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Abstract. The main result is a representation theorem which shows that, for a
large class of quantum logics, a quantum logic, β, is isomorphic to the lattice of
projective faces in a suitable convex set K. As an application we extend our
earlier results [4], which, subject to countability conditions, gave a geometric
characterization of those quantum logics which are isomorphic to the projection
lattice of a von Neumann algebra or a JBW-algebva.

Introduction

Quantum logics, alias complete orthomodular lattices, arise in mathematical models
of quantum mechanics as the lattice of "questions." The completely additive
probability measures on a quantum logic correspond to the physical states of a
quantum mechanical system. When M is a von Neumann algebra or a JB W-algebra
then P(M), the lattice of projections in M, is a quantum logic. For mathematical
convenience, rather than any compelling physical reason, it is frequently assumed
that the quantum logic of a mechanical system is P(M). So it may be of some
physical as well as mathematical interest to determine when a given quantum logic
is isomorphic to a lattice of projections, P(M).

Atomic lattices have been very thoroughly investigated by a number of authors
and, in particular, key results were obtained by Piron and Wilbur. For a detailed
discussion and a full list of references, the reader is referred to [11]. Using projective
geometry, Wilbur characterized P(L(H)) by lattice conditions, [11]. Unfortunately,
these methods are not applicable to non-atomic lattices. One way of coping with
this difficulty is to focus attention on the geometry of the convex set of completely
additive probability measures (physical states). Using this approach, we character-
ised the lattices P(M) where M is a von Neumann algebra or a JB W-algebra, up
to isomorphism, subject to certain countability conditions, see [4]. We made use
of a deep theorem of Iochum and Shultz, [9], on the geometry of the normal state
spaces of von Neumann algebras and JjBW-algebras, together with the Gleason-
Christensen-Yeadon theorem [5,12] and its extension to JB ^-algebras [3].

Our results here show that a very large class of quantum logics may be identified
with lattices of "projections" arising as natural geometric objects in certain convex
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sets. It is hoped that the general structural results we obtain will be useful for
future investigations. One application of these results, given in Corollary 9, is a
geometric characterisation of those logics which are isomorphic to the lattice of
all projections in a von Neumann algebra of a JBί^-algebra.

1. Preliminaries

Let L be a complete orthomodular lattice with orthocomplementation, J_. As usual,
we denote the least and largest elements of L by 0, 1, respectively. The elements
x, y of L are said to be disjoint (said by some authors to be orthogonal) if x ^ jΛ
A completely additive measure on L is a non-negative real-valued function, φ:
L->K, with φ(0) = 0, such that φ( v xa) = Σφ(xa), for every family of mutually
disjoint elements, (xj, in L. If, in addition, φ(l) = 1, then φ is said to be a probability
measure. The set of all completely additive probability measures on L is a σ-convex
set, denoted by KL.

Consider a convex subset K of KL, satisfying the conditions

(1): Given x, y in L, then x^y if and only if {φeK;φ(x)= 1} c {φeK;
φ(y)=l}.

(2): If x, yeL, φeK and φ(x) = φ(y) = 1, then φ(x A y) = 1.

Letting V(K) be the (real) linear space generated by K, it is easy to see that
V(K) = cone K — cone K and that the Minkowski functional over co(K u — K) is
a norm. Thus V(K) is a base-norm space with base K (though, in general, the
closed unit ball will not equal co(K u — K)). The dual normed linear space V(K)*
is an order unit space in the natural ordering, with closed unit ball [— 1(K\ 1(J£)],
where 1 (K) is the order unit (thus the norm on V(K)* coincides with the induced
order unit norm). Thus one obtains an order preserving linear isometry V(K)* ->
Λb(K) (/ι_y/lx). Further, any given boeAb(K) extends uniquely to a linear
functional, b, on V(K), defined by b(φ) = λbo(σ) — μbo(τ), whenever φ = λσ — vτ,
where λ, μ§;0, σ, TGK. Since \\φ\\ =inf{Λ -hμ, φ = λσ — μτ, where λ, μ^O,
σ, τeK}, it follows that beF(K)*, and of course bo = b\κ. Therefore,
V(K)* ~ A\K\

