels the denominator on the left side
of Eq. (5.13). The remaining factor serves to link up the two graphs on the right side
of Eq. (5.14). To see this, take one of the graphs under the integral | dxC (0, x) and
use translation invariance to fix the fixed vertex of that graph at x instead of at the
origin. Since the remaining graph has one vertex fixed at zero, C,(0, x) links the
two graphs together. This proves Eq. (5.13).

Theorem 5.3 now follows by repeated application of Eq. (5.13) to see that at t=0
the M—1 matched pairs of legs in (5.12) can be joined by cancelling M—1 factors of
in the denominator, and that the single unmatched leg of (5.12) can be
joined to the appropriate unmatched leg of (5.16) by cancelling the remaining
factor of in the denominator, resulting in a connected graph. [

To identify the topological structure of the graphs given by Theorem 5.3 we
employ an irreducibility test introduced in [20] as used in [3]. However, this test
applies to graphs having fixed vertices. Since all but one of the vertices in the
graphs of Theorem 5.3 are integrated over, we will introduce space-time dependent
coupling constants with respect to which partial differentiation yields fixed vertex
graphs. These space-time dependent coupling constants force the external field to
be also space-time dependent to preserve irreducibility, ie., we deal with the
effective action rather than the effective potential. To simplify the analysis we
introduce a lattice analogue of the effective potential E(#) which generates graphs
having the same topological structure has those in DYE(0) but assigns values to the
graphs in such a way that the irreducibility test described below can be applied.

Definition 5.4. A topological graph is a collection of finitely many vertices, each
having a finite number of legs (half-lines joined at one end to the vertex), such that
every leg of every vertex is paired with some other leg to form a line. O

We now explain the method of [20] for testing a graph for one-particle
irreducibility in the context we need. For a fixed positive integer m, we consider the
lattice L,,, of 2m points {x,, ..., X,,,}, thought of as consisting of the two sublattices
{X1seves X} AN {Xp 4 15 -vvs Xom}- Write m2 = U¢(a) as usual and let

R, AR
_ 4| I
C(2)=m; [AR Rz]’ Ae[0,1], (5.15)
where
T R AV
e rija l:*:]a e m+tim+j» l:':]:

and R;;=r for all i, j. The matrices R, R,, and R, are all m x m, the r;; are strictly

positive with r;;<r, 1;;=r; for all i and j, and r> 0 is chosen sufficiently small that
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C(4)is positive definite for all A€ [0, 1] and all r;; € (0, ). [1tis possible to so choose
r since for r =0, C(4) =m; *I.] The variable 1 measures the coupling between the
SetS {X1, X525 eves Xyt ANA {Xput 15 Xt 25 -5 Xom)-

Definition 5.5. Let L,,, (the lattice of 2m points) consist of the 2m points labeled
{X1, ..., Xsm}- A topological graph G is imposed on L,,, by assigning each vertex of G
to a different point in L,,,. Such an assignment is called an imposition of G on L,,),.
An admissible imposition (Al) is an imposition for which at least one vertex is
assigned to each of the sublattices {x,,...,x,,} and {X,,415.--» Xopm}. U

Now consider a graph with 2m vertices or less that has been imposed on L,,,

X, Xig
For example,G = @ , where the i; are different elements of {1, ...,2m}. The
rule for evaluating such a graph is to form the product with one factor of C(4); ;, for
each line joining x; to x;. The graphs G depicted above has the value G(4)
= C(A)izlizc(/l)ilig C(/l)izif, C(A)iiu-

The test for irreducibility is the following [20].
Lemma 5.6. A topological graph G with V vertices is 1-PL if and only if DG(0)
=G(0)=0 for every Al of G on L,,, for some m=V.

Proof. Gis 1-Plif and only if two lines of G join {x, ..., X, } t0 {X, 1 15 --+» X3} fOT
every Al of G on L,,, ie., if and only if G(1)=0(A?) for every AL. []

We now introduce the lattice theory. The lattice interaction in an external field
peR?™ is given by
2m n  n/2 .
Iﬂ(h, g,%)= Z [ 2 Z qkjhjgkjix? - .uixi] s (5.16)
i=1| k=2 j=0
where =iy, ..., flo) € R*", x=(Xy, ..., X,,) € R?", and the g,; are defined in Eq.
(5.4). The variable g, serves to label the quantity #/x} in I. The vector g has
components gy ;; | k=2,...,n;j=0, ...,g; i=1,...,2m ) and is restricted to lie in the

subset C,CR¥ N,,=2m <g + 1) (n—1), defined as follows. The positive constant
¢ will be fixed below.

