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Abstract. We establish a shatp instability theorem for the bound states of lowest
energy of the nonlinear Klein—Gordon equation, u,, — Au + f(u) =0, and the
nonlinear Schrodinger equation, — iu, — Au + f(u) =0.

Introduction

In this paper we prove a sharp instability theorem for the bound states of lowest
energy of the nonlinear Klein-Gordon equation

(NLKG) u,—Au+ f(uy=0
and the nonlinear Schrédinger equation

(NLS) —iu,—Au+ f(u)=0.
By a bound state we mean a solution of the form

u(x, f) = e b ,(x)

with w a real parameter and ¢ (x) suitably vanishing as |x| — co. The nonlinearity
f is very general: it satisfies conditions which are sufficient and are almost necessary
for the existence of such bound states. Each of these systems is distinguished by
a pair of invariants, energy E and charge Q. Energy comes from the time invariance
and charge from the gauge invariance. It is the gauge invariance which makes the
problem interesting. It means that ¢ (x)expi(wt + 6) is a bound state for any
constant 6. Our original proof of instability for NLK G also made use of the broken
dilation invariance. However, this method gave a sharp result only in the case of
a pure power nonlinearity f(u)=u—u’~! u, p>1 (cf. Sect.4). The general
case requires a more abstract method.

In general the states are stable for some w and unstable for other w. Stability
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of a bound state means that any initial datum sufficiently near this state gives rise
to a solution which exists and remains near the state for all subsequent times. The
sharp instability condition is

d
509> 0.

Another way to express this is that the action L(¢,) be a concave function of w.
With the opposite (strict) condition we have stability. For example, take the pure
power nonlinearity mentioned above. For NLS stability is characterized by the
condition p <1+ 4/n. But for NLKG the condition depends on the frequency:
p<1+4/n and |w|> w, for a certain critical frequency w,. For general non-
linearities, NLS is always more stable than NLKG. Another feature which
distinguishes NLS is the positivity of the charge, which helps to simplify the analysis
considerably.

Blow up theorems have been proved in [9,5 and 2]. The case of @ =0 but
arbitrary f, when the solution might exist for all time (as well as some cases with
o # 0), was treated in [11]. In [6] was considered a similar problem with dissipation.
The stability theorem was proved in [10] for NLKG. For NLS in the pure power
case the stability result was proved in [4]. The linearized operator for NLS was
analysed in [15]. The results of the present paper were announced in part in [14],
in the A.M.S. meeting in Berkeley in August, 1983 and in AMS Abstracts 3 (1982),
p- 397; 4 (1983), p. 498; 5 (1984), p. 399. In a forthcoming paper we shall generalize
these results to systems invariant under a more general gauge group.

The possibility of stable bound states for w #0 was first suggested in [1].
Subsequent numerical investigations as well as heuristic arguments based on
physical intuition led to a formal understanding of the problem ([7,8]). The idea
is to graph the energy E(¢,) against the charge Q(¢,). If two frequencies have
the same charge, then the lower energy state is stable and the higher one unstable.
This idea is borne out by our analysis.

In Sect. 1 we construct the ground state ¢, and discuss the behavior of the
energy and charge near ¢, (for NLKG). In Sect. 2 we construct a certain local
functional P which measures the deviation of the energy from its value at ¢,,. In
Sect. 3 we use P to prove the instability for NLKG. Section 4 contains examples
and comments. In Sect. 5 we treat the Schrodinger equation by the identical
method. In Sect. 6 we make some technical comments which extend the scope of
our results.

1. Standing Waves

In this section we discuss the existence of standing waves and their dependence
on the frequency. The equation

@ —Au+fw)=0 (xeR,n=2), Q)
where
f0)=0, f'(0)=1, f(eu)=e"f(u)forbfeR,
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has the standing wave solution u(x, t) = ¢(x) exp (iwt), where w is real, provided
—A¢ + f($)— w?p=0. @

We assume that f is a C* function, real for real arguments, which satisfies

(H1) F(n) — +»*n? < 0for some # and some > < 1,

(H2) |f'$)] = o(Is|** ) as|s| > oo,

where F' = f, F(0)=0. Conditions (H1) and (H2) are sufficient for (2) to have
non-trivial solutions which vanish at infinity [13,3]. Condition (H2) can be
weakened (see Sect. 6 below). If n = 2, the exponent in (H2) should be replaced by
an arbitrary power.

