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Abstract. A linkage algorithm is presented for evaluating the partition function
of a union of finite lattice blocks in terms of the partition functions of the
component blocks. This algorithm leads to: (i) A fast enumeration method for
evaluating the partition function of a finite lattice (for Ising spins in two
dimensions, the number of terms needed to evaluate the partition function for a
block of L spins if reduced from 2% to 2¢/Z*1e82L)). (if) a recursive factorization
procedure that accelerates the rate at which quantities evaluated on a finite
lattice converge to their thermodynamic limit, and (iii) a scaling procedure that
further accelerates the convergence to the thermodynamic limit. The scaling
procedure is similar to a method previously used in turbulence calculations.

Introduction

The goal of this paper is to present several methods for reducing the amount of
labor required to evaluate the partition function, the free energy and other
thermodynamic quantites for a class of lattice models that includes the Ising
model. The main tool is a linkage algorithm that relates the partition function and
the free energy of a union of blocks to the same quantities evaluated on the
component blocks. This linkage algorithm leads to an exact fast enumeration
scheme that reduces drastically the labor required to evaluate the partition
function of a finite lattice [for L Ising spins on the line, the number of terms to be
evaluated is reduced from 2% to O(L); for L Ising spins in the plane, the reduction is
from 2% to 20/Z*les2l) and in three dimensions, from 2% to 2 +1g2L1]. This fast
enumeration procedure has features in common both with spatial renormalization
[2] and with the fast Fourier transform, and does not require any diagonalizations.
The linkage algorithm also leads to an approximate factorization of the partition
function that allows quantities computed on a finite lattice to converge rapidly to
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their thermodynamic limit (for Ising spins on the line, the thermodynamic limit is
reached, after factorization, on a block of 4 spins). Finally, a scaling method,
coupled to the linkage, further accelerates the convergence to the thermodynamic
limit. The scaling resembles a mesh refinement in numerical analysis as well as a
reverse Kadanoff scaling [5]. All these methods can be used in conjunction with
the usual renormalization and Monte-Carlo methods [1], but our interest in them
lies in the fact that they can be generalized to non-homogeneous systems and to
fluid mechanics. In fact, the scaling algorithm is analogous to a method already
used in a turbulence calculation [3,4]. In the present paper, we explain the
methods and apply them to the two-dimensional Ising model, where an exact
solution affords a useful check.

To establish the notations, we briefly describe the ferromagnetic Ising model
(see e.g. [9]). Consider an N x N square lattice with nodes (i, /), | <i<N,1<j=<N,
carrying spin y; ;, u; ;= * 1. A set of values u= {y; ;} is a configuration. The energy
of a configuration, in appropriate units, is

N-1 N N N-1

E(w=— Z Z Hiili+1,5— Z 2 Hi, jli,j+1 - 1)
=1 j=1 i=1 j=1
The partition function is
ZNxN= Ze_ZE(“),
n

where z=1/T and T is the temperature. The free energy @y x y per spin for the finite
lattice is

1
¢NxN=']v_210gZNxNa (2

and the free energy per spin, in the thermodynamic limit, is

= 131_1:11 PNxN- (©)
The internal energy U is
o9
and the specific heat C is
ou
=297
C=z 5 &)

We shall also find use for the quantities Uy, y= — 0PN xn ,Cnxn= zzw%ﬁ. The
y4

0z
Ising model admits a critical point z,, i.e., a non-analytic point of ¢; sinh2z,=1,
z,=0.440685 .... The critical exponents are known; in particular, C diverges
logarithmically at z, (@ =a'=0,,, in standard notation, see e.g. [8, 97).

