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Abstract. We establish a sharp instability theorem for the bound states of lowest
energy of the nonlinear Klein-Gordon equation, un — Δu + f(u) = 0, and the
nonlinear Schrδdinger equation, — iut — Δu + f(u) = 0.

Introduction

In this paper we prove a sharp instability theorem for the bound states of lowest
energy of the nonlinear Klein-Gordon equation

(NLKG) utt-Δu + f(u) = 0

and the nonlinear Schrδdinger equation

(NLS) - iut -Δu + f(u) = 0.

By a bound state we mean a solution of the form

with ω a real parameter and φjx) suitably vanishing as |x| -> oo. The nonlinearity
/ is very general: it satisfies conditions which are sufficient and are almost necessary
for the existence of such bound states. Each of these systems is distinguished by
a pair of invariants, energy E and charge Q. Energy comes from the time in variance
and charge from the gauge invariance. It is the gauge invariance which makes the
problem interesting. It means that φω(x) exp i(ωt + θ) is a bound state for any
constant θ. Our original proof of instability for NLKG also made use of the broken
dilation invariance. However, this method gave a sharp result only in the case of
a pure power nonlinearity f(u) = u — \u\p~ί u, p>l (cf. Sect. 4). The general
case requires a more abstract method.

In general the states are stable for some ω and unstable for other ω. Stability
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of a bound state means that any initial datum sufficiently near this state gives rise
to a solution which exists and remains near the state for all subsequent times. The
sharp instability condition is

Another way to express this is that the action L(φω) be a concave function of ω.
With the opposite (strict) condition we have stability. For example, take the pure
power nonlinearity mentioned above. For NLS stability is characterized by the
condition p < 1 -f 4/n. But for NLKG the condition depends on the frequency:
p<l+4/n and |ω|>ωc for a certain critical frequency ωc. For general non-
linearities, NLS is always more stable than NLKG. Another feature which
distinguishes NLS is the positivity of the charge, which helps to simplify the analysis
considerably.

Blow up theorems have been proved in [9, 5 and 2]. The case of ω = 0 but
arbitrary /, when the solution might exist for all time (as well as some cases with
ω Φ 0), was treated in [1 1]. In [6] was considered a similar problem with dissipation.
The stability theorem was proved in [10] for NLKG. For NLS in the pure power
case the stability result was proved in [4]. The linearized operator for NLS was
analysed in [15]. The results of the present paper were announced in part in [14],
in the A.M.S. meeting in Berkeley in August, 1983 and in AMS Abstracts 3 (1982),
p. 397; 4 (1983), p. 498; 5 (1984), p. 399. In a forthcoming paper we shall generalize
these results to systems invariant under a more general gauge group.

The possibility of stable bound states for ω Φ 0 was first suggested in [1].
Subsequent numerical investigations as well as heuristic arguments based on
physical intuition led to a formal understanding of the problem ([7, 8]). The idea
is to graph the energy E(φω) against the charge Q(φω). If two frequencies have
the same charge, then the lower energy state is stable and the higher one unstable.
This idea is borne out by our analysis.

In Sect. 1 we construct the ground state φω and discuss the behavior of the
energy and charge near φω (for NLKG). In Sect. 2 we construct a certain local
functional P which measures the deviation of the energy from its value at φω. In
Sect. 3 we use P to prove the instability for NLKG. Section 4 contains examples
and comments. In Sect. 5 we treat the Schrόdinger equation by the identical
method. In Sect. 6 we make some technical comments which extend the scope of
our results.

1. Standing Waves

In this section we discuss the existence of standing waves and their dependence
on the frequency. The equation

(d? -Δ)u +f(u) = 0 (xeRB,n ̂  2), (1)

where
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has the standing wave solution u(x, ί) = φ(x) exp (iωt\ where ω is real, provided

- Δφ + f(φ) -ω20 = 0. (2)

We assume that / is a C1 function, real for real arguments, which satisfies

(HI) F(η) — ^ω2η2 < 0 for some η and some ω2 < 1,

(H2) |/'(s)|=o(|s|4/<"-2 ))as|s|^oo,

where F = /, F(0) = 0. Conditions (//I) and (#2) are sufficient for (2) to have
non- trivial solutions which vanish at infinity [13,3]. Condition (H2) can be
weakened (see Sect. 6 below). If n = 2, the exponent in (H2) should be replaced by
an arbitrary power.