The function space in which we shall work is X = H} @ L?, the space of pairs
of complex-valued functions of r=|x| which belong to H'(R")@ L*R". An
element of X is denoted by W = [u,,u,]. We use the square bracket to distinguish
a pair from an inner product. We regard X as a real Hilbert space with the inner
product

(#, ) =Re [ (Vu, Vi, + u,5; + u,0,)dx. (3

The real dual space of X will be denoted by X*. For f eX™ and wWeX, < f Uy
denotes the value of f at 4. We define zf by <lf Uy=— (f it ). We define an
identification operator I: X — X* as follows: f = I(#)eX*,

(f, 7Y =Re|(ud, +u,b,)dx. )
We define a map J: X —» X*

acting on % as a column vector. That is,

(I(@), T = Re [ (— uy; + uy5,)dx. )

Note that J* = — J. Multiplication by i =,/ — 1 commutes with I and with J.
If we define on X the energy functional

E(d) = [ Gluz|* +31Vuy | + Fluy))dx, (6)
then the nonlinear wave Eq. (1) can be written as the Hamiltonian system

du it
I = E@), G

Furthermore, Eq. (2) can be written as

o(Jig)=E($), where = [4,ind]. )

Nontrivial solutions of (2), or equivalently (8), are obtained using variational
techniques. For this reason we define the following additional functionals.
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Definition 1. For WieX,
Q) =3{Ju,iw) =Im [i,u,dx, (charge)
L(#) = [(— 3lua|* + ${Vuy)* + F(u,))dx, (Lagrangian)

- 1 1
By the growth restriction (H2) on f and the Sobolev inequality, all of these
functionals are C? on X. Note that Q'(#)=Jiu. Hence the solutions of (8) are
critical points of E(#) restricted to the manifold Q(#) = constant. In fact,

E'($) = 0Q'(). ©®

Let w* <|w| < 1 be the interval of w so that (H1) holds. Let —1 <w <1 in case
F is itself somewhere negative.

Theorem 2. Let d(w) = inf {1/n [|Vu|*dx: 0 #ueH}, K(u,iou) < 0}.

Then a) the infimum is achieved at some u= ¢ >0,
b) K(¢,iwd)=0,
¢) ¢ =[0¢,iwd] satisfies (8),
d) d(w)=inf{L(u,iwu): 0 # ueH;, K(u, iou) = 0},
e) d(w) = inf {L(u, iou): | |Vu|?dx = [|V¢|*dx}.

Proof. This theorem may be found in [11] for n = 3, so we merely sketch the proof
here. Write K(u) = K(u, iou) and L(u) = L(u, iwu). Firstly, note that K(u) = c|lu|®
for ||u| small where ¢>0. Hence {u:0#ueH' K(u)<0} is bounded away
from 0 in X. Secondly, take a minimizing sequence (u;) for d(w). By (H2),
02 K(up) = cllujl* — llu;|*, where a>2. This implies that (u; is a bounded
sequence in H!. The compact embedding H} — L? for 2 <p <2+ 4/(n—2) (see
[13]) and condition (H2) imply that the functional K is lower semi-continuous.
So there is a subsequence converging to some ¢eH;}. Also K(¢) <lim K(u)) <0
and 1/n {|V¢|*> < d(w). Since K is bounded away from zero, ¢ #0 and therefore
the convergence is strong. The positivity of ¢ follows from the maximum principle
and the minimization. This proves a).

Thirdly, consider the curve 1— ¢(-/A)eH, . Since at A = 1 we have a minimum,
K(¢)=0, proving b). Fourthly, note that L(u)=1/n||Vu|* + K(u). Thus a) and
b) imply d). The Euler~Lagrange equation for d) can be written in the form (2) or
equivalently (8). Fifthly, if

[IVo]*dx = [|V¢|*dx withveH},
then K(v) = 0 from step one. Therefore
1 1
L) = ;f IVol? + K(v) 2 EI Vo[> dx = L(4).
This completes the sketch of the proof if n = 3. For n =2, see [16,17].

Uniqueness of the solution ¢ is not known in general. Nevertheless we assume
that there is a choice ¢ = ¢, which achieves the infimum of Theorem 2 such
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that w — ¢, is a C? mapping from the interval (w*, 1) into H}. This assumption
is not necessary (see Sect. 6) but it simplifies the rest of the presentation. Now we
have a C? curve ¢, =[¢,,iw¢,] in X which is a nontrivial solution of E'(§,) =
wJid,,. Furthermore,

1 —
d(w) = ;f Vool dx = L(,,)-
Lemma 3. For convenience we take @ > 0. Then d(w) is a positive decreasing function
of w and d(w)= — o f|dp,/*dx = — ()
P VOOf. Since d((l)) = L(—(Ew) = E(aw) - wQ(aw)a
d(@)=E (o) — 0Q (@), dPo/do) —O(,).

But the first term vanishes by (9). Therefore

d(@)= - 0(,) (10)

Lemmzl 4. Fix o =w, amL let §, =$wo. Then for any C?* curve %(A) such that
u(0) = ¢o and Q(u(4)) = Q(¢), we have

2
;;TZE(T[(’{))/F 0= <(E"($o) — @0Q"($0)) V0> Vo s (11)

where
Yo =1'(0).