Definition 5.7. For >0, C,C R¥~is the open cone with vertex at the origin, axis the
line segment {(t,t,t,...,t)e R¥: 0<t<1}, and radius ¢ at its wide end. [J

Let P: C,—[0,1] denote the mapping which takes a vector in C, to the first
component of its orthogonal projection on the axis of C,.

Lemma 5.8. For any ge C, and any component g, ; of g,
lgkji_Pgléb'Pg-

Proof. Let P,g denote the projection of ge C, on the axis of C,. By the triangle
inequality |g,;;—Pg|<|g—P,g|. But by the cone geometry, |g—P,g|

Sam =¢Pg. O
N

m
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The import of this lemma is that by choosing a small, we can make the
n n/2

coefficients of Z Z 4 gi;ixk near to those of Py Z qr(h)xk.

The analogue of the pressure in the lattice theory 1s given by

T2m(h g, U, /1) - lny exXp |: 0 (h 7B X) :I d'th(l) s

(h, g, 1, A) € (0, 00) x C, x R?™ x [0,1], (5.17)

where dyp,=(2n) ™(detD)” ?exp[ —%xD 'x]dx and the Wick dots are with
respect to the covariance AC(4). The lattice analogue of E(#) is the Legendre
transform T,,, (evaluated with the classical field equal to zero) given by

Lolh, g, A= sup [—hTyu(hug,2)], (A g,4)€(0,00) x C, x [0,1]. (5.18)
ueRZm

The following lemma will be used in the proof that I, is finite.

Lemma 5.9. Let dv=g(x)dx be a finite positive measure on R*, with g>0 and
Jx

e e L'(dv). Let dv;= e”dv . Then hm [ xdvj= +o0.

[e™dv koo
Proof. 1t suffices to prove that lim | xdv,;= + oo, since [ xdv_;= — [ xdv; , where
J— o
JX
dvj % and dv™ =g(—x)dx satisfies the hypotheses of the lemma. To

prove the j— 4 oo case, we begin by showing that given any a<1 and y>0
there is a J(y) such that

fdvjza forevery j=J(y).
y

Yy
In fact, let ¢>0 and choose x,<y such that | dv<e Choose J, such that
e/ N <g for j=J,. Then ’

| e dv<ei jo dv+ePe+ | e™*dy

— 0 -0 y
. xO . © .
§e’y[6 [ dv+e+e | e”‘dv},
o !

SO

< —8

© *o - ~1
dv;z [e“” [} ej"dv] [s [ dv+e+e | e”‘dv:l >a

y y
for ¢ sufficiently small. But for y>0 and j=J(y),

by -y y 0 -y
| xdvi= [ xdv;+ | xdv;+ | xdv;= | xdv;+(2a—1)y.
- -y y -0

—
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And if y>0 and j>0, then

_y xg(—x)dx
§ xdv;

— 0

Il
S

—ji=

= [ xdvZ;< | xdvZ;<
y 0

|08

g(—x)dx

-0

so | xdv;2—c+(Q2a—1)y if j2J(y). The lemma then follows by taking
a=3. O

Theorem 5.10. The lattice Legendre transform I, (h,g,7%) is finite for
(f,9,4)€(0, 0) x C,x [0,1], and the supremum in its definition is attained at a
unique point u(#, g, A).

Proof. The variables #, g, 2, m play no role in the proof, so we drop them from the
notation and simply write I'= — inf T(u). By Holder’s inequality T is strictly
n

convex, so if T is bounded below then its infimum is attained at a unique point. By

. oy 0
astandard theorem [ 17, Theorem 27.2], T'is bounded below if lim — T(tu) > 0 for

t>oo Of

. .0
every u+0. We use Lemma 5.9 to show that in fact lim aT(t,u)= +c0. By
definition of T, e

7  Juxexp[— 1 1o(x): +1pux]dyc
ot T = Jexp[—:1o(x): +tux]dyc

Expand the Wick dots, write dy.=conste™ **C”"*dx, and choose an i for which
w*+0.Letz=p-xand y=(x,,...,%X;, ..., X,,,) € R*™~ 1. Then for some polynomial
P in 2m variables,

_Jze"(fe PEIdy)dz
T Je(fe PEVdy)dz

which goes to +co as t—»oo by Lemma 59. [

Let D,={peR*: || <o}.