With each x in L, there is associated an element x in [0, l(iC)] ^ K(K)*,
determined by x(φ) = φ(x\ for every φ in K. The set L= {x xeL} has a
natural structure as a complete orthomodular lattice, induced by L, and satisfies
(1) and (2), and also L~L. Henceforth, we will identify L with L. Note that the
orthocomplementation then becomes, x1 = 1 — x, where xeL and 1 = 1(X). It will
aid clarity if, throughout, we keep to the notation φ(a) (instead of ά(φ) or {a,φ})
whenever deV(K)*, φεV(K).

In order to be consistent with [4], we shall say that K is strongly full if, together
with (1) and (2) the following condition

(3): Whenever φ cz K is faithful on L then φ is also faithful on V(K)* + ,

is also satisfied.
There is another condition, the Jordan-Hahn property, which is closely

connected with strong-fullness. It is said that K has the Jordan-Hahn property
if for each p in V(K) there exist σ, τ in K, x in L, and real numbers λ, μ ^ 0,
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for which

p = λσ — μτ, σ(x) = τ(l — x) = 1.

It is a point of some interest to decide when L is a subset of the extreme points,
ext [0,1], of the unit interval of V(K)* and, in particular when L is equal to
interesting subsets of ext [0,1], such as the set of weak* exposed points, exp [0,1].
(In connection with these remarks, and also for the Jordan-Hahn property, see
[10], where the particular case of finite orthogonality spaces is considered.) We
are able to answer these questions in a very general setting in Lemma 2. In passing
let us recall that the point, p, in a convex subset, C, of F(K)* is a (weak*) exposed
point of C if there exists peV(K) which takes its greatest value in C only at the
point p.

We now turn to the particular convex sets in which we are interested. Alfsen
and Shultz in [1], and particularly in [2], investigate those (radially compact)
convex sets, K, which are the distinguished base of a base norm space F, with
K* = Ab(K\ and for which every norm-exposed face of K is projective. Let us
agree to call such convex sets projective convex sets. (This should not lead to
confusion, for by [2, Proposition 1.10], every projective face of K will be projective
as a convex set, according to this terminology). The reader is referred to [1] and
[2] for the meaning of unexplained terms used here, and after.

The projective units, P, of Ab(K), where K is projective lie in (but, possibly are
not equal to) ext [0,1], where 1 is the order unit of A\K\ and they form a complete
orthomodular lattice isomorphic to the lattice of P-projections on Ab(K), and the
lattice of projective faces of K. For each P-projection, P, on Ab(K\ P(l)eP, and
every projective unit is (uniquely) of this form. The correspondence between P and
the projective faces of K is given by, p^Fp = {φeK;φ(p) = 1}. Moreover, if (pλ)
is any family in P, then Λ Fpχ = nFpχ = FΛpχ (by [2, Corollary 1.2]). In addition,
with each a in Ab(K), 0 ^ a ^ 1, there exists a least element, r{a\ in P, with
αgr(fl); and, given φeK, φ(a) = 0 if and only if φ(r(a)) = 0. Note that Ab(K) is
monotone complete, and that a simple limit argument shows that K^KP.

It is important to notice that K satisfies conditions (1), (2) and (3) (i.e. it is
strongly full), as can be seen from the above remarks. Also it follows from [2,
Proposition 1.3] that K has the Jordan-Hahn property with respect to P.

We point out that the normal state space of a VF*-algebra, or a JBPF-algebra,
is always projective. The converse is false (see for example, [1, Proposition 6.11]).
If L = P(M), where M is a W*-algebra, or a J2? PF-algebra, without Type I2 part
then KL is projective, as can be seen by combining [4], [5] and [12] with [9]. We
will be interested in converses of this proposition for more general lattices, L. To
aid clarity and simplify the exposition we shall work with the whole of KL, rather
than convex subsets of it. More general conclusions can be drawn by making
minor modifications to the arguments given.