We shall also discuss the one-dimensional Ising model; its definition is
obvious.
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Linkage and Factorization in One Dimension

We begin by explaining the ideas in the trivial one-dimensional case. Consider a
block of m spins, which we shall call the basic block. For simplicity, and without
loss of generality, we shall write all the formulas in the simple case m =2. The basic
block has 4 configurations, (+, +), (+, —),(—, +), (—, —), where (4, —) refers to
a configuration in which the left spin is +1 and the right spin is —1, etc. The
partition function Z°=Z, of the basic block is

Z0=A9% +A°, 6)

where A% =e?+e~7 is the contribution to the partition function of those
configurations in which the left spinis + 1, and A% =e?+e~Zis the contribution to
Z° of those configurations in which the left spin is — 1. (For pedagogical reasons,
we resolutely refrain from noticing at this stage that A5 =A4%.) We say that the
partition function has been subdivided in (6) into terms parametrized by the
leading spin on the left, or, for short, that it has been parametrized by the leading
spin on the left, and we call the quantities 4% the weights attached to the leading
spin configuration.

Adjoin to the first block on the left another basic block with a partition
function parametrized by the leading spin on the right; it is obvious that the
parametrization by the left spin is identical to the parametrization by the right
spin. The partition function Z, of the union of the two blocks is

Z4"—'A4,++A4,—, (7)

where
Ay + =A%e74% + A%e774° , ®)
Ay, - =A4%"1° + 1%e724% . )

The middle factors e* come from the interaction of the leading spins, and (7) is a
parametrization by the second spin from the left. It is easy to see that in the one-
dimensional case a parametrization by any one spin is identical to the parametri-
zation by any other, and thus (7) is also the parametrization of Z, by the leading
spin on the left. To obtain Z, one can adjoin to the block of 4 spins another basic
block and find

Ze=Ag,++ 46, -,
where
Ag, + =A9+ezA4,+ +A3e_zA4’ .
Ag, - =A(lezA4, _ +A(ie_zA4, +3

etc. The amount of labor required to evaluate Zy is obviously merely proportional
to N; this is the linkage algorithm in this special case.
Write

Zy=2ZWZAZ® 70, ZzW=7° (10)
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with ml=2I= N, where Z? is the factor by which Z;_,,, is multiplied when the i
basic block is added. Z® can be viewed as the contribution of the i® block to the
total Zy. Suppose Z®—Z, Z independent of i. Then

= lim —logZN— hmz Z logZ® = —logZ (11)
N —>oo i=1
thus, Z determines ¢ and its derivatives. Equation (10) will be referred to as an
approximate factorization of Zy; formula (11), if Z exists, is a better approximation
to ¢ than can be obtained directly from a finite Z, because the successive
approximations to Z afforded by the successive Z® rapidly forget the unconnected
side of the starting block.
From (7)+9) we find

Z(2)=Z4/Z(1)=A(f)+/l(_2), (12)
where
A% A
A<2)—A0 ( Z(l) +e zzm), (13)
A° A%
A® = p0 <e ?1—) +e Z(1)> , (14)

i.e., A? consists of the terms in Z"), modified by e*Z and multiplied by the weights
A%/Z™ that can be viewed as the appropriate probabilities. Similarly,

ZO=ZJZO=AD + AV,
where the A9 consists of A%, multiplied by the e** and by appropriate
probabilities obtained from Z®,

Do the Z® converge? In the present one dimensional case we notice that, by
symmetry, A9 =AY for all i, A9/Z®=1 for all i>1, and thus for i>1,

Z9=(e*+e ) (S +e D+ (eF+e 7)) (s +e 7)),
=4cosh?z;
thus Z®=Z for i>1, and by (11)
=1log(4 cosh?z)=log(2 coshz),

which is the well-known exact solution. The thermodynamic limit has been
obtained, after factorization, in a system of 4 spins. If one uses one-spin blocks, the
limit is reached in a system of 3 spins.

Successive Linkage in Two Dimensions

In this section we generalize the constructions of the preceding section to the Ising
model in two dimensions. We begin by introducing some notations. Let
s=(sM,s?), ..., s™) be an array of spins, i.c., variables taking on the values + 1. To
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this array one can associate an integer between 1 and 2™ by the rule
s—14+ Y max(0,s?)2i"1,
i=1

Conversely, given an integer between 1 and 2™ and the dimension m of the array,
one can uniquely reconstruct the corresponding array. We shall assign the same
labels to the arrays and the corresponding integers.