Proof. Differentiating E along the curve (1),

d
25 B) = CE'Gi(2)), du/fd2,

2
da?

Since Q is constant on the curve,

E@u(4)) = CE"(ayu’,w' ) + CE(W),u" ). (12)

d2
22 QD) =@ @y’ w' ) + Q' @), u" ) =0. (13)
Subtracting o, times (13) from (12) and evaluating the result at A =0, we obtain
E"($o) — @0Q"($0))F o, FoD + CE(Ho) — 0oQ'(Go), 7" . (14)

The last term vanishes by (9).

Theorem 5. Consider a frequency w, and the corresponding solution ¢, = ¢, Then
d(w) is convex at w, if and only if the functional E restricted to the manifold M,

M, = {@eX|0() = Q($o)}

has a local minimum at ¢,.
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Proof. For the necessity we note that
E(u) = j{%l“zlz +3Vuy|* + F(“1)}dx
= [$lu, —iou, |Pdx + [{ —30?|uy|* + 3| Vu, |> + Flu,) }dx
+ olIm [ui,; thatis
E(W) 2 L(uy, iou,) + 0Q(u). (15)
For any @WeM, in a small neighborhood of @, we can find an o so that

[IVu, [2dx={|V¢,|*dx because d'(w)= —w [|¢,[>#0. By Theorem 2(e), (15)
becomes

E(@) 2 d() + 0Q($o) = d(®) — wd'(wo). (16)
If d(w) is convex, (16) implies
E(i) 2 d(wo) — wod (o) = E(o)

for ue M, in a small neighborhood of ¢,. Therefore E[M, has a local minimum at bo-
Conversely, consider the curve w— @,,, and define

Y(@;%) = $ox/Mw)), where 2'(w) = Q($0)/Q(P.). 17)
Then Q(/(w)) = Q(&,) and
EW(w)) = LF(o)) + 0QW(w))

— 000 + j(%v*zww + A”(F(%) - %qbz,))dx

~ o0+ (17 - (5,

~— -)l") [IVe,|*dx.
n
Thus, since n =2,
E@(@)) £ 0Q($o) + d(®) = — wd'(w,) + d(w). (18)
Now by assumption E(w)) = E(@,) = d(wo) — wed'(@,). So (18) implies
d(w) — wd'(wo) 2 d(we) — wod (o).
This means that d(w) is convex at w,.

Remark. Ifwgis a point of inflection of d(w), then (by 10)) w, is a critical point of 0(é.)
and hence of E(¢,,), since (by (9)) 9,E(¢,) = ©0,0(d.,).

2. A Saddle Point of the Energy

We view the solu‘gon &, as a critical point of E subject to constant Q. In (17) we
defined a curve Y(w) such that Y(w,) = ¢, and Q((w)) = constant. We denote
its first component by Y(w) = ¢,(/A(w)) and its tangent vector at w, by

0 W .
vo= (@0 and To= 2 (05) = [y, avo + 90l

Note that - (w) is a C? curve in X because w— @, is C? and w—x-V¢,, is
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continuous with values in X. An immediate consequence of the preceding
theorem is

Corollary 6. (a) 02 E(w,)) < d"(w,), B
(b) if d(w) is strictly concave at w,, then E((w)) < E(¢,) for » # wq, » near w,.

Proof. Part(b)is clear from the end of the proof of Theorem 5. Let a(w) = E(W/(w)) —
d(w) + wd'(w,). Then o(w,) = 0. By (18), a(w) < 0. Therefore o(w) has a maximum at
wo and a"(wg) £ 0. This proves (a).

Remark 7. Consider the modified linearized operator for Eq. (2):
4w
(¢0’ ¢0)

where (,), denotes the ordinary L? inner product. If d"(w,) < 0, then (Ty,, y,), <O.
In order to prove this assertion, we use (11) to calculate

OZEW (o)) = [ {lwoyo + ¢ol* + Re(— A+ (¢0))yo Vo
+2wo Im yoi(weyo + ¢o) Fdx
=[{(=4+ f'@o))yoyo — wsys + ¢3}dx
=(Tyo,Y0)2-

By Corollary 6(a), this is negative if d"(w,) < 0. We will not need to use this remark,
but it does put our analysis into the context of the linearized theory.

Lemma 8. (a) E" (o) — 000" (@) T 0, To ) < d'(wo),
(b) Qo) Vo) = [ Ppddx + 204 [ Poyodx =0,
©) [0 V3o <0 if d'(w)<0.