The function space in which we shall work is X = if* 0L2, the space of pairs
of complex-valued functions of r = |x| which belong to f/1((R")0L2([Rn). An
element of X is denoted by ~u = [ul9 u2~]. We use the square bracket to distinguish
a pair from an inner product. We regard X as a real Hubert space with the inner
product

(t?, IT) = Re J (Vu1 Vt^ +u1ϋ1+ u2v2)dx. (3)

The real dual space _of X will be denoted by X^. For/ eX*^ and ΊίeX, </, tT>
denotes the value of / at ~u. We define if by <i/,tΓ > = — </,Z"M >. We define an
identification operator /: X-*X* as follows: / =I(u)eX*9

</, TΓ> = Re f (iiit?! 4- M2)dx. (4)

We define a map J : * -> X*

-Γ

acting on IT as a column vector. That is,

x. (5)

Note that J* = — J. Multiplication by i = ̂ — 1 commutes with / and with J.
If we define on X the energy functional

))</x, (6)

then the nonlinear wave Eq. (1) can be written as the Hamiltonian system

J^ = F(u). (7)

Furthermore, Eq. (2) can be written as

ω(Ji?) = E'($\ where ̂  = [0, fωφ]. (8)

Nontrivial solutions of (2), or equivalently (8), are obtained using variational
techniques. For this reason we define the following additional functionals.
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Definition 1. For HeX,

Q(u) = ̂ JuJuy = lm^uΐu2 dx, (charge)

= ί (-έN2 +τ\Vuι\2 + F(uι))dx, (Lagrangian)

^

By the growth restriction (H2) on / and the Sobolev inequality, all of these
functionals are C2 on X. Note that Q'(~u) = Jiu. Hence the solutions of (8) are
critical points of E(u) restricted to the manifold Q(~u) = constant. In fact,

E'($) = ω&($). (9)

Let ω* < |ω| < 1 be the interval of ω so that (HI) holds. Let - 1 < ω < 1 in case
F is itself somewhere negative.

Theorem 2. Let d(ω) = inf {1/n J |Vu\ 2 dx: 0 Φ ueJff,1, K(u, ίωu) ^ 0}.

Then a) the ίnfimum is achieved at some u = φ > 0,
b) K(φ,iωφ) = Q,
c) Φ — [Φ» iωφ] satisfies (8),
d) d(ώ) = inf (L(w, iωw): 0 ̂  we/ί*, K(u9 iωu) = 0},
e) d(ω) = inf{L(w,iωw): J | V u \ 2 d x = ]\Vφ\2dx}.

Proof. This theorem may be found in [11] for n ̂  3, so we merely sketch the proof
here. Write K(u) = K(uJωu) and L(u) = L(u,iωu). Firstly, note that K(u)^c\\u\\2

for ||u|| small where c>0. Hence {u:(^^u^Hl,K(u)^ϋ} is bounded away
from 0 in X. Secondly, take a minimizing sequence (HJ) for d(ω). By (#2),
O^K(tt;)^c||tt;||2- l l w ll", where α>2. This implies that (w; ) is a bounded
sequence in Hj. The compact embedding H^Lf for 2<p<2-h4/(n-2) (see
[13]) and condition (#2) imply that the functional K is lower semi-continuous.
So there is a subsequence converging to some φeH$. Also K(0) ̂  lim K(UJ) ^ 0
and l/nJ|V0| 2 ^d(ω). Since X is bounded away from zero, φ ̂ 0 and therefore
the convergence is strong. The positivity of φ follows from the maximum principle
and the minimization. This proves a).

Thirdly, consider the curve λ-+φ( /λ)εHϊ. Since at λ = 1 we have a minimum,
K(φ) = Q, proving b). Fourthly, note that L(u)= l/nJ |Vw| 2 + K(u). Thus a) and
b) imply d). The Euler-Lagrange equation for d) can be written in the form (2) or
equivalently (8). Fifthly, if

$\Vv\2dx = $\Vφ\2dxmthveHΪ,

then K(v) ^ 0 from step one. Therefore

Up) = ̂  J |Vί;|2 + K(v) ^ if \Vφ\2dx = L(φ\

This completes the sketch of the proof if n ̂  3. For n = 2, see [16,17].
Uniqueness of the solution φ is not known in general. Nevertheless we assume

that there is a choice φ = φω which achieves the infϊmum of Theorem 2 such
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that ω -» φω is a C2 mapping from the interval (ω*, 1) into H} . This assumption
is not necessary (see Sect. 6) but it simplifies the rest of the presentation. Now we
have a C2 curve </>ω = [φω, iωφ^] in JΓ which is a nontrivial solution of E'((βω) =
ωJi(βω. Furthermore,

Lemma 3. For convenience we take ω > 0. Then d(ω) is a positive decreasing function
of ω and d'(ω) = - ωf \φω\2dx = -

Proof. Since rf(ω) = L($ J = E$

d'(ω) = < E'($ J - ωβ'

But the first term vanishes by (9). Therefore

d'(ω)=-Q@J. (10)

Lemma 4. Fix ω = ω0 and /eί φ0 = φωo. Tnen for any C2 curve H(λ) such that
17(0) = </>0 and Q(~U(λ)) = β(̂ 0)>

 we nave

(4))70)70>, (11)

where

J0 = u'(0).