0
5 Tl

Theorem 5.11. There exist y, ¢, 0,1, >0 such that for all r <ry h'T,,(#h, g, 1, A) is C*
in (h,g, u, 2) € [0,7) x C, x D, x [0, 1].

Proof. LetJ ,(h, g, A, x)=:1(h, g, X) ey — ux +3xC(4)~ 'x. By Lemma 5.8 and the
fact that elements of C(4)~ ! differ from those of m?I by at most r, for r, #, and &
sufficiently small Jy(%, g, 4, x) has coefficients close to those of

2m n 1
Y| Py Y q0)x*+ -mix? |.
i=1 k=3 2

Hence if |u| is also small, then J (%, g, 4, - ) has a uniquely attained global minimum
at say &(f, g, u, A), with £ C* and

K, g, p, A4, x)=J (h, g, A, x+E(h, g, p, ) —J (b, g, A, ECh, g, . 2)) = clx]?
(5.19)
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for some ¢>0. Translating x by ¢ in Eq. (5.17) and then scaling by #'/? gives
hTZm(ha g, K, /1) = Ju(h’ g, /15 é(ha g, 1, /’{))

fexp [—71 K, g, p, 43 h”zx)] dx

jexp[— %xC(A)"‘x:I dx

+#iln (5.20)

Using the bound (5.19) and Lebesgue’s Dominated Convergence Theorem, the
second term on the right side can be differentiated under the integral sign with

respect to _
(t=h"?,g,u,2)€[0,7"*)x C;x D, x [0,1].

The only thing to check is that odd ¢ derivatives vanish at t=0, i..,
o o'

g DDl [P Tt 0.1 D10 as 110, ifkisodd.  (521)

To see this, note that by (5.19),
1
?f K(tz’ g, U, /1’ tx) g Clx|2

for all (t,g,u, A, x)e(—="?,9?)x C,x D,x [0,1] x R*™,

so that in fact the second term on the right side of Eq. (5.20) is C* in (¢, g, u, 4)
e(—y'"%,9"*)x C,x D,x [0, 1]. But by scaling,

Iexp[ K(t%, g, 1, A; tx)]dx—t 2"'fexp[ K(t*, g, 1, A; x)}dx

Therefore, the second term on the right side of Eq. (5.20) is invariant under t— —1,
and Eq. (5.21) follows. [J

In the next lemma, we use the notation
1
j eXP[ P A (h, g, x): ]dth(ﬂ)
< : >h,g,;t,/1 ]
jCXP[ u(h g, x): }d%cu)

Lemma 5.12. The following limits are uniform in (g, u, 2)€ C,x D, x [0, 1].

(l) }'If% hTZm(ﬁ: g, U, /{) = Jp(or g, /1: 5(0’ g, U, )')) >
(11) ;1111112) <xi>h.g,u,/~:£i(0> g, U, j')s
(iii) }lifl(l)h-l<xi; Xj>h,g,u,/1=(M71)ij,
where M, = 7 K(0,g,u, A; x) is invertible by (5.19). In particular,
axaaxb x=0

yln(l) AN X X g0, 2= C(A);.
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Proof. (i) is immediate by (5.20) and (5.19).

(ii) follows by differentiating (5.20) with respect to y; and using (5.19) to see
that the derivative of the second zerm on the right side of (5.20) is O(#%).

(iii) Translation of x by ¢ followed by scaling by #*/? gives

J (x5 x)exp [jh—lK(h,g, U A h”ZX)] dx

h—1<xi;xj>h,g,u,l= 1
fexp [TK(h’ gs s 45 h“ZX)] dx

By (5.19) the right side approaches [(x;x)e” ¥*M*dx/fe” #**M*dx=(M""),;.0
Lemma 5.13. lilrr(l) u(ti, g, A)=0 uniformly in \(g, A)eC,x[0,1].

h

Proof. To simplify the notation, let f(4 w)=4T,,(t,g9,u,4) and f(u)
=—J,(0,9,4; &0, g, u, ). By Lemma 5.12(i), }lifr(l) f(h, wy=f(n) uniformly in g and
A. Since f(#, -) is convex, so is f. Also, f is smooth for small |u] and f(u) =0 with

f(W=0onlyif u=0.Letee(0,9)and set = SHJIP Z%f(sﬁ) . Then «>0and for any
lal=1, lal=1

s=—¢,

0 N=E—a,
%f(s,u){ga, s=+4eg.
But by Lemma 5.12(ii) there is a § >0 such that

<% for all h<d,

0
oSG~ 505

and so

IA

P —%, s=—¢,
PRACEY) forall #<d, |g=1.
s=+¢

v

*
2,
It follows that the minimum of f(#, u) is attained at some point s(f)i(%) with
[a#) =1 and s(h)<e. O

Theorem 5.14. I,,(%,g,2) is C® in (h,g,2)€[0,y) x C,x [0,1].