Given the two arrays s,, s,, one can construct the array which consists of the
two laid side by side; we shall call both the new enlarged array and the
corresponding integer s, ®s,. Finally, given two arrays s,, s, of the same length m,
one can construct their inner product

(515 52)m=(51,82)= izl sPs9.
Consider an m x m array of spins (Fig. 1), which we shall call a basic block. There
are 2™ spin configurations. Suppose they are generated in some order and tagged
by an integer i, 1 <i<2™. To each i there corresponds an energy E(i), an m-array
sg = ss(i) of spins on the bottom of the square, and m-array sy, = s(i) of spins on the
left of the square, and similarly for sg, sy. (S stands for “south”, W for “west”, etc.)
Furthermore, one can write

Ssw =SsD Sy, Sng=Sy@DSg, €tc.

ssw has 2m entries, and if the entries of sg are enumerated from left to right and the
entries of sy, are enumerated from top to bottom, then the first and (m + 1)* entries
of sgy are equal, since the corner spin is common to sg and sy. The partition
function for the basic block is

Z0=Y ¢ D
i

where E(i) is given by (1) with N=m.

Suppose one is given the partition function for a block A4 of spins, and suppose
one picks out a finite array of sites on the edge of 4, and suppose one knows how to
write

Sy
| —T—7 "
+ |+ | -
Swil — | + | + |fSe
+ |+ | — J

Fig. 1. The basic block Ss
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where the sum is over all configurations in the edge array. We shall again say that
Z , has been subdivided into a sum parametrized by the leading spin configura-
tions, and we shall call the A2 the corresponding weights. Thus, if s has two
entries, one expects

ZA=AE4+,+)+AZ4+,—)+A(1—,—)+A24—,+)‘

Suppose the leading edge of the given block A is such that one can attach to it a
basic block without gaps or overlaps (Fig. 2). Suppose the leading spin array is
written as

s=85,Ds;Ds,,

where s; contains all the spin sites abutting on the added block, and s, s, are the
disjoint, possibly empty, arrays on either side. The partition function for the union
of the old block A4 and the basic block B is

22m gm2

Zyp= %2 X X Aﬁ ® j@szez(j’sNE(i»e_ZE(i) . (16)
s1,82 j=1i=1
The two outer sums in Eq. (16) are over all relevant boundary configurations, the
remaining sum is over all configurations in the block being linked, and the
exponential in the middle represents the interactions between the old block and the
new block. Furthermore, Z, z can be parametrized by the new leading
configurations s, ®k@s, by adding a term

As1®j®s2ez(j,sNE(i))e_ZE(i) (17)
to Ad¢hes, whenever k=sgy(i). To construct the partition function of a large
block, one can start with a small block, and repeatedly adjoin to it blocks on the
left and bottom, or in any two neighboring directions. If one views the cost of
summing over i as a fixed overhead, then the cost of finding the partition function
for an N x N block is, except for negligible factors, determined by the length of the

A

N\
\

Sy

Ss
Fig. 2. Linkage of a basic block
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moving edge of the computed block, ie., it is of order 2°™, where N =]/Z, L
= total number of spins.

The estimate of the amount of labor cannot be sharpened without specifying
the size of the blocks B and the linkage strategy. In the case of single spin blocks B,
of a square N x N =L and linkage along successive columns, the number of terms
to be summed to add a single one-spin block can be readily seen to be 2V, and thus
the overall number of terms is reduced from 2 to N22N =20/L+log2L),

Another particularly simple case is one in which one constructs Z for the union
of only four blocks (Fig. 3). The formulas for this special case will be given in the
next section.

As in the one-dimensional case, the successive linkage of blocks results in an
approximate factorization of the partition function into terms associated with
small blocks far from the unconnected edge, and

.1 1 9
I&l_{lolo—lv—legZNxN= Wlogzmxma (18)
where Z, ., is the limiting factor.