Proof. Differentiating £ along the curve H(λ\

^-E(u(λ))=(E'(u(λ)),du/dλy,
aλ

^(u(λ)) = <E"(3)F, ΪΓ> + (E'(u\u"\ (12)

Since β is constant on the curve,

'(ϊί),^> = 0. (13)

Subtracting ω0 times (13) from (12) and evaluating the result at λ = 0, we obtain

<(F'(4) - ωoρ^0))70,70> + <E'00) - ω0β^0),^>. (14)

The last term vanishes by (9).

Theorem 5. Consider a frequency ω0 and the corresponding solution ̂ 0 = φωo. Then
d(ω) is convex at ω0 if and only if the functional E restricted to the manifold M0

has a local minimum at φ0.
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Proof. For the necessity we note that

E(u) = ί UN2 + έ l V w x l 2 + F(Ul)}dx

+ ω Im I MιM2; that is

ωβ(u). (15)

For any ~ueM0 in a small neighborhood of <£0, we can find an ω so that
j|Vtt1 |

2dx = J|V0J2dx because d'(ω)= ~ω\\φω\2 /O. By Theorem 2(e), (15)
becomes

E(u) ̂  d(ω) + ωg(4) = rf(ω) - ωd'(ω0). (16)

If <i(ω) is convex, (16) implies

E(u) ̂  d(ω0) - ω0d'(ω0) = £(4)

for ueM0 in a small neighborhood of ̂ 0. Therefore E\M0 has a local minimum at φ0.
Conversely, consider the curve ω -></>„, and define

$(ω;x) = -$ω(x/λ(ω)), where λ"(ω) = Q($0)IQ($ J-

Then β(̂ (ω)) = Q(4) and

Thus, since n ̂  2,

E$(ω)) ̂  ωβ(4) + d(ω) = - ω<f (α>0) + d(ω). (18)

Now by assumption E($((D)) ^ £( 0̂)
 = ̂ (ωo) — ω0d'(ω0). So (18) implies

This means that d(ω) is convex at ω0.

Remark. If ω0 is a point of inflection of d(ω\ then (by 10)) ω0 is a critical point of Q($ω)
and hence of E($ω\ since (by (9)) dωE($ω) = ωdωQ($ω).

2. A Saddle Point of the Energy

We view the solution ^0 as a critical point of E subject to constant Q. In (17) we
defined a curve \f(ω) such that ^(ω0) = ̂ 0 and β(̂ (ω)) = constant. We denote
its first component by (̂ω) = φω(-/λ(ω)) and its tangent vector at ω0 by

dψ dtf
3^o=^(^o) and J0 = ̂ (ω0) = [yθ9ΐ(ω0y() + φ0)^

Note that ω-+ή/(ω) is a C2 curve in X because ω->(/>ω is C2 and ω^>x-Vφω is
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continuous with values in X. An immediate consequence of the preceding
theorem is

Corollary 6. (a) d2

ωE$(ω0)) ^ d"(ω0),
(b) if d(ω) is strictly concave at ω0, then E(φ(ω)) < E($0) for ω φ ω0, ω near ω0.

Proof. Part (b) is clear from the end of the proof of Theorem 5. Let α(ω) = E($(ω}) —
d(ω) + ωd'(ω0). Then α(ω0) = 0. By (18), α(ω) ̂  0. Therefore α(ω) has a maximum at
ω0 and α"(α>0) ̂  0. This proves (a).

Remark 7. Consider the modified linearized operator for Eq. (2):

4ω2

T=-Δ+f'(φQ)-ω2

Q + ° Wo,θ2A),
(Φθ>Φθ)2

where (,)2 denotes the ordinary L2 inner product. If d"(ω0) < 0, then (Ty0, j;0)2 < 0.
In order to prove this assertion, we use (11) to calculate

- f {\ω0y0 + φ0\
2 + Re(-

= f {(-21 + Γ(φQ))yQ'y0 - ωlyl + φ2

Q}dx

By Corollary 6(a), this is negative if dff(ω0) < 0. We will not need to use this remark,
but it does put our analysis into the context of the linearized theory.

Lemma 8. (a)
(b) < β'ί̂ oλ 7o > = f Ψo^x + 2ω0 f ψo};0rfx - 0,
(c)

Proof, (a) follows immediately from Lemma 4 and Corollary 6. The charge

is constant on the curve. Differentiating at ω = ω0, we obtain (b). As for (c), we
recall (17) to write

Differentiating at ω0, we obtain

2 J VΦo'Vyodx = (n- 2)λn^λ'\ \VφQ\2dx + nd'(ω0).

But d'(ω) < 0 and by (17) λn = d'(ω0)/d'(ω). Hence the signs of λ'(ω0) and of d"(ω0)
are the same.