In all that follows L shall be a complete orthomodular lattice satisfying the
conditions (1) and (2), KL shall be its (σ-convex) set of completely additive
probability measures and VL the associated base norm space. We shall identify
L with L, its image in Vf and, when KL is strongly full we shall also call L
strongly full.
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2. Logics and States

We observe that, given φ in KL, condition (2) implies that the element
y= Λ {x;φ(x) = 1} is such that φ(y)= 1 (cf. [8, page 75]). We write y = sL(φ\
and call it the support of φ in L.

In essence, the following simple, but very useful, result is contained in [13],
and its proof is similar to the usual one for FF*-algebras. However, as we were
unable to find a reference for this result in the form which we need, we include a
short argument.

Let us recall that an element x of L is said to satisfy the countable chain condition
if every mutually disjoint family of elements in L, dominated by x, is countable.
We also say that L satisfies the countable chain condition if 1 satisfies the countable
chain condition.

Lemma 1. Let x be a non-zero element of L. Then x satisfies the countable chain
condition if and only if x = sL(φ) for some φ in KL.

Proof Suppose that x = sL(φ\ for some φ in KL, and let (xα)α6/ be some mutually
disjoint family of non-zero elements in L, dominated by x. The set Sn = {αeJ;
φ(xa) ^ l/n} contains at most n elements. If φ(xa) — 0, then xa = 0. Since this is
impossible, xaeSn, for some n. So, / is countable.

Conversely, suppose that x satisfies the countable chain condition. There exists
φ in KL with φ{x)= 1 (by condition (1)), so that sL{φ)^x. Choose a maximal
family (φλ)λeI, in KL, for which the sL(φλ) are mutually disjoint and dominated by x.
By assumption, / c= N. Accordingly, put p = Σλnφn, where λn ^ 0, Σλn = 1. Then
peKL, and since maximality ensures that x = v sL(φn)9 it follows that x = sL(p). This
completes the proof.

We shall characterise projective <r-convex sets K for which exposed points exist
in the unit interval, [0,1], of Ab(K). As usual, V represents the base norm space
with base K, V* = A\K) and P is the set projective units of A\K). We note that
when K is σ-convex the statement of Lemma 1 holds for P and K (replacing L
and KL). We are grateful to the referee for bringing our attention to the fact that
Lemma 2 has occurred in a slightly different form in a preprint of Edwards and
Riittimann, [6]. Since our proof of Lemma 2 is both short and quite different
from theirs, we give it here.

Lemma 2. Let K be a projective, σ-convex set. Then the following are equivalent.

(i) exp [0,1] is non-empty,
(ii) exp [0,1] = IP,

(iii) IP satisfies the countable chain condition.

Proof It will be convenient to write sp(φ) = s(φ), for each φ in K. We recall that
αeexp[— 1,1] if and only if there exists p in V, \\p\\ = 1 which takes the value
1 on [— 1,1] only at the point a.

(i)=>(iii): Let tfeexp[0,1]. Then 2a— leexp[— 1,1], and so there exists peV,
of norm unity, such that p(b) < ρ(2a — 1) = 1, for every b in [— 1,1], b φ a. If peK,
this implies that a = 1 = s(p), and (iii) follows as in Lemma 1. Similarly if pe — K.
Suppose, then, that p does not lie in K or — K.
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It will follow, from [2, Proposition 1.3], that there exist σ, τ in X, p in P, and
a real number λ, 0 ^ λ S 1> such that,

p = λσ-( l-λ)τ , σ(p) = τ ( l - p ) = l .

Observe that,

l ) = l , s(σ) - s(τ)[-1,1].

Therefore, by the uniqueness property of 2a — 1, s(σ) — s(τ) = 2p — 1 = 2fl — 1. In
particular, p — a. Moreover, since s(σ) ^ p, s(τ) rg 1 — p, we see that,

s(σ) v (1 - p) = s(σ) + 1 - p = s(τ) + p = s(τ) v p,

and that,

s(σ) = p Λ (s(σ) v (1 - p)) = p Λ (s(τ) vp) = p.