Proof. We first show smoothness of I,,(%, g, 1) = —#T,,,(%, g, u(h, g, A), 4) in the
open et (0,7) x C, % (0,1). By Lemma 5.13, u(#, g, A) € D, for & <y sufficiently small.
Therefore, by Lemma 5.12(iii),

o2
det
[aﬂia# j
(5.22)

uniformly in £, g, and A if ¢ and y are sufficiently small. By Eq. (5.22) and the implicit
function theorem u(#, g, A) is C* in (h, g, 1) €(0,7) x C, x (0, 1), and hence so is I3,

hsz(h, g, ,u, )«):l = det [h~ 1<xi, xj>h’g,uyl] __2_ C>O

wh,g,2)
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by Theorem 5.11. The extension of smoothness to [0,y)x C, x [0,1] poses no
difficulty since derivatives of I}, can be seen to be uniformly bounded in
(h,g,A)€(0,y) x C,x(0,1) using Eq. (5.22) and the fact that derivatives of T,,, are
uniformly bounded by Theorem 5.11. O

The following theorem allows us to analyze the graphs occurring in
DYI,,(0, g, 4) instead of those in DYE(0).

Theorem 5.15. For N =2, —DYT,,(0,g, 4) is given by a finite linear combination of
graphs which is topologically identical to the sum of graphs equal to —DYE(0) (as
given in Theorem 5.3), with the following rules of evaluation:
1. Whereas a vertex in —DYE(0) takes a factor —q,;:¢*(R?):, a vertex in
2N

— DT (0,9, ) takes a factor — .; GejGnji X5

2. No vertex is fixed — all are summed over the lattice.
3. A line joining x; to x; contributes C(1);;.

Proof. Since
FZN(h, g7 /1)

= —hlnfexp[ ~

)
2

[
M=
=

NS

jtk—1
ijh 2 gkji:x,i:—h_UZ.“i(h:gﬂ{)xi:Ij!dyC(A)

and

n n/2 Jtk—1

E(h)=—h1imi1n5exp[—f [z N |
4 4] Al k=2 j=0

differentiation of I with respect to ¢t =#1/2is formally very similar to differentiation
of E with respect to t =#'/%,and with the rules 1-3 above, yields graphs of the form
(5.6) with f replaced by b(t,g,A)=t"'u(t?, g, A). A mechanism similar to that
described in the proof of Theorem 5.3 is responsible for hooking the graphs
D' b(t, g, ) onto the corresponding legs. [

Corollary 5.16.

1
DILNO, 1, )= X JDE‘DT I,50,0,4),
lajsN &
where o is a multi-index with 2N (—Z— + 1>(n— 1) components.

Proof. By Theorem 5.15, DYT,,(0, g, 2) is a polynomial in g of degree N, so the
Corollary follows by Taylor’s theorem. [

The following lemma shows that when g =0 the interaction [defined in (5.16)]
occurring in the lattice pressure T(#, g, u(f, g, A), A) vanishes.

Lemma 5.17. u(#4,0,4)=0 for (i, 1)€[0,y)x[0,1].

. 1 .
Proof. Since #T,u(h,0, 1, A)=#1n [ exp [% ,ux] dyncq 18 strictly convex as a func-

tion of pand #Tyn(h, 0, —p, ) =hT,(%,0, i, A), it follows that inf AT,y(#,0, u, 4)
occurs at u(#4,0,4)=0. [ ueR
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To simplify the notation for derivatives with respect to components of g, given
indices k;, i, i;, we write g,=gj,;.;,» and denote derivatives with respect to g, with a
N

subscript [, e.g., I S
T, pti, €8, 11z . 391 .. an

The following lemma is the first step in identifying the graphs contributing to
=l (4,0, 4).