Proof. (a) follows immediately from Lemma 4 and Corollary 6. The charge
0W(w)) = o [ [Y(w)|*dx

is constant on the curve. Differentiating at w = w,, we obtain (b). As for (c), we
recall (17) to write

T=—-A4+f(do)— ————(%0,")2¢0,

[IVi(o)Pdx = [Hw)]" "2 [ IV, dx.
Differentiating at w,, we obtain
2[ Voo Vyedx =(n—2)A""3 X [|Vdol|*dx + nd'(w,).

But d'(w) <0 and by (17) A" = d'(w,)/d'(w). Hence the signs of A'(w,) and of d"(w,)
are the same.

Lemma 9. LetL = {Hie X|<I(4),i¢o) =0}and Ly= L {HeX||[d — P, < 8}.If dis
small enough then

(i) € LynL;=¢ for 0<0 <2z, and
(i) U= v e L is open in X.
0
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Proof. Let F(0,T) = {I(exp(— if)T),id, ». Note that F(6, 7) = sin §<{I(7), §, » in case
veL. Choose & small enough that —T¢L; whenever TeL;. If Tee® L; with
0 < 0 < 27, then F(6, 7) = 0. If also ¥ eL; with 6 small, then {I(7), , > # 0. Hence
sin @ =0, which is a contradiction. This proves (i). Now let TeL; and let WeX
belong to a neighborhood of 7. Let _
RS (CIRTTY

(@), doy
Then exp(—io)siel. By continuity of o, it belongs to L; provided % is close

enough to 7. This shows that 7" belongs to the interior of U. So exp (if) 7 belongs to
the interior of U = U. Thus U is an open set.

o =o%) = tan

Proposition 10. There exists a C* functional A: U — R such that

) A(e_”f?i) = A(4) for deU,
(ii) A,((.bo) = —JY,,
(i) A'(#)eJ[X] <= X* for HeU,
(iv) <Q'(@),J *A'(@)) =0 for uel.
Proof. We first define G: U — L; by
G(i) = e ™Y

where of%) is given locally in the preceding proof. Clearly G is smooth and « is
locally smooth. We have G(exp (i0)#) = G(%). Next we define

A(i) = — {J¥o, G(U)).
Property (i) is obvious. Now
A'(U0) = O — JFo + (T Vo, it Yol (W) }. (20)
Since a(¢y) =0,
A'(ao) =—JVo+ <J370,i0t'((—150)?50>
= —JTo—<QF0)¥($0) o)
= —JTo— @ ($o)Q ($0). Vo) = — I o

by Lemma 8(b). For (iii) we need by (20) to show o/ () belongs to the range R(J)
of J. A direct calculation shows that «(#) is a linear combination of I(@,) and I(ig,)-
Now I(7)eR(J) if and only if v;eH} and v,eH}. Since ¢p,eH}, o« (#)eR(J)
and (iii) is proved. As for (iv), we have

0= a‘%A(e"’ﬁ) - CA' ()i

0=

= A (W), Q' () = —<Q'(1), T A'(%)).
Lemma 11. Let y<0d and let O =) e®L,cU. Then there exists ¢>0 and a
0

smooth function S:(1 —¢,1 +¢&) x O - U such that
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) SAu)=1,
L 08 1 e
i) H(l,u)—- —J7 A'(F),
i) Q(S(4,%)) = Q(w).
If we denote S(A,%) =7, =[u,,v,], we have
iv) [IVu,|?dx = [|Vgo|2dx for some 1= A(%).
Proof. We solve the differential equation

H— _J—IA/(ﬁl)r ﬁ1 =1. (21)

Since w—J ™! A'(U) is well defined in U and bounded on closed subsets of U and
since @ = U, there is an e-neighborhood in which (21) can be solved. We let S
be the flow S(A,%4) = %,. By definition S satisfies i) and ).

We note that

0,0(8(, W) =<Q'(uy), —J A (u))=0
by Proposition 10 (iv). Finally to show (iv) we calculate

di;

di —JT A (@) =To atA=1, U=,

So by Lemma 8(c) we have at A=1,u =<_]50,

j—AJIVu;Ide =Re [V¢oVyodx #0.

By the implicit function theorem we know that for % near ¢, the equation
§1Vu [2dx = |V, [2dx
has a solution A = A(%). This completes the proof.