Lemma 9. LeίL = {ueX\ </(¥), ί^0> = 0} αndL^ = Ln {tΓeJί| ||lί - ̂ 0|| < δ } . I f δ i s
small enough then

(i) eίθ Lδr\Lδ = φforO<θ<2π, and
(ii) U = u eiθ Lδ is open in X.
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Proof. Let F(0, if) - </(exp(- J0)if), ί$0>. Note that F(0, if) = sin 0</(if),~$0> in case
ifeL. Choose δ small enough that —Ί}φLδ whenever ~veLδ. If ~veeiθ Lδ with
0 < 0 < 2π, then F(θ, if) = 0. If also if εLδ with δ small, then </(if),^0 > ̂  0. Hence
sin 0 = 0, which is a contradiction. This proves (i). Now let if eLδ and let ~u eX
belong to a neighborhood of if. Let

α = OL(U) = tan ~~1

Then exp(— iα)iTeL. By continuity of α, it belongs to Lδ provided ~u is close
enough to if. This shows that if belongs to the interior of 17. So exp (iθ)~v belongs to
the interior of eίθU = U. Thus U is an open set.

Proposition 10. There exists α C1 functional A:U-+R such that

(i) A(eiθu)
(ii) Λ'fo50)

(iii) Λ'fMjeJpf] ciJί* far
(iv) <Q'(2), J-M^w)) =0 for u€U.

Proof. We first define G: U-+Lδ by

G(u) = e-^u

where α(ϊT) is given locally in the preceding proof. Clearly G is smooth and α is
locally smooth. We have G(exp (ΐ0) w) = G(ϊΓ). Next we define

Property (i) is obvious. Now

A(u) = β {̂ - jy0 + < jy0,ί ϊΓXOT)}. (20)

Since α(^0) = 0,

by Lemma 8(b). For (iii) we need by (20) to show a'(u) belongs to the range
of J. A direct calculation shows that α'(u) is a linear combination of I(φ0) and I(i<?0)
Now I(if)eΛ(J) if and only if ^eH,1 and v2eH}. Since φ0eHϊ, a'(u)eR(J)
and (iii) is proved. As for (iv), we have

0 = 0

Lemma 11. L ί̂ y < δ and let Θ=(JeiθLycιU. Then there exists ε>0 and a
θ

smooth function S:(l — ε , l+ε)x0-» ί/ 5t/c/z that
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i) S(1 ,M)=U,

r\ C

ii) — (l,u)=-J-1A'(u),
oλ

iii)
// we denote S(λ,Ίί) = l4λ = \uλ9v^\9 we have

iv) $\Vuλ\
2dx = $\VφQ\2dx for some λ = λ(u).

Proof. We solve the differential equation

dΉλ _ 1 _,
— =- (uλ), u (21)

Since ϊ? — > J 1 A'(u) is well defined in U and bounded on closed subsets of U and
since Θ a U, there is an ε-neighborhood in which (21) can be solved. We let S
be the flow S(λ, ~u) = ~uλ. By definition S satisfies i) and ii).

We note that

by Proposition 10 (iv). Finally to show (iv) we calculate

^=-J-1>4'(^0) = 7o a t λ = l , u=άλ

So by Lemma 8(c) we have at λ = 1, H = ~$09

By the implicit function theorem we know that for H near φ0, the equation

has a solution λ = λ(~u\ This completes the proof.

Proposition 12. Fix ω0 so that d"(ω0)<0. There is an ε>0 such that for all
,u^ e^Q for all θ, Q(u) = Q($0)9 there is a λ = λ ( u ) ε ( ΐ - ε, 1 + ε) such that

(22)

where we denote

P(u) = <£'(u),-J-M'(U)>. (23)

Proof. Let ~Ωλ be the curve defined by Lemma 11. Then as in Lemma 4 we have

£(«Λ)!Λ = I = <E"(u)dλ u,dλ «> + <£'(u),^l?>,

0 = <Q"(u)dλu,dλuy + <β'(«),^M>. (24)
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These two equations imply for λ = 1, ϊΓ = </>0, that

32

By Lemma 8(a) we have

so that the Taylor expansion gives

E(uλ)<E(u) + (λ-l)P(u) (25)

near u = <j50,λ = 1. On the other hand, as in (15) we have

E(uλ) ^ ω0Q(uλ) + L(uλ,iω0uλ).

We have Q(uλ) = β$0). We choose λ = λ(u) as in Lemma 1 1 (iv). Thus J | Vuλ\
2dx =

2 .̂ By Theorem 2(e), L(uλ9 iω0uλ) ̂
Hence

E(uλ) ^ ω0

A comparison with (25) completes the proof in case ~u is near φ0. If "w is near exp (i 0) (/>0>
then we apply this result to exp(— iθ)~u.

Corollary 13. The curve ^(ω) satisfies:

(i) E(f(ω)) < E($0) for ω / ω0,

(ii) e$(ω)) = β$0), and
(iii) P(ψ(ω)) changes sign as ω passes ω0.

Proof. We noted (i) in Corollary 6, while (ii) is obvious from (17). By Lemma 8(c)).

-/-f I Vφ(ω)]2dx ^Qatω = ω0.dω

Therefore §\Vψ(ω)\2dx — §\Vφ0\
2dx changes sign at ω0, so that λ— 1 =

λ($(ω}) — 1 also changes sign. Applying Proposition 12 to 77 = ̂ (ω), (λ —
> 0, so that P($(ω)) also changes sign.