It follows that, s(τ) = 1 — p. This means that ^(σ + τ) is faithful on P. So, as in
Lemma 1, we see that P must satisfy the countable chain condition.

(iii) =>(ii): Suppose that P satisfies the countable chain condition, and let p lie in
P, where 0 Φ p Φ 1 (the lemma is obvious if Ab(K) has no non-trivial projective
units). Since K is σ-convex, the argument used in Lemma 1 implies that there exist
σ, τ in K with s(σ) = p and s(τ) = 1 — p. Put p = ±σ — \τ. Then 1 = p(2p ~ l):g
||p|| ^ 1. So, | |p| | = 1. We will show that 2p- 1 is the only element in [ - 1,1]
which is sent to 1 by p, so that 2p — 1 eexp [— 1,1], and consequently peexp [0,1].

Suppose that α e [ - 1 , 1 ] in Λ%K) and that p(α)=l . Then, σ(α)-τ(α) = 2,
implying that σ(α)= 1, τ(α) = — 1. In other words, writing b = ̂ {a+ 1), we have

σ(l _b) = τ{b) = 0. Hence σ(r(l -b)) = τ(r(b)) = 0. So, p ^ l - r ( l - b ) and
1-p^l- r(b). (*) But, 1 - r{\ - b) ̂  b ^ r(fe). Therefore, 1 - r(l - 6) + 1 - r(6) =
(l-r(l-b))v(l-r(b))=l. Hence, 1 - r(l - b) = b = r(b\ and (*) gives b = p.
Therefore, a = 2p—\ and (ii) follows. The trivial observation that (ii) implies (i)
completes the proof of the lemma. We remark that σ-convexity was required only
to show that (iii) implies (ii).

Since the normal state space, K, of a t^*-algebra, or a JβW-algebra, M, is
projective and σ-convex and the projective units of Λb(K) correspond exactly to
the projections in M, [2, Proposition 3.1], we observe the following in passing
(see also [7]).

Corollary 3. The following are equivalent for the W*-algebra, or JB W-algebra, M.

(i) exp[0,1] is non-empty,
(ii) exp [0,1] = P(M) (the projections of M)

(iii) M is σ-finite.

At this point it is convenient to recall that the elements x, y of L are said to
be compatible if x = (x A y) v (x Λ y1) (= x A y + x Λ (1 — y)), and that x is said to be
central if it is compatible with all elements of L. The set of all central elements of
L is a complete Boolean sublattice, called the centre of L. See [8], for a discussion.

Given a projective convex set, K, the elements peP, aeAb(K) are said to be
compatible in Ab(K) if Pa + P'a = α, where P is the (unique) P-projection of Ab(K)
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determined by P(l) = p, and P' is its quasi-complement. Here, peP is said to be
central in Ab(K) if it is compatible with all elements of Ab(K), and the set of all
such elements is said to be the Boolean centre of P.

As pointed out in [1, page 40], it follows from [1, Proposition 5.4], that elements
of P are lattice-compatible if and only if they are compatible as elements of
Ab(K) and, consequently, the lattice centre of P contains the Boolean centre of P.
It is observed, [1, page 40], that the converse holds under certain additional
"spectral" hypotheses. But these remarks were made in a slightly more general
context that we have here. It turns out that the two notions of centre coincide
without spectral conditions, when K is projective. We have the following lemma.

Lemma 4. Let K be a projective convex set. Then the lattice centre of P coincides
with the Boolean centre of P.

Proof We have only to show that the lattice centre is contained in the Boolean
centre. Let p lie in the lattice centre of P, and let a be any element of Ab(K). From
[2, Proposition 1.7], it follows that the linear span of P is weak* dense in Ab(K).
Choose a net (ya) in lin(P) such that ya^a in the weak* topology. Consider a
typical yoc = Σλiqi, say, where the qteP. By remarks made in the preamble,
Pqt + Fqi = qh for each i, and so Pya + P'ya = yai where P is the P-projection
corresponding to p. By definition, P is weak* continuous, and therefore
Pa + p'a = a. So, p is compatible with every element of Ab(K), and the proof is
complete.