Proposition 12. Fix wqy so that d"(wo) <0. There is an ¢ >0 such that for all
UeO,d #eP, for all 0, Q(U) = Q(P,), there is a 4= A(W)e(l —¢,1 + &) such that

E(¢o) < E(4) + (A — 1)P(%), (22)
where we denote
P(#) = E'(4),— J 7 A'(u)). (23)
Proof. Let @, be the curve defined by Lemma 11. Then as in Lemma 4 we have
0,E(W) 3=, = E'(9),— J 1 A'(4)) = P(W),
OIE(U )|, =<E"(W)0,4,0,u) + {E(u),03u),
0=<Q"(W)d,;u,0,u» + (Q'u),0u . (24)
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These two equations imply for A = 1, @ = ¢,, that
6%E($0) = <(E”($o) — W Q”(ao))?o’?o >
By Lemma 8(a) we have
D3E(Po) < d"(wo) <O,
so that the Taylor expansion gives
E(u,) < E(W)+(A—1)P(u) (25)

near % = ¢o,4 = 1. On the other hand, as in (15) we have

E(4;) 2 woQ (W) + L(uy,iwouy).
We have Q(i;) = Q(¢,). We choose 4 = A(#) as in Lemma 11 (iv). Thus [IVu,|2dx =
[IV¢o|?dx. By Theorem 2(e), L(u;, ioou,) = L(,).
Hence

E(1i) 2 0 Q(Ho) + L(Bo) = E(y).

A comparison with (25) completes the proofin case # is near ¢,,. If  is near exp (i0) ¢,
then we apply this result to exp(—i6) 4.

Corollary 13. The curve yi(w) satisfies:
() EW(w)<E@o) for o # w,,
(i) QW(w))=Q(¢,), and

(iii) P(J(w)) changes sign as w passes w,.

Proof. We noted (i) in Corollary 6, while (ii) is obvious from (17). By Lemma 8(c)).
d
%ﬂVljf(w)szx #0 at 0 = w,.

Therefore [IVy(w)*dx — [|V¢o|*dx changes sign at w,, so that A —1=
AW (w)) — 1 also changes sign. Applying Proposition 12 to %@ = (), (A — 1) P( ()
>0, so that P((w)) also changes sign.

3. The Evolution Equation

Now consider NLKG, Eq. (1) or equivalently

Ja
Jd—‘: =E(@), %(0)=T,. )

Formally, the energy and charge are conserved quantities:

E(u(r)) = E(4o), Q(u(t) = Q(uy). (26)

In fact, for any %,€X, Eq. (7) has a unique strong solution [18] ueC([0, T); X)
satisfying (26) for some T >0, under the; growth con_djtion (H2). We fix a frequency
w, with d"(w,) < 0 and denote Eq = E(¢o), Qo = Q(do). Let K = {exp (i) do|0cR}
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and let N = O\K, where 0 is the tubular neighborhood of K defined in Lemma
11. We continue to assume f satisfies (H1) and (H2), but for simplicity we also
assume feC®,

Lemma 14. The sets

S, ={WeN|E(W) < Eo,Q(#)=Q,,P(1) >0}

S, ={WeN|E(4) < E,Q(#) = Q,,P(#) <0}
are invariant regions under the flow of (7). In particular, if UyeS, then P(@(t)) > 0 for
all t>0 such that U(s)eN for 0<s<t; if Uy€S,, the inequality is reversed.

Proof. Since E and Q are conserved, we have by Proposition 12, if % (s)eN for
0<s<t,

0= Eo— E(u(1)) <(A—1P(u()),

where 4 depends on t. Therefore P(7i(t)) # 0. By continuity of the solution curve

(P(1(t)) has one sign. Consequently S, and S, are invariant regions. Note that S,
and S, each contain points arbitrarily close to ¢,, by Corollary 13.

Lemma 15. Let 1 €S (respectively S,) and let
To=sup{t|u(s)eN,0<s<t}< o0

be the exit time. Then there is positive &, such that P(U(t)) > ¢, (respectively < — g,
Jor t < Tp).

Proof. From Proposition 12 we have
Eo—E(@@®)S(A—-1DP(u(@) for 0=t <T,.

Let &, = Ey,— E(up). Since upeS;US,, we have ¢ >0. So by (24), ¢ =
(A —1)P(u(t)). Since #u(t)eN, we have [A — 1| < <1, whence 0 <1< 2. If %,€eS,,
then by Lemma 14, P(u(t)) > 0. Hence 1 > 1 and P(u(¢)) > ¢o/(A — 1) > &,. A similar

argument shows that P(7(f)) < — g, if Uy€S,.

Theorem 16. If d'(wo) <O then K = {e"¢o} is unstable under the flow of (7).
Specifically, if U,eS;US, (consequently U, is arbitrarily close to K), the solution
with initial condition U(0) =, exits N in finite time: T, < c0.