3. The Evolution Equation

Now consider NLKG, Eq. (1) or equivalently

w0. (7)

Formally, the energy and charge are conserved quantities:

E(u(t)) = E(u0), Q(u(t)) = Q(u0). (26)

In fact, for any u0eX, Eq. (7) has a unique strong solution [18] weC([0, T); X)
satisfying (26) for some Γ>0, under the growth condition (H2). We fix a frequency
co0 with d"(ω0) < 0 and denote E0 = E($Q\QQ = Q($0). Let K =
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and let N — &\K, where 0 is the tubular neighborhood of K defined in Lemma
11. We continue to assume / satisfies (HI) and (#2), but for simplicity we also
assume /eC°°.

Lemma 14. The sets

S, = {ueN\E(u} < E0,Q(H) = Q^P(u] > 0}

are invariant regions under the flow of (7). In particular, ifΊ4Q eS^ , then P(u(t)) > 0 for
all ί>0 such that ~u(s)eN for O^s^t; ifHQeS2, the inequality is reversed.

Proof. Since E and Q are conserved, we have by Proposition 12, if U(s)eN for
0 ̂  s ̂  t,

where λ depends on t. Therefore P(u(t)) Φ 0. By continuity of the solution curve
(P(u(t)) has one sign. Consequently Si and S2 are invariant regions. Note that Sί

and S2 each contain points arbitrarily close to < 0̂, by Corollary 13.

Lemma 15. Let Ίί0ESΐ (respectively S2) and let

T0 = sup {t\u(s)eN,Q ^ s < t} ^ oo

be the exit time. Then there is positive ε0 such that P(ϊί(t)) > ε0 (respectively < — ε0

fort<T0).

Proof. From Proposition 12 we have

£0 - E( u(t)) ^(λ- l)P(u(t)) for 0 ̂  ί < T0.

Let ε0 = E0 — E(u0). Since 1*065^52, we have ε0>0. So by (24), ε0 ̂
(λ - l)P(u(t)). Since u(t)eN, we have \λ-l\<δ<l, whence 0 < λ < 2. If Ίt0eSl9

then by Lemma 14, P(u(t)) > 0. Hence λ > 1 and P(u(t)) > ε0/(λ - 1) > ε0. A similar
argument shows that P(~u(t))< — ε0 if ~u0eS2.

Theorem 16. // d"(ω0) < 0 then K = {e'Vo} is unstable under the flow of (7).
Specifically, if wΌeSΊuS^ (consequently W Q is arbitrarily close to K), the solution
with initial condition Tί(0) = Ίί0 exits N infinite time: T0 < oo.

Proof. A bootstrap argument shows that 0ωeC°°, while the fact that 1 -ω2 >0
shows that φω(x) decays exponentially as |x|->oo. (See [13] or [3].) Since
dφjdω satisfies the elliptic equation

it too is C°° and exponentially decaying. Therefore so is ~yQ = dϊf(ω)/dω |ω = ω0.
By Eq. (20), the range of A'(u] can be identified with smooth, exponentially decaying
functions, which of course belong to every Sobolev space. This justifies the following
procedure.
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Let IfoeSjLuSa. Apply Eq. (7) to - J~lA'(u(t)}eX to obtain

-
dt

By (23) and since J* = — J, this can be written as

~A(u(t)) = (W(ί)),̂  = P(u(t)). (27)

By Lemma 15, ± P(u(ή) > s0 so long as u(t)eN. So by (27),

\A(u(t))-Λ(u0)\>ε0t.

Since AT is a bounded set and A is bounded on ΛΓ, the solution must exit from ΛΓ
in a finite time.

4. Examples

We begin with the pure power case

f(u) = u-\uΓlu, l<p<l+4/(n-2).

The homogeneity of this nonlinear term permits the adjustment of coefficients by
scaling. The stationary Eq. (2) is

- Δφ + (1 - ω2)φ - \φ\p~lφ = 0, - 1 < ω < 1.

By dilation and scaling, every solution φ = φω has the form

φω(x) = λ2'<*-»υ(λx)9 (28)

where/l = (l-ω2)1/2 and

-ΔΌ + Ό-\Ό\P-IΌ = Q, v = φ0. (29)

With this explicit dependence of φω on ω, we can easily calculate all the relevant
quantities. Thus,

d(ω) = ̂ \Vφω\2dx = l-λa f \Vυ\2dx = λad(Q\

where a = 4/(p — 1) — n 4- 2. Note that a > 0 because of the restriction on p.
Differentiating twice, we find

d"(ω) = a((a - l)ω2 - 1)(1 - ω2)(fl-4)/2d(0).

Case 1. If p ̂  1 -f 4/n, then α — 1 ̂  1, d(ώ) is concave for all ω2 < 1, and φω is
always unstable.