Henceforth we can, without ambiguity, refer to the centre of P.
By placing geometric conditions on KL, we can draw quite sharp conclusions.

Theorem 5. Let KL be a projective convex set. Then

(i) The centre of L is contained in the centre of P.
(ii) // L is strongly full and satisfies the countable chain condition, then

L = exp [0,1] = IP, L and P are isomorphic (as complete orthomodular lattices), and
the centres of L and P coincide (where P is the set of projective units of Ab(KL).)

Proof (i) Let x lie in the centre of L. Given φeK = KL, define a function φx:L-+R,

by Φx(y) = Φ(x Λ y\ f° r every element y in L.

Suppose that (ya) is a mutually disjoint family of elements in L. Then (x Λ ya)
is another mutually disjoint family and, by [8, Theorem 7], for example,
x Λ ( v yJ = v (x Λ ya). Therefore,

Φx( V J>α) = Φ(X Λ ( V y*)) = Φ( V (X Λ J>α)) = ΣΦ(X Λ J>α) = ^ x O O '

so that φx is a completely additive positive measure on L.
Because x is central, J/ = XΛJ/ + (1 — x) Λ j ; , for each element y in L, and we

see that φ = φx + φx_x. Note that φ = φx'ύ φ(x) = 1, and φ = φλ_x if φ(x) = 0.
Suppose 0 Φ φ(x) φ 1. Then,

where
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both of which lie in K.
Writing Fa = {peK;p(a) = 1}, for aeAb(K\ we see that we have shown that,

Hence, if peK annihilates the projective unit 1 — r(l — x) + 1 — r(x), then p = 0.
It follows that 1 — r(l — x) + 1 — r(x) = 1. Thus, since 1 — r(l— x) 5g x 5g r(x), we
conclude that x = r(x)eP. Further, it is easy to see that K is a direct convex sum
of Fx and F1_x, so that Fx is a sp/zί face of X. This means that x is a central
projective unit of P, by [1, Proposition 10.2] (see also [2, page 504]), so completing
the proof of (i).

(ii) Observe that r( v ya) = v Pr(ya), for any family of elements, (yα), in L. Indeed,
for all α, ya^ v j / α g r( v j/α), so r(ya) <Lr( vyα), consequently, vPr();α) ^ r( vyα).
Conversely, if peK and p( vPr(ya)) = 0, then, /p(yα) = 0, hence p( v ya) = 0 (using
the remark made prior to Lemma 1), and so p(r( v ya)) = 0. Therefore, r( v ya) ^
vPr(j;α). Thus, if L and P are equal, they must be isomorphic as complete
orthomodular lattices.

Suppose then that L is strongly full and satisfies the countable chain condition.
Then, by Lemma 1, there is an element of K which is faithful on L which, by
assumption, is also faithful on Ab(K)+, and hence faithful on P. Therefore, P has
the countable chain condition and every element of P is of the form sp(φ), for
some φ in K, as can be seen from the proof of Lemma 1 (K is σ-convex).

Thus, given any non-trivial projective unit, p, of Ab(K\ there exists φ in K
with support 1 — p. By assumption, since φ is not faithful on Ab{K\ there exists
non-zero x in L with φ(x) = 0. But then, φ{\ — r(x)) = 1, and so, 1 — p ^ l —
r(x) ^ 1 — x. That is 0 Φ x fg p. This means that if zeL and r(z) APr(l — z) Φ 0, then
there exists non-zero y in L such that y ^ r(z\ y^r(l—z). If ψeK with φ(z) = 0,
then φ(r(z)) = 0, so φ(y) = 0, which implies y :§ z, by condition (1). Similarly, 3; ̂  1 — z
and so y = 0, a contradiction. Therefore, r(z) APr(l — z) = 0 and, since 1 — r(l — z) ^
r(z% the orthomodular identity on P implies that r(z) = 1 — r(l — z), and hence that
z = r(z)eP. In other words, L ς P and moreover, the argument of the first
paragraph implies that L is a sublattice of P. Now, using the fact that every
non-zero element of P dominates some non-zero element of L, a simple Zorn's Lemma
argument shows L to be equal and isomorphic to P, thereby completing the proof.