, and we drop the subscript 2N from I,y and

Lemma5.18. For i<y, — I,  y(5,0,A)is a finite sum of graphs with the N vertices
— QTR x (1=1, ..., N ) and lines C(2). No self-lines can appear. Graphs
enter the sum with either a plus sign or a minus sign, but all those with minus signs are
1-PR. Furthermore, every 1-Pl graph with the mentioned vertices enters the sum with
a plus sign. The combinatorial factor of a 1-PI graph is the same as for
TlZH.N(h’ Oa 0’ /1)

Lemma 5.18 will be improved in Theorem 5.20 where it will be shown that all
the 1-PR graphs in — I, y(%,0, 1) cancel.

Proof of Lemma 5.18. The variables # and A play no significant role in the proof so
we drop them from the notation. Derivatives are denoted by subscripts and an
implicit summation convention is used. In the following, all derivatives of T are
evaluated at (g, u(g)).

Differentiating the equation —I'(g)=T(g,u(g)) with respect to g, gives
—I=T,+ T,u, =T, since T,=0. Note that in T, the g dependence of x is not
differentiated. Differentiating — I =T, with respect to g, gives

I, =T, + T ,u,.
To compute p;, differentiate the equation 7, =0 with respect to g; to obtain
wi=—Tu Ty,

1
TR
where the inverse on the right side is a matrix inverse. Therefore,
- 12=T12_T1u7;,:17;2- (5.23)

Note that when g=0, (g, 1(g))=(0, 0) by Lemma 5.17 and we have a free theory.
A derivative of the form T;; ,, , at g=0 is the sum of all connected graphs with

e
fixed vertices as specified by the g,’s, and M fixed one-legged vertices. A factor T, "

serves to link up graphsin a free theory. We use a graph notation for the derivatives

M and g, by (—1) O> i, where

the dot on the y;= — T,,, ' T,; graph indicates that a T,, ' has amputated a leg that
i k

as follows. Denote T;;.

was brought down by differentiation with respect to u. When g=0
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O> i is given by a sum of connected lattice graphs without self-lines. (In

particular, at g=0, =0.> In this notation, Eq. (5.23) becomes

—r=1<( 2 - 1<O—O> 2.

The theorem now follows by repeated differentiation of Eq. (5.23) using the
following facts:

0 . _
-a—g—ln1=-m‘<mz+nwmm {6 %

a o 7{% ﬁ_( =
ag, 0kt = 3, ﬁfé
M M

Clearly, all graphs occurring in —I;, ,(0) with a minus sign are 1-PR,
because a minus sign is introduced with every factor of T,,* (and in no other way)
and a factor of T, corresponds to a line whose removal disconnects the graph.
Furthermore, — I, 5(0) contains the term + T}, (0, 0) which is the sum of all
connected graphs (with combinatorial factors) having vertices as in the statement
of the lemma, and hence contains as a subset all 1-PI graphs. O

The following theorem, inspired by [ 3], is the key to obtaining the cancellation
of all 1-PR graphs in —1I;, (%, 0,0).

Theorem 5.19. Given g,= G (I=1,...,N), if at least one i, is an element of
{1, ..., N} and at least one i, is an element of {N+1,...,2N}, then for all he[0,7)

D3I, x(4,0,00=0, 5=0,1.
Proof. Since # plays no role in the proof it is omitted.

R{?

Beginning with the case s=0, since C(0) ' =m? I: 0

0 .
_, | does not mix
R,
{x(, .., xy} and {Xy1q, ..., Xon}, WE Can write

T(g, 1, 0) =S 1)(g(1), (1) + S2)(9(2), u(2)) ,

where p(1) and g(1) [respectively, u(2) and g(2)] consist of those y; and g,;; with
ie{l,...,N} (respectively, ie {N+1,...,2N}), and

Sy(g(1), u(1))
N n n/2
=1njeXp[_ igl [kg ; ngk]z i —:uixi:l:| d'ym;"Rl(xlﬂ "'7xN)7
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N (2)(9 (2), m2))
2N n  n/2
=1nIeXP[" ) 2 [ IEDY qkjgkji:xli: —,“ixi:H de;4R2(xN+ 15+ X2N) -
i=N+1]| k=2 j=0
Therefore,
0 .
6 a_S(l)(g(1)> M(l))ﬂ 16{15 “'aN}a
K
ou; Tig. 1 0)= 0
' @—MS(2>(Q(2),M(2)), ie{N+1,...,2N}.
It follows that
(1) 7
:ui (g(l))9 le{la-"aN}a
#ig:0) {u52>(g(2)), ie{N+1,..,2N},

and hence

I(g,0)= —S(g(1), uV(g(1)), 0) = S2(9(2), ©(9(2)), 0) ,

and the theorem follows in the case s=0.