Proof. A bootstrap argument shows that ¢,eC®, while the fact that 1 —w? >0
shows that ¢ .(x) decays exponentially as |x|— co. (See [13] or [3].) Since
0¢ /0w satisfies the elliptic equation

[~ A+ f(b) — 0122 =20,

Jw

it too is C* and exponentially decaying. Therefore so is y, = di(w)/dw | = w,.
By Eq. (20), the range of A'(%) can be identified with smooth, exponentially decaying
functions, which of course belong to every Sobolev space. This justifies the following
procedure.
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Let %y,eS; US,. Apply Eq. (7) to —J ' A'((t))e X to obtain
<J%, =J° 1A'(Ti(t))> = (E(u)), —J 1 A@u@)).
By (23) and since J* = — J, this can be written as

d ey AU\
d_EA(u(t)) = <A (u(t)),E> = P(u(?)). @7

By Lemma 15, + P((t)) > ¢, so long as %(t)eN. So by (27),
|A(w(8)) — A(Uo)| > got.

Since N is a bounded set and A4 is bounded on N, the solution must exit from N
in a finite time.

4. Examples
We begin with the pure power case
f@=u—u " u, 1<p<l+4/n-2)

The homogeneity of this nonlinear term permits the adjustment of coefficients by
scaling. The stationary Eq. (2) is

—Adp+(1—0)p—¢F 1p=0, —l<w<l.
By dilation and scaling, every solution ¢ = ¢, has the form
Polx) = AP~ Vy()x), (28)
where 4= (1 —w?)'? and
—Av+o—[P lv=0, v=d,. (29)
With this explicit dependence of ¢, on w, we can easily calculate all the relevant
quantities. Thus,
d(w) = %f [V |2dx = %/1“ [ Vo2 dx = 2%d(0),
where a=4/(p—1)—n+2. Note that a>0 because of the restriction on p.
Differentiating twice, we find
d"(w) = a((a — Dw? — 1)(1 — w?)“@~»'24(0).

Casel. If p=1+4/n, then a—1=1, d(w) is concave for all w? <1, and ¢, is
always unstable.

Case 2. If p<1+4/n, then a—1 <1 and d’"(w) changes sign at w, = (a—1)"*/2
Therefore ¢, is stable for w, <|w| <1 and unstable for |o| < w,.
Using the fact [13] that

%flelzdxzéfvzdx= fvP*ldx,

n+a
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we easily calculate
d(@) = (1 — &?)?a~* [v?dx,
0(.) = (1 — w22 [ p2dx,
E(¢,) = [0X(1 — 0“2 + 4= (1 — 0?)¥?] [v2dx.

Thus, in Case 2, as » goes from 0 to 1, Q rises from zero to a maximum at w, and
falls back to zero, while E rises from E(¢,) to a maximum at «, and falls back to
zero. If E is plotted against Q, the unstable part lies above the stable part and
they are joined by a cusp at the critical frequency w,.

In the pure power case we can make a more explicit construction which gives
an alternative proof of the main theorem. (This was our original proof.) In fact,
the curve w—¢, is given by (28). Hence y, defined by (17), has the form
Y(w; x) = a(@)P ,(B(w)x). Therefore

Yo(X) = B (@0)x* V(%) + & ()b s(X)-

This indicates that, instead of constructing the operator 4, we could directly use
the multiplier

Mu=xVu+

u (30)

p—1
to take the place of —J~* A'(#). Then we would let P(@) = —nK(@)+2(p—1)"!
R(71), where K is the functional associated with dilations and is given by Definition
1, and R is associated with scaling and is given by

R(@) = [ (= luf? + [V |* + 1, fuy))dx. €2Y)

Lemmas 9, 10, 11 can be omitted and Proposition 12 suitably modified. Then
Corollary 13 and Lemmas 14 and 15 are valid as stated. Finally in the proof of
Theorem 16, Eq. (27) is replaced by the “broken dilation identity,” which comes
from multiplying Eq. (1) by Mu:

d2
e {(rz%lu,l2 +3|Vu® + F(u)) — i ; |u|2}dx=2P(u). (32)

p

Note that the integral on the left brings us outside the Hilbert space X. On the other

handitis “almost” non-negative. Therefore it is possible to complete the proofthat the

solution exits N in a finite time. We believe that this identity (32) will find other uses.
As a second example, consider the mixed power

f)=u—oful*"lu+[ulf~u,

where « >0 and 1 <p <1+4/(n—2). For large enough «, there is a non-empty
interval w* <]w| <1 which satisfies (H1). It can be shown [10] that d(w)— oo as
o | w*, that d(w) is convex near w*, that d(w) is decreasing and that it is concave
near o = 1. Therefore there exist both stable and unstable frequencies.

Anderson [1] studied the particular case

S =u—[u*u+ |ju*y, xeR3
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numerically. Even though (H2) is not satisfied, and uniqueness of solutions of
NLKG is not known, weak solutions do exist for all time, due to the positivity
of the term |u|*u. (See [12] and Sect. 6 below.) In this case w* = 13/16. For the
stable frequencies, see [10].