Even if we consider lattices, L, without Type I2 part (cf. [4]), in this generality
we have no reasonable hope of obtaining a generalisation of Gleason's Theorem
with which to deduce a converse of Theorem 5(ii). However, we can re-cast Theorem
5(ii) into an "if and only i f form. For the sake of completeness we do so below.

By the projective units associated with a projective convex set K, we mean the
lattice of projective units of Ab(K).

Corollary 6. Let S be a complete orthomodular lattice satisfying the countable chain
condition. Then S is isomorphic to the lattice of projective units associated with a
projective, σ-convex set if and only if Ks contains a projective, σ-convex and strongly
full subset.

Proof. Suppose that K is a strongly full and projective, σ-convex subset of Ks.
Then, recalling the notation introduced in Sect. 1, we have S c V(K)* ^ Ab(K), and



94 L. J. Bunce and J. D. M. Wright

S is isomorphic (and equal) to the projective units of Ab(K\ by arguments given
in the proof of Thoerem 5(ii).

The converse follows from the fact, observed in Sect. 1, that K is a strongly
full subset of Kp, whenever K is a projective convex set and P is the lattice of
projective units of Ab(K).

For the sake of completeness, at this point we ought to draw attention to the
elementary fact that if L is Boolean, then it can be identified with the lattice of
all projections in a commutative von Neumann algebra. Indeed, suppose that L
is a complete Boolean algebra. Then L can be realised as the characteristic functions
of the clopen sets of some compact Stonean space, S (the representation space of
L). In addition, the conditions (1) and (2), imposed on KL, ensure that S has a
separating family of normal measures, so that S is hyperstonean. Therefore, C[S]
is the self-adjoint part of a commutative W*-algebra and, by the above
identification, its lattice of projections is L. We see that upon identifying (as we
may) KL with the normal state space of C[S], we may go on to identify Λb(KL)
with C[S] and conclude that L = P, the lattice of P-projections of Λb(KL).

We mentioned previously that the Jordan-Hahn property is closely connected
with strong fullness. As evidence for this we state:

Corollary 7. Let KL be projective. Then the following implications hold.

(a) // KL has the Jordan-Hahn property (with respect to L) then it is strongly
full and ext[0, l ] g l (the weak* closure of L in Ab(KL)).

(b) // L satisfies the countable chain condition, then the following are equivalent

(i) L is strongly full,
(ii) L = exp[0,l],

(iii) KL has the Jordan-Hahn property.

Proof, (a) Suppose that KL has the Jordan-Hahn property and that φeKL = K
is not faithful on Vf+ =Ab(K) + . Then φ(a) = 09 for some non-zero aeVf+, and
so φ(r(a)) = 0. Write p=\— r(a\ choose τ in K with τ ( l — p ) = l , and put
p = \φ - \ τ . Since 1 = p(2p - 1) g \\p\\ £ 1, IIPII = WiΦW + II W = 1- Now,
by the Jordan-Hahn property, there exist φί9 φ2 in K and an x in L such that,

p = λφx — μφ2, Φι(x) = Φi(^ — x)— 1, where Λ,μ^0.

But then, λ + μ^\\p\\^ p(2x -\) = λ + μ. Therefore, λ + μ = 1 and, by the
uniqueness property of the decomposition of p (see [2 Proposition 1.3]), it follows
that φ = φίm Therefore since xΦ\ and φ1(x)=\,φ\s not faithful on L. This proves
that L is strongly full. The last statement in (a) follows from Milman's Theorem,
since for each p in VL9 \\p\\ = 1, there exists x in L for which p(2x — 1) = 1.