Indeed, if one writes

ZB = ZAuB/ZA s

where Z is the contribution of the newly connected basic block to the partition
function, one finds

Zy= 3 Y HOT ULl 50,7, (19
81,82 1 J
with 3 (A2 6 jes,/Z 4)=1 by (15). Once again, the intra-block partition function is
modified by exponential interaction terms multiplied by suitable probabilities. If
the Z obtained in successive linkages converge to a limit Z, Eq. (18) holds. Note
that Eqgs. (16) and (18) can be differentiated with respect to z and yield successive
approximations Uy, y—U, Cyxy—C.

Sw|S1
Ss S, Ss Sz
Step 1 S3
S4
Step 2
Ss
Sg

Fig. 3. Simple linkage Step 3
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Some Numerical Results

In this section, we present some numerical results obtained with the fast
enumeration and approximate factorization algorithms. On a computer, some
simple precautions must be taken to avoid problems with round-off errors and
with overflow. First, all exponentials of the form e?, [ integer, should be stored in
the form €' ~*, with « chosen in each part of the calculation so that [ —a < 0 for all
the relevant I. Z is then modified by a multiplicative factor, logZ by an additive
factor, U and C are unchanged; the modifications are readily taken into account.
Furthermore, the A’s can become quite large and must be scaled into a reasonable
range. If the approximate factorization is used, the scaling of 42 does not change
Zg. We assume from now on that these precautions have been taken.

We shall use in this section the four block union of Fig. 3. The formulas then
become particularly simple. The general formula (16) will be used in the next
section.

Suppose Z3, the partition function of the basic block, has been parametrized by

SS®SW’
0 _
ZB_ Z ASs@SW .

ss@sw
The partition function of the two block configuration, (Fig. 3), parametrized by
5s@Ds,, is

ZZ blocks __ Z AZ blocks

ss®s2
ss®s2

where

2blocks z(sw s1) AO
Ssesz Z ZASS@SW ! Asl ®Dsy*

Sw St

In the next step

Z3 blocks __ Z /13 blocks

ss®sq >
ssDss

where

3 blocks 2blocks z(sz s3)
sses.‘ = Z Z A AS3@S4 s
2 53

and finally Z,,, . 5. is
sz om= Z4 blocks = Z Z /13 blocksez(ss®s4 ssess)ASs@u (20)

S5Dse SsDs4 ss®sa
The last and best m x m factor in the approximate factorization is
memgz4blocks/zl’ (21)

where

Z- g A
For example, the cost of computing Z, , , is O(2'°); the cost of computing Zg . by
the algorithm just described is ~4 - 0(2'9); the cost of evaluating Z; , ¢ directly,
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Table 1a. Convergence of ¢y, y to the free energy ¢

z Paxa Pex6 Pgxs ¢ (exact
solution)

0.2 0.7238 0.7274 0.7291 0.7345
04 0.8214 0.8416 0.8507 0.8794
0.45 0.8623 0.8863 0.8991 0.9434
0.5 0.9061 0.9385 0.9563 1.026

0.7 1.132 1.209 1.253 1.404

1.0 1.551 1.690 1.764 2.000

Table 1b. Convergence of Uy to the internal energy U

z Usxa Ugxse Ugxs U (exact)
0.2 0.3140 0.3515 0.3705 04282
04 0.7067 0.8212 0.8845 1.106
045 0.8194 0.9681 1.056 1.513

0.5 0.9324 1.118 1.233 1.746

0.7 1.287 1.520 1.637 1.964

1.0 1.461 1.645 1.734 1.997

Table 1c. Convergence of Cy, 5 to the specific heat C

z Cixa Coxs Cgxs C (exact)
02 0.0681 0.0778 0.0826 0.0686
04 0.3549 0.4540 0.5200 0.8557
045 0.4604 0.6096 0.7200 1.607

0.5 0.5573 0.7362 0.8596 0.7155
0.7 0.5827 0.4981 0.4074 0.1302
1.0 02123 0.1274 0.0941 0.0198

without linkage, is 0(2%%). Our algorithm reduces the amount of labor by a factor
of ~264/(4-26)~24*~10'!. Furthermore, by the factorization we approach the
thermodynamic limit closer than an 8 x 8 block would otherwise allow. Our
evaluation of Zg, ; with this strategy takes about 2min on a VAX 780 small
computer.