To prove the theorem in the case s=1, we begin by noting that D,I'(g,0)
= —D;T(g, (g, 0),0), since D,T(g,ug,2),A)=0. Denoting expectations with
exp[—:1,(9,x):1dycy
f exp[— 11,4(93 x):]dycu)

respect to dy¢; by [ - ], and expectations with respect to

by (-, . 1 We have

D3T(g,ﬂ, O)Z[e_:lﬂ(g’x):](;lﬁ [e_:l”‘(g’x):]l
3,

__[2
T \a

1 2N _
T2, JZ: . DC(0);; (%X 2,,0 = [xX;10)

(:1o(g, x)icu))>
0

g,u,0

and hence

d
D,I'(g,0)= <ﬂ|0 1o, x):cu)>

g,1(9,0),0

1 2§ _
+ 5 > ) DC(0);; 1(<xixj>g,u(g,0),0 —[x:x;]o)- (5.24)

i,j=
Now differentiate Eq. (5.24) with respect to g, and g, where i, € {1,2, ..., N} and
.0 . .
i,e{N+1,N+2,...,2N}. Since 7 :14(g, X):¢(z 1s a sum of two polynomials: one
0
in xy,...,xy depending only on g, with j,e{1,..., N}, and one in Xy, ..., X,y
depending only on g, withi;e {N +1, ..., 2N}, and since as was seen in the proof of

the s=0 case the measure <{-), ,, 0,0 factors into a product of probability
measures in Xy, ..., Xy and xy, 1, ..., X,y depending only on g, with i, {1,...,N}
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and g, with i;e {N+1,...,2N}, respectively,

g 5], o i) 0
09,09, \0Ao oA g, 1(9,0),0 .

Next, observe that the term involving [x;x;], on the right side of Eq. (5.24) does
not depend on g at all and hence vanishes after taking g derivatives. It remains only

to show that
62
3909, $XiXg,u9,00,0=0-
Consider the case where both i and j are in {1, ..., N}. Then by factorization of the
measure {X;X;); .. 0,0 depends only on the g, with i;e {1,...,N} and the above
derivative vanishes since i, € {N +1,...,2N}. The case where both i and j are in

{N+1,...,2N} is similar. Now consider the case where exactly one of i,j lies in
{1,...,N}. Then by factorization of the measure,

XX 25,19, 0),0 = <XiDg, 166, 0),0 * <X g, 1(g,0,0 -

Each factor on the right side of the above equation vanishes by definition of
(g, 0). [

We now show that all 1-PR graphs occurring in — I3, (%0, ) cancel, and
identify explicitly the remaining 1-PI graphs. As in the statement of Theorem B we
. —1. Uj(a)
write d(a) = Elog r(r)zz .

Theorem 5.20. The derivative —I,, n(h,0,4) is a polynomial in # where the
coefficient of #™ is the sum of all d(a)-renormalized m loop 1-PI graphs with vertices
—(P*a)/k)xl (1=1,...,N) and C(2) lines with self-lines allowed. Note that the
vertices are fixed. Each graph takes the same combinatorial factor that it has in
TlZ...N(h: 0> 0» /1)

Proof. We first show that —I7, y(#,0, 1) can be written as a sum of 1-PI graphs
having # dependent vertices. By Theorem 5.18 we can write

K M L
—haov= 2 L)+ X Ry(h )= X Nih 1), (5.25)

where the three sums on the right side of Eq. (5.25) are, respectively, the sum of all
1-PI graphs made of C(4)-lines and vertices, — g, ;4 * #*'~ 1 :x}': [having the same
combinatorial factor asin T, (%, 0,0, )], the sum of all 1-PR graphs occurring
in the expansion of Theorem 5.18 with a plus sign, and the sum of all 1-PR graphs
occurring in the expansion with a minus sign. We now use Theorem 5.19 to show
that the last two sums cancel.