(b) The implications (iii) => (i) => (ii) follow from part (a) and Theorem 5(ii),
respectively. As for the implication (ii)=>(iii): if L = exp[0,1], then L equal the
projective units of Ab(KL\ by Lemma 2, and (iii) is now an immediate consequence
of [2, Corollary 1.3].

As our penultimate observation, we will show how to extend to a lattice L
without the countable chain condition, the second part of Theorem 5.
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Consider a lattice, L, (as always, satisfying the standing assumptions) with
KL = K projective, and let S be a subset of Vf{= A\K)). Denote by F(S) the
semi-exposed face of Vf generated by S. Of course, Vf = F(L). We write L[0, x]
for the complete orthomodular lattice {yeL:y ^ x}.

We shall call L locally full when the following condition is satisfied: If xeL
and φsK is faithful on L[0,x], then φ is faithful on F(L[0, x]).

Let us observe that local fullness is equivalent to strong fullness if L satisfies
the countable chain condition and KL is projective. On the one hand, local fullness
clearly implies that KL is strongly full. Conversely, if KL is strongly full and L
satisfies the countable chain condition then L = IP, by Theorem 5(ii), and we see
that L is locally full because every semi-exposed face of Λb(KL) is of the form
Im + P, for some P-projection, P, of Λb(KL) (see the proof of [2, Proposition 1.1]).

Theorem 8. Let KL = Kbe projective, and let L be locally full. Then L may be identified
with the lattice of projective units, P, of Λb(K).

Proof. Let us first make a general observation: given a non-zero element x in L,
there exists φ in K for which φ(x) = 1. Thus, sL(φ) fg x, and we see from Lemma
1 that x dominates a nontrivial element, of L, and satisfies the countable chain
condition. So, letting (xα) be a maximal disjoint family of elements in L, such that
xα ^ x and xα satisfies the countable chain condition, for all α, we see that x = v xα.

Now suppose that L is locally full, and let x be a non-zero element, in L,
satisfying the countable chain condition. By Lemma 1, x = sL(φ), for some φ in
K. Then φ, being faithful on L[0,x], is faithful on F(L[0,x]), by assumption. Note
that r(x)eF(L[0,x]): in fact, by the proof of [2, Proposition 1.1], F(L[0,x]) =
Im + P, where P is the P-projection on A\K) for which P(l) = r(x). But then
r(x) — (1 — r(l — x))eF(L[0, x]) and, since φ(x) = 1, we have that φ(r(x) —
(1 — r(l — x))) = 0. Therefore, r(x) = 1 — r(l — x), so x = r(x)eP. Combining this
with the first paragraph, above, and the argument in the first paragraph of the
proof of Theorem 5(ii), we see that L is contained in P and is a sublattice of P.

Finally, let φeK and observe that sP(φ) <. 1 - r ( l - sL{φ))^ sL(φ)eP. Using
Lemma 1, and repeating the above argument, we see that φ is faithful on the interval
P[0,sL(φ)] of P. Consequently, sP(φ) = sL(φ)eL. It now follows that L is equal and
isomorphic to P, by applying to P, the argument of the first paragraph, so completing
the proof.

Theorem 8 can be re-cast as an "if and only if" just as in Corollary 6. In a
similar way, replacing KL in each of the statements with an appropriate convex
subset having appropriate geometric properties, most of these results admit
generalisations. As these will be apparent to the reader, we omit the details.

We would like to record one final result, however. It follows from Proposition
8, Gleason's Theorem for W*-algebras [5], [12], and that for JB W*-algebras, [3],
together with [9, Theorems 1.5, 2.10]. The meaning of a lattice without Type I2

part was described in [4].

Corollary 9. Suppose that L has no Type I2 part. Then L is isomorphic to

(a) The lattice of all projections in a JB W-algebra if and only if KL is spectral,
elliptic and L is locally full.
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(b) The lattice of all projections in a W*-algebra if and only if KL is spectral,
elliptic, has the global 3-ball property, and L is locally full.
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