In Tables 1la— we display @y x m> Un x> Cn x x> cOmputed by formula (28), for
N =4, 6,8 as well as the exact values of ¢, U, C for some value of z. We see that the
finite lattice quantities converge very slowly to the thermodynamic limit. In
Tables 2a—c, we display the factored approximation (21) for 2m=4,6,8; in all
cases, the factored approximation approaches the limit much faster than the
corresponding unmodified arrays. For z >z, the convergence is in fact quite good;
above but not far from the critical point the convergence is still rather poor for the
derivatives of ¢; for a discussion of the reasons and a partial remedy, see the next
section. The variation of the factored approximation with z is displayed in
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Table 2a. Convergence of factored approximations to the free

energy ¢

z 4x4array 6x6array 8x8array ¢ (exact)
0.2 0.7345 0.7345 0.7345 0.7345
04 0.8769 0.8784 08789 0.8794
045 0.9340 0.9379 0.9396 0.9434
0.5 1.001 1.009 1.014 1.026

0.7 1.355 1.384 1.395 1.404

1.0 1978 1.996 1.999 2.000

Table 2b. Convergence of factored approximations to the internal

A.J. Chorin

energy U
z 4x4array 6x6array 8x8array U (exact)
0.2 0.4280 0.4282 0.4282 0.4282
04 1.043 1.075 1.0890 1.106
0.45 1.240 1.307 1.345 1.513
0.5 1.440 1.549 1.617 1.746
0.7 2.004 2.042 2.017 1.964
1.0 2.078 2.020 2.005 1.997
Table 2¢c. Convergence of factored approximations to the specific
heat C
z 4x4array 6x6array 8x8array C (exact)
0.2 0.0684 0.0686 0.0686 0.0686
04 0.6081 0.6961 0.7473 0.8557
045 0.8140 0.9808 1.105 1.607
0.5 0.9901 1.177 1.282 0.7155
0.7 0.6727 0.2046 0.0320 0.1302
1.0 0.2004 0.1058 0.0247 0.0198

()

3.0~
— D

L A factored 8x8 bloc
2.0—
1.0
A
0 1 ! 1 ] ] ] 1 L
0 0.5

Fig. 4. Factored approximation of the free energy ¢ as a function of z
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u

30
—_— U
- A factored 8x8 bloc
20— /
AN

1.0—

O 1 1 1 1 I 1 1 1 1 _I

0 5 1.0

Fig. 5. Factored approximation of the internal energy U as a function of z

C
3.0

—C

» factored 8x8 bloc

2.0

. . I
0 0.5 1.0
Y4

0

Fig. 6. Factored approximation of the specific heat C as a function of z

Figs. 4-6. The approximations to ¢ and U on the finite lattice look quite good, but
of course the correct critical behavior is not reached on this small finite lattice, as
one can observe from the approximation of C in Fig. 6. Still, if one knew there was
a singularity in C, one could locate it between z=0.41 and z=0.51 — not a bad
result for an 8 x 8 lattice. Furthermore, the characteristic exponent « is clearly 0,
assuming a singularity exists; indeed, the growth of C shows that « <0, and the fact
that C remains below the logarithm shows that «>0. These results are not
substantially poorer than the numerical renormalization group results in e.g.

L6, 71.
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Scaling and a Spin Bath

The results of the preceding section show that the finite lattice has to be large
before the correct critical behavior can be observed, and the costs become
prohibitive even with fast enumeration and factorization. The problem would be
alleviated if one could replace the naked edges at the right and top of the array by
an appropriate, artificial “spin bath.” In the present section we do that by iteration.
This is the only one of the constructions of the present paper for which only a
heuristic justification can be provided.