In fact, treating iy, ..., iy as free variables, it follows from Theorem 5.19 and
Lemma 5.6 that for any admissible imposition of x;,,...,x;, on L,y

112

M L
> D3R, (h,0)= > D5N(h0), s=0,1. (5.26)
m=1 1=1
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M
We now show that this implies that > R, (%, 4) consists of exactly the same graphs
m=1

L
as > N,(#,4).
=1 ~
For a graph G with vertices asin R,, or N, denote by G the graph obtained from

Lk
G by cancelling all factors — g th+ 27" Since R, isreducible and has N vertices, it
can be imposed on L,y by choosing i, ..., iy in such a way that a line of reducibility
of Ry (i.e., a line whose removal disconnects R,) joins x, to xy 4 1, and no other line
joins {xy, ..., Xy} t0 {Xy 41, ..-» Xon}. This imposition of R, on L,y, of course, also
imposes the other R,’s and N,’s on L,,. Since all these graphs are connected, at

least one line crosses from {x;,...,xy} to {Xy11,...,X,y} for each graph. But

iIim(O) or %]\7 (0) is zero if and only if more than one line makes the crossing

from {x,,...,xy} to {xy+1,...,X,5}. Hence for the above imposition

Mo d d
> SRO= T SRO= ¥

m=1 e line e line di

L N0, (5.27)

where Onezlme 7

joining {x{, ..., Xy} to {Xy 41, -.., X,n}. But because of the form of C(2), for a graph

G denotes the sum over those i for which G; has a single line

. s o d o
N, on R,, with exactly one line joining {x, ..., Xy} t0 {Xy4 1, -+ X2n )} ﬁNl(O) or

d R »(0) is r multiplied by a product of r;;’s (1<i,jSN or N+1Zi,j<2N),

because it is only when the line joining {x,...,xy} to {Xyi{,...,Xon} 1S
differentiated that the result is non-zero. It follows that the second equality in Eq.
(5.27)is an equality of polynomialsin the 7;;(1<i,j <N or N+ 1<i,j<2N),and so
the coefficients of these polynomials must agree. However, these coefficients
characterize the graphs topologically To see this, note that the r;; are in a one-one
correspondence with lines joining x; to x;. Thus a product of ;;’s characterlzes the
parts of the graph sitting in each of the sublattlces {Xq,...r X5} and {XNa1s--s Xan}
Because there will be only one vertex x; in each sublattlce that does not have its
full quota k,, of lines prov1ded by the sublattlce graphs, there is one and only one
way that the line crossing from {x,, ..., Xy} t0 {Xy41>...,X,x} can join the two
sublattices, and the graph is uniquely determined. Therefore,

> R.= Y N, (5.28)

one line one line

with exactly the same graphs occurring on each side of the equation. Now discard
the graphs contributing to Eq. (5.28) from Eq. (5.26) and repeat the above
procedure until none of the R,, remain. We now show that no graphs N, remain,
arguing by contradiction. Discarding all R,, graphs and the corresponding N,
graphs from Eq. (5.26) leaves 0= 3" D5N,(%,0), s=0, 1, for every Al, where Y’

d
denotes the sum over the remaining graphs. Therefore, 0= Z N (0),5s=0,1, for
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d ~ .. . . . .
every Al. Each term in Z/ﬁN (0) is nonnegative, and since N, is 1-PR, for a given
. d ~ )
Iy the iy, ...,iy can be chosen in such a way as to make ﬁN 1,(0)>0. But this
d - .
contradicts 0 = Z" N(0), and hence there can be no N, remaining. The end result

is that Z R, (h, )= Z N(#, 4), with exactly the same graphs on each side of

the equanon and hence

—1I,. vh,0,4)= é:l L(h, 7). (5.29)

To identify the graphs contributing to the right side of Eq. (5.29) as those stated
in the theorem, we begin by obtaining an explicit formula for g, ;. By definition [Eq.

1 . . . . i
4], a,;= ]T D’q,(0), where g, is defined in Eq. (3.9) by the requirement Y. a,:¢*:,c
. k=3

a,, 3ZkZn,

. and extend the definition of
0, otherwise,

:kgoqk(h):¢k:hcl. Let dk:{

k! k . . .
Ci= T k=) by setting ¢;;=0 if j> [2} Then a simple computation gives
Qi =G+ 2Cr+ 2, Jd, S0 a vertex
k k
jt5—1 N jt5 -1 i
—qfi 2 ixbi= =gt Y Gy X

can be interpreted as J%, where each closed loop takes a factor of d, the

combinatoric factor ¢, , ,; ; counts the number of ways of choosing j pairs from
k+2j lines, each half-line takes a factor %%/, and the vertex takes the factor
—1

h .

having vertices — g, /#’ +%"“:x?: and no self-lines, and d-renormalized 1-PI

dy + 2~ This means that there is a one-one correspondence between 1-PI graphs

graphs having vertices hl Gy 2x¢ " ? with self-lines allowed and each line taking a
factor 4.