As a third example, consider the case of zero frequency w =0. Let f be any
function which satisfies (H1) and (H2) with w = 0. This case was treated in [11],
where a different method was used to prove the instability. Although the method
of [11] has certain advantages, we wish to show how the @ =0 case fits into the
context of this paper. Indeed, ¢, = [¢o,0] and d"(0)= — [ p3dx <0 by Lemma
3. The curve ¥ is defined by simple dilation as Y(«; x) = [¢o(X/a),0]. Then Q(/(2)) =0
and

EW(@)=a""? [5IVeol*dx + o" [ F(¢o)dx.

Hence E(1)=0 and E(l)=—-(@n-— 2)]‘ [Vgo|?dx <0. Furthermore, ¥,=
[—x-V¢,,0]. The rest of the proof is unchanged.

5. The Schrodinger Equation

In this section we prove that with only minor modifications the instability theorem
is also valid for the equation

ou

ot

where f(0)= f'(0) =0, f(e"u) = " f(u). This equation has u(x, t) = ¢(x) exp (iwt) as
a solution if

i

—Au+ f(u)=0, (33)

—A4¢+ f(¢)— ¢ =0. (34)
We assume that f satisfies (H2) and
(H1)g F(n7) — $wn* <0 for some 1 and some w <O0.

Thus w satisfies — 00 < w < w* £0. With some changes of notation, Theorem 2
asserts the existence of a solution ¢ (x) of (34). We make the following definitions.
Let X = H}, considered as a real Hilbert space. Let I and J be the mappings:
X — X* given by

(I(u),v) = Re [uidx, {Ju,v)=Im [ubdx.
Thus Ju = I(— iu). Let
E(w) = [GIVul> + F(u))dx,

Q(u) =3 [ |ul*dx,
L(u,v) = $1Im [uvdx + E(u).

Then Eq. (33) takes the form J(du/dt) = E'(u) and (34) takes the form
E'(¢) =inJd = 0Q'($) (35
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as in Sect. 1. We have

U) = Lo, i06) = [ Vg Pdx

and d'(w) = — Q(¢,,) as in Lemma 3. The proofs from Lemma 3 to Theorem 16
are valid with only cosmetic changes. Indeed, inequality (15) is replaced by the
equality

E(u) = L(u, icou) + wQ(u).

As before, we work with the curve Y(w) = ¢ (- /A(w)), where A(w) is chosen so that
O (w)) = Q) We define y, = 0yy/0w at w = w,. We finally obtain the following
analogue of Theorem 16.

Theorem 17. If d"(w,) <0, then K ={e®¢,} is unstable under the flow of
(33). Specifically there is a neighborhood N of K such that, if uye X, E(uy) < E(¢,,,),
Qug) = Q(d,,,) and P(uy) #0 (so that u, may be arbitrarily near K), the solution
of (33) with initial condition u, exits N in a finite time.

The corresponding stability theorem, which follows from Theorem 6, may be
found in [4].

For example, take the pure power case

fw)=—uP 'u with 1 <p<1+4/(n—2).

Then ¢, is given by (28) where 1=./—w. Also d(w)=A"d(0) and d"(w)=
a(a — 2)A°~*d(0)/4. Hence we have instability for all w < 0if p > 1 4 4/n and stability
for all w <0 if p< 1+ 4/n. An example where the stability depends on w, as in
Sect. 4, can also be given.

6. Extensions

This section has two parts. First we show that the ground state ¢, depends
smoothly on w if it is unique. Secondly we discuss rapidly growing nonlinearities.

1. If the ground state ¢, (defined in Theorem 2(a)) is not unique, then the set
of ground states is still stable or unstable according to the convexity or concavity
of d(w), but it is rather cumbersome to formulate so we shall exclude that case
from consideration.

Theorem 18. For w near wy, let ¢, be the unique real solution of the minimum problem
stated in Theorem 2(d). Let zero not be eigenvalue of the linearized operator
Lo=—A—0f+fo(do,) at ¢, acting on L} (real-valued, radial functions in
LX(R"). Iffis a C? function satisfying (H1) and (H2), then » — ., is a C* mapping of R
into X for w near w,.

Lemma 19. o — ¢, is continuous with values in X.

Proof. From Proposition 2.1 of [10], d(w)=n""{|V¢,|*dx is a continuous
function of w. From Lemma 2.1 of [10], [ ¢2dx is a bounded function of w. Let
(w;) be a sequence tending to w,. Then (¢,,) is bounded in H}. A subsequence
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may be chosen converging weakly in H} to some v. Now

) 1 1 1 - w?
0=K(§picp,) = j[<§ - ;)«Vw i+ G(%)]dx,
where G(s) = F(s) — s%/2. Letting w = ;— wy, the weak limit and (H2) imply that
K(v,iwv) 0. This is the constraint in the definition of d(w) in Theorem 2. Therefore
{IVv?dx 2 [V, |dx. By weak limits, this is an equality. By the uniqueness
assumption in Theorem 18, v = ¢, . It follows that ¢, tends weakly to ¢, in
H}. The continuity of d(w) implies that [|V(¢,, — ¢,,,)|*dx —0. Passage to the
limit in the constraint K, (¢,) =0 yields ¢ ,— ¢,,, in L% Hence ¢, ., in X.