Case 2. If p < 1 + 4/n, then a — 1 < 1 and d"(ω) changes sign at ωc = (a— 1)~~1/2.
Therefore φω is stable for ωc < |ω| < 1 and unstable for |ω| < ωc.

Using the fact [13] that
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we easily calculate

d(ω) = (l-ω2)β / 2fl-1fι;2dx,

ω2)fl/2] f ι;2dx.

Thus, in Case 2, as ω goes from 0 to 1, Q rises from zero to a maximum at ωc and
falls back to zero, while E rises from E($0) to a maximum at ωc and falls back to
zero. If E is plotted against β, the unstable part lies above the stable part and
they are joined by a cusp at the critical frequency ωc.

In the pure power case we can make a more explicit construction which gives
an alternative proof of the main theorem. (This was our original proof.) In fact,
the curve ω-*φω is given by (28). Hence ψ, defined by (17), has the form
ψ(ω-9x) = a(ω)φωo(β(ω)x). Therefore

3Ό(*) = β'(ω0)x Vφωo(x) + α'(ω0)φωo(x).

This indicates that, instead of constructing the operator A, we could directly use
the multiplier

2
u (30)

p-1

to take the place of - J~ *A'(u). Then we would let P(u) = - nK(u) + 2(p - 1)~ *
R(~u\ where K is the functional associated with dilations and is given by Definition
1, and R is associated with scaling and is given by

R(u) = f (- \u2\
2 + |VW l |

2 + ΰjtu^dx. (31)

Lemmas 9, 10, 11 can be omitted and Proposition 12 suitably modified. Then
Corollary 13 and Lemmas 14 and 15 are valid as stated. Finally in the proof of
Theorem 16, Eq. (27) is replaced by the "broken dilation identity," which comes
from multiplying Eq. (1) by Mu:

ff (r2ikl2 + i lVwf + F(u))-\u\dx = 2P(u). (32)

Note that the integral on the left brings us outside the Hubert space X. On the other
hand it is "almost" non-negative. Therefore it is possible to complete the proof that the
solution exits N in a finite time. We believe that this identity (32) will find other uses.

As a second example, consider the mixed power

where α > 0 and 1 < p < 1 + 4/(n — 2). For large enough α, there is a non-empty
interval ω* < |ω| < 1 which satisfies (HI). It can be shown [10] that d(cυ)-» oo as
ω jω*, that d(ω) is convex near ω*, that d(ω) is decreasing and that it is concave
near ω = 1. Therefore there exist both stable and unstable frequencies.

Anderson [1] studied the particular case

f(u) = u- \u\2u + |w|4u, xe(R3
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numerically. Even though (H2) is not satisfied, and uniqueness of solutions of
NLKG is not known, weak solutions do exist for all time, due to the positivity
of the term \u\4u. (See [12] and Sect. 6 below.) In this case ω* = 13/16. For the
stable frequencies, see [10].

As a third example, consider the case of zero frequency ω = 0. Let / be any
function which satisfies (HI) and (H2) with ω = 0. This case was treated in [11],
where a different method was used to prove the instability. Although the method
of [11] has certain advantages, we wish to show how the ω = 0 case fits into the
context of this paper. Indeed, ^0 = [<£0>0] and d"(0) = — ̂ φ^dx < 0 by Lemma
3. The curve ~$ is defined by simple dilation as $(α; x) = [φ0(~x/(x), 0]. Then β(̂ (α)) = 0
and

Hence £(1) = 0 and £(1) = - (n - 2) j \Vφ0\
2dx < 0. Furthermore, JQ =

[— χ V</>0,0]. The rest of the proof is unchanged.

5. The Schrόdinger Equation

In this section we prove that with only minor modifications the instability theorem
is also valid for the equation

i?jL-Δu + f(u) = Q9 (33)

where /(O) = /'(O) - 0, /(A) = eίθf(u). This equation has tι(x, ί) = <£(x) exp (z'ωί) as
a solution if

-Δφ + f(φ)-ωφ = Q. (34)

We assume that / satisfies (H2) and

(Hl)s F(ή) — ^ωη2 < 0 for some η and some ω < 0.

Thus ω satisfies — oo < ω < ω* ̂  0. With some changes of notation, Theorem 2
asserts the existence of a solution φω(x) of (34). We make the following definitions.
Let X = Hf9 considered as a real Hubert space. Let / and J be the mappings:
X^>X* given by

< l(u\ v > = Re J uv d x, < Ju, v > = Im J uvdx.

Thus Ju = I(~iu). Let

= \ Im J uvdx + E(u).

Then Eq. (33) takes the form J(du/dt) = E'(u) and (34) takes the form

(35)
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as in Sect. 1. We have

and d'(ώ) = — Q(φω) as in Lemma 3. The proofs from Lemma 3 to Theorem 16
are valid with only cosmetic changes. Indeed, inequality (15) is replaced by the
equality

E(u) = L(u, iωu) + ωQ(u).