It remains only to identify the overall power of # of a graph. An unrenormalized
graph has a power of # given by I — V + 1, where I is the number of lines of the
graph, V is the number of vertices, and the extra + 1 comes from the iin —I' =#T.
But I -V +1 is exactly the number of loops in the unrenormalized graph. [

In conclusion we combine the results of this section to prove Theorem B(b). By
Eq. (5.1) and Corollary 5.2 we need only show that for N =2,

, =L w0, a)= - iDqu(O)— | DYE(©) (5.30)

—uy(a)= N

N!

is the appropriate sum of graphs. The first term on the right side of Eq. (5.30) was
identified in Eq. (5.2) to be the d(a)-renormalized single vertex N-loop diagram. By
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Theorem 5.15 the second term is a sum of graphs topologically identical to the L, y-
1
graphs whose sum is — N DYT(0,1,1), where I is the L,y Legendre transform

(evaluated at the classical field equals zero). By Corollary 5.16,

Loyt s Lpergio (5.31)
N' ! > _N' thotaléNa! 2 i ’ )

But by Theorem 5.20 the right side of Eq. (5.31) is exactly the desired sum of
graphs: the different terms in the sum over « give the N-loop graphs with different
kinds of vertices.

Finally, we show that the combinatorial factors are as indicated in Remark 1
under Theorem B. By Theorem 5.20 the combinatorial factor of a graph
contributing to D4I'(£,0,1) is the same as for D3T(%,0,0,1), namely the factor

. . . 1 .
associated with the graph by Wick’s theorem. The factor of 51 oceurring on the

right side of Eq. (5.31) provides the factor ﬁlV_' appearing in Remark 1. Since the
Je*
N

% on the right side of (5.31) is cancelled by an N! brought down by %, the

combinatorial factor of a graph in — NITDQ’ I'(0,1,1), and hence in —wvy(a), is as

stated in Remark 1.

6. Proof of Theorem C
Theorem C. Let V(h,a) denote the effective potential for m=1 and P(a)

1>2 1 1 1
=|a*— 2| —=da* Then for la|< —=,D,V(0,a)= — <~—> =0, and for N=2,
—1

WD‘{’ V(0, a) is given by the sum of all N-loop connected graphs with no self-lines,

with three- and four-legged vertices taking factors ;—}P(” <%> =—2 and

—1 1
T P® (-§> = — 1, respectively, and lines corresponding to the free covariance of

mass one. Graphs take combinatorial factors as per Remark 1 under Theorem B.
Proof. Translation of ¢ by + if; in the pressure (1.2) with m=1 and the given
interaction polynomial, followed by scaling ¢—#1/2¢, gives
1 1
hu)=+——pu+hlim —Infexp| — | [A:4*: + /28293 — ut™ 2] du, .
plhi)= uth i, il p[ = [ hg*: £ )/20: 4% —uh™ 4] | dc
6.1
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In Theorem 2.2 of [13], for sufficiently small # and p the one-point function
corresponding to the pressure p(#, 1) is controlled using a low temperature cluster
expansion. It follows from their results that

D3 p(h,0)— (i i)' — o),

/8
as perturbation theory and Eq. (6.1) would suggest. Therefore, for any |a| <% there
is a 8(a)>0 such that ae[D; p(#,0), D3 p(h,0)] for all #<(a), and hence

V)= sup [pa—p(h, 1= —p(h,0),  fi<ola).

In [13] an infinite volume theory corresponding to the interaction

fix* +[/§h” 2x? and covariance C (with free boundary conditions) is obtained. In
Sect. 6 of [13] it is shown that the perturbation series in #'/* for a generalized
Schwinger function of this theory is asymptotic. The pressure is not discussed, but
itis straightforward to use the estimates of [ 13] to show that perturbation theory is

1 1
also asymptotic for p(#,0), and hence for N>1 and |a|< —, — — DYV(0,a)

. Vg > N!
= I—V—'D’;’ p(0,0) is as stated in Theorem C. [
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