Lemma 20. In a neighborhood in X of (—ﬁwo, all the solutions lie on a C* curve.

Proof. We write Eq. (2) as

—Ad + i¢ +g(¢)=0,
where A=1—w?>0 and g(s) = f(s) —s. Let A, =1—w} and ¢ = ¢,,. Let
GAuwy=u—(A—A"'gw), A>0, uecH!.

Then 4(A,u)eH} since ueH! < [2""~2)  g(u)e[*"*2 by (H2) and (A—A)"!
g(u)eH' by Sobolev’s embedding. In fact ¢ is a C! operator from (0,00) x H}
into H} Note that %(1o,¢,) = 0. Now the operator £, = — A+ 4y + g'(¢,) acting
on L7, has only discrete spectrum to the left of A, and we have assumed it is
invertible. It follows that the compact operator (4, — 4) ™ 2g'(¢)(Ag — A) V% on
L? does not have — 1 in its spectrum. Hence

09
=ldosbo) =1+ (lo—4) 'g'(¢o)s

acting from H! to H}, is also invertible. By the implicit function
theorem, the solutions of (4,u) = 0 in a neighborhood of (1,,¢,) form a C! curve
in (0,00) x H}.

Proof of Theorem 18. By Lemmas 19 and 20, w—¢, is a C' curve near
0=0w, ¢,=¢,cH!. Since ¢, is bounded in H}, the functions |x|"~Y2¢ (x)
are bounded independently of w and x (see [13]). By a bootstrap argument using
the elliptic Eq. (2), ¢,,(x) is uniformly bounded. Now ¢, = 0¢ /0w satisfies the
elliptic equation

[-4-0’+ [ ($.,)]1¢,=20d,.

Since #, is invertible, ¢ (x) is also uniformly bounded. Therefore [¢/,(x)]? is
bounded in H'. Now we can show that ¢, is C? with values in H* by taking
difference quotients in the last equation. It follows that ¢/, =3d¢, /0w exists
and satisfies

[—4—0+f(@)]1d, =40, +2¢,— " (D[]

This completes the proof.
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II. Now we consider a nonlinearity f which grows more rapidly than allowed
by (H2). In fact, we replace (H2) by

(H2), There exists 6 >0 and p =1 + 4/(n — 2) such that
fls)zos” and [f'(s)| =0~ s|P™!
for sufficiently large s.

We define X = (H} nI[P"')@® L7, considered as a real Banach space. Then E and
Q are C? functionals on X. Sections 1 and 2 of this paper are completely unchanged.
The analogue of Theorem 16 is

Theorem 21. If d"(wy) <0 and y€S, US,, then there exists a solution Uu(t) of Eq (7),
which is weakly continuous in t with values in X and which exits N in a finite time.
(This is valid for NLS as well.)

Proof. Ttisnot known whether there are strong solutions of the evolution equation
for arbitrary data in X. However it is known [12] that, for each W,eX, there is
at least one weak solution weC,, ([0,00);X), with E(¥(t)) < E(u,) for all t > 0. (C,,
denotes the space of weakly continuous functions.)

The weak solution satisfies Q (7 (t)) = Q(u,) for allt > 0. This is proved as follows.
The solution % is the weak limit of solutions u° of a certain regularized equation
(see [12]). Multiplying it by u°{, where { ={(x) is a test function, and taking
the imaginary part, we have

t
Im | i Ldx G, + | Vut-V{a‘dx = 0.
0

Now let 6,u®— d,u and Vut— Vu weakly in L? but u®*—u strongly in LZ.. Then
the same identity is valid for the limit u. Finally we remove the test function
{(x)—1 to obtain

Im [ d,uudx|y=0.
Next we note that P(ui(t)) is a continuous function of t. Indeed, recall that
P(u(t)=<E(u(0),—J 1 A'(W(0)). (23)
From Eq. (20)itis clear that A": X — X* is completely continuous. Hence t — A’ (% (t))
is strongly continuous with values in X*, and t - J ~ ! A(%(¢)) with values in X. The
other factor in (23), E'(#(t)), is weakly continuous with values in X*. Therefore
P(@(t)) is continuous.

The rest of Sect. 3 continues almost verbatim. We should just be careful to
write (27) in its integrated form

A(U(t))—A("ﬁo)=:§)P(ﬁ(S))dS-

Clearly (H2), is not the sharpest possible hypothesis.
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