As before, we work with the curve ψ(ω) = φω(/λ(ω)\ where λ(ω) is chosen so that
Q(ψ(ω)) = Q(φωo). We define y0 = dψ/dω at ω = ω0. We finally obtain the following
analogue of Theorem 16.

Theorem 17. // d"(ω0) < 0, then K = {eίθφωϋ} is unstable under the flow of
(33). Specifically there is a neighborhood N of K such that, ifuQeX, E(u0) < E(φωo),
Q(u0) = Q(φωo) and P(u0) Φ 0 (so that u0 may be arbitrarily near K\ the solution
of (33) with initial condition u0 exits N in a finite time.

The corresponding stability theorem, which follows from Theorem 6, may be
found in [4].

For example, take the pure power case

f ( u ) = - \u\p- 1 u with 1 < p < 1 + 4/(n - 2).

Then φω is given by (28) where λ = ̂ f^ω. Also d(ω) = λad(Q) and d"(ω) =
a(a - 2)λa~4d(Q)/4. Hence we have instability for all ω < 0 if p > 1 + 4/n and stability
for all ω < 0 if p < 1 + 4/n. An example where the stability depends on ω, as in
Sect. 4, can also be given.

6. Extensions

This section has two parts. First we show that the ground state φω depends
smoothly on ω if it is unique. Secondly we discuss rapidly growing nonlinearities.

I. If the ground state φω (defined in Theorem 2(a)) is not unique, then the set
of ground states is still stable or unstable according to the convexity or concavity
of d(ω\ but it is rather cumbersome to formulate so we shall exclude that case
from consideration.

Theorem 18. For ω near ω0, let φωbe the unique real solution of the minimum problem
stated in Theorem 2(d). Let zero not be eigenvalue of the linearized operator
&o= -^-ωo+/'0(0ωo)

 at ^ωo acting on L2 (real-valued, radial functions in
L2(1R")). Iff is a C2 function satisfying (HI) and (H2\ then ω - (/>ω is a C2 mapping ofU
into X for ω near ω0.

Lemma 19. ω-></>ω is continuous with values in X.

Proof. From Proposition 2.1 of [10], d(ω) = n~l §\Vφω\2dx is a continuous
function of ω. From Lemma 2.1 of [10], ^φ^dx is a bounded function of ω. Let
(coy) be a sequence tending to co0. Then (φω) is bounded in H}. A subsequence
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may be chosen converging weakly in //* to some υ. Now

where G(s) = F(s) — s2/2. Letting ω = ω7 -^ω0, the weak limit and (H2) imply that
K(υ,iωv) ^ 0. This is the constraint in the definition of d(ω) in Theorem 2. Therefore
§\Vv\2dx^$\Vφωo\

2dx. By weak limits, this is an equality. By the uniqueness
assumption in Theorem 18, v = φωQ. It follows that φω tends weakly to φωo in
H}. The continuity of d(ω) implies that J|V(φω-φωo)|2dx-+0._Passage to the
limit in the constraint Kω(φω) = 0 yields φω-^φωo in L2. Hence </>ω-*</>ωo in X.

Lemma 20. In a neighborhood in X 0/<j5ωo, all the solutions lie on a C1 curve.

Proof. We write Eq. (2) as

where λ = 1 — ω2 > 0 and g(s) = f(s) — s. Let λQ — \ — α)2, and φ0 = φωo. Let

) = tι-(λ-4)-1g(u), λ>0,

Then <S(λ,u)εH} since ueH1 ^ L2n/(n~2\ g(u)eL2n/(n + 2) by (//2) and (A-4Γ1

^(w)e//1 by Sobolev's embedding. In fact ^ is a C1 operator from (0,oo) x //*
into //, Note that 9(λQ9φΌ) = 0. Now the operator &0 = - /4 + λQ + g'(φo) acting
on L2, has only discrete spectrum to the left of A0, and we have assumed it is
invertible. It follows that the compact operator (λ0 — Δ)~1/2g'(φQ)(λ0 — Δ)~1/2 on
L2 does not have — 1 in its spectrum. Hence

acting from Hi to //,, is also invertible. By the implicit function
theorem, the solutions of&(λ,u) = 0 in a neighborhood of (λθ9φ0) form a C1 curve
in^oo jx f f , 1 .

Proof of Theorem 18. By Lemmas 19 and 20, ω-+φω is a C1 curve near
ω = ω0, φω = φ Q e H f . Since φω is bounded in Ή1, the functions |x|("""1)/2φω(x)
are bounded independently of ω and x (see [13]). By a bootstrap argument using
the elliptic Eq. (2), φω(x) is uniformly bounded. Now φ'ω = dφω/dω satisfies the
elliptic equation

Since J5f0 is invertible, φ'ω(x) is also uniformly bounded. Therefore [φ'ω(x}~\2 is
bounded in H1. Now we can show that φω is C2 with values in H1 by taking
difference quotients in the last equation. It follows that φ'ή = dφ'ω/dω exists
and satisfies

This completes the proof.
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II. Now we consider a nonlinearity / which grows more rapidly than allowed
by (H2). In fact, we replace (H2) by

(H2)p There exists δ > 0 and p ̂  1+ 4/(n - 2) such that

f(s)^δsp and |/'(s)| ^ δ'^s p~l

for sufficiently large s.

We define X = (Hi ni/+ 1)φ L2, considered as a real Banach space. Then E and
Q are C2 functional on X. Sections 1 and 2 of this paper are completely unchanged.
The analogue of Theorem 16 is

Theorem 21. If dff(ω0) < Oand 'u0eSiuS2, then there exists a solution H(t) of Eq (7),
which is weakly continuous in t with values in X and which exits N in a finite time.
(This is valid for NLS as well.)

Proof. It is not known whether there are strong solutions of the evolution equation
for arbitrary data in X. However it is known [12] that, for each tί0e^, there is
at least one weak solution ~weCw ([0,oo);JΓ), with E(u(t)) ^ E(Ώ0) for all ί > 0. (Cw

denotes the space of weakly continuous functions.)
The weak solution satisfies Q(u(t)) = Q(uQ) for all t > 0. This is proved as follows.

The solution H is the weak limit of solutions uε of a certain regularized equation
(see [12]). Multiplying it by ΰεζ, where ζ = ζ(χ) is a test function, and taking
the imaginary part, we have

Im f dtw
eMβCdx|'0 + f Vuε Vζΰεdx = 0.

J o

Now let dtu
ε-+dtu and Vuε-+Vu weakly in L2 but uε-+u strongly in L2

QC. Then
the same identity is valid for the limit u. Finally we remove the test function
ζ(x) -> 1 to obtain

ImJδ t wMdίx |o = 0.

Next we note that P(u(t)) is a continuous function of t. Indeed, recall that

(23)

From Eq. (20) it is clear that Af: X -> X* is completely continuous. Hence t -» A(u (ί))
is strongly continuous with values in X*, and ί-> J-1 A(~u(t)) with values in X. The
other factor in (23), E'(ju(t)\ is weakly continuous with values in X*. Therefore
P(u(t)) is continuous.

The rest of Sect. 3 continues almost verbatim. We should just be careful to
write (27) in its integrated form

Clearly (HI) is not the sharpest possible hypothesis.



190 J. Shatah and W. Strauss

References

1. Anderson, D.: Stability of time-dependent particlelike solutions in nonlinear field theories II. J. Math.
Phys. 12, 945-952 (1971)

2. Berestycki, H., Cazenave, T.: Instabilite des etats stationnaires dans les equations de Schrodinger et
de Klein-Gordon non lineaires. C.R. Acad. Sci. 293, 489-492 (1981)

3. Berestycki, H., Lions, P. L.: Nonlinear scalar field equations. Arch. Rat. Mech. Anal. 82, 313-375
(1983)

4. Cazenave, T., Lions, P. L.: Orbital stability of standing waves for some nonlinear Schrodinger
equations. Commun. Math. Phys. 85, 549-561 (1982)

5. Glassey, R.r On the blowing-up of solutions to the Cauchy problem for nonlinear Schrodinger
equations. J. Math. Phys. 18, 1794-7 (1977)

6. Keller, C: Stable and unstable manifolds for the nonlinear wave equation with dissipation. J. Diff.
Eqs. 50, 330-347 (1983)

7. Lee, T. D.: Particles physics and introduction to field theory. New York: Harwood Academic 1981
8. Makhankov, V. G.: Dynamics of classical solutions (in non-integrable systems). Phys. Rep. 35,1-128

(1978)
9. Payne, L., Sattinger, D.: Saddle points and instability of nonlinear hyperbolic equations. Israel J.

Math. 22, 273-303 (1975)
10. Shatah, J.: Stable standing waves of nonlinear Klein-Gordon equations. Commun. Math. Phys. 91,

313-327 (1983)
11. Shatah, J.: Unstable ground states of nonlinear Klein-Gordon equations. Trans. A.M.S. (1985)
12. Strauss, W.: On weak solutions of semi-linear hyperbolic equations. Anais Acad. Brasil. Cienc. 42,

645-651 (1970)
13. Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149-162

(1977)
14. Strauss, W.: Stable and unstable states of nonlinear wave equations. Contemp. Math. 17, 429-441

(1983)
15. Weinstein, M.: Stability analysis of ground states of nonlinear Schrodinger equations, preprint
16. Berestycki, H., Gallouet, T., Kavian, O.: Equations des champs scalaires euclidiens non lineaires dans

le plan. C.R. Dokl. Acad. Sci. 297, 307-310 (1983)
17. Brezis, H., Lieb, E.: Minimum action solutions of some vector field equations. Commun. Math. Phys.

96,97-113(1984)
18. Pecher, H.: Low-energy scattering for nonlinear Klein-Gordon equations, preprint

Communicated by A. Jaffe

Received November 19, 1984