We start with a guess of the weights of the partition function of an infinite
collection of spins extending to the right and top of a finite lattice, parametrized by
the spins at the edge of a large “jaw” (Fig. 7). A suitable first guess can be obtained
by setting basic blocks next to each other and multiplying the corresponding
weights:

Agllrétsgzu éssss ®sa A21A32A?3Ag4 ’
where the A are the weights in the parametrization of the basic block by s (Fig. 1).

New basic blocks can be added to the “jaw” through the application of formula
(16), until a “small jaw” (Fig. 7) is formed. A further basic block is then added to
provide a new guess for Z. To repeat the iteration, a new, improved guess for the
weights at the outer jaw is needed and is obtained by similarity from the small jaw.

Indeed, assume that the spins in the big jaw are grouped into pairs, and that the
weights attached to a configuration in which two spins in the same pair are
misaligned are negligibly small. If the pair is pointing up, attach to it a “block spin”
+ 1, and if the pair is pointing down, attach to it a “block spin” — 1. The weights
attached to the big jaw spin configuration are now

0 if any pair is misaligned
AS: @52@53@s4

where §,, §, are the appropriate m component block spin configurations (notice the
similarity to the Kadanoff picture [5]).

Ay @5, otherwise,

Step 2 Step 3 and small jaw
Fig.7. Linkage with scaling
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Now identify the next guess for the weights at the big jaw with the newly
computed weights at the inner, small jaw:

A§1 @35, AS5®86 ’ (22)

i.e., scale up the inner small jaw. This procedure can be repeated until the estimates
for Z converge.

One could have expected, by analogy with the Kadanoff picture, that the
scaled-up weights should be computed at a temperature T’ other than the
temperature T=z"' at which we are working (a possibility that is easily
programmed and built into the algorithm). However, the choice T’/T = 1 is correct
at both T =T, (by analogy with the Kadanoff picture and its generalizations) and
at T small (z large) where the block-spin assumption is obviously correct; it seems
reasonable to keep T’/T =1 at all temperatures.

Formula (21) can be viewed as a prescription for mesh refinement, valid
whenever the correlation between spins does not change appreciably over a
distance of the order of the distance between spins — an obvious analogue of the
condition under which mesh refinement is allowable in numerical analysis. Indeed,
one can reformulate the algorithm in the following way: consider an array of block
spins and compute the corresponding partition function. Take the left-bottom
quarter of the calculation and refine the blocks in that quarter, taking as boundary
condition for the refined block the weights attached to the block spins at its right
and top; compute the contribution of the refined corner to the partition function,
and repeat the process. This is an analogue of the process carried out for vortices in
[3] and can be viewed as a sort of reverse renormalization.

In Table 3 we display some values of ¢, U, and C computed with the algorithm
just described, with four 2 x 2 blocks. 2 to 9 iterations are needed for convergence.
3 x 3 blocks do not substantially improve the results. The plots of computed vs.
exact ¢ and U are not informative — on a graph the difference is not visible. The
plot of computed vs. exact C is shown in Fig. 8. Some improvement over the results

Table 3. ¢, U, C computed by the scaling method, four 2 x 2 blocks

@ U C
z=0.2 computed 0.7341 0.4200 0.0931
exact 0.7345 0.4282 0.0686
z=0.4 computed 0.8769 1.113 0.8537
exact 0.8794 1.106 0.8557
z=045 computed 0.9395 1.513 1.092
exact 0.9434 1.394 1.607
z=0.5 computed 1.016 1.643 0.9950
exact 1.026 1.746 0.7155
z=0.7 computed 1.392 1.995 0.1369
exact 1.404 1.964 0.1301
z=1.0 computed 1.996 2014 0.0047

exact 2.000 1.997 0.0198
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C
3.0—
—_C
L o scaled approximation
four 2x2 blocs
2 0
1.0
0 . . |
0 0.5 1.0

Fig. 8. Approximation of C by linkage and scaling

displayed in Fig. 6 can be discerned. The computed values of C have a clear
maximum, at z=0.445+0.005, but the maximum does not reach as high as it does
with the renormalization calculation in [6]. The maximum can be sharpened by
various ad hoc improvements in the scaling assumption which are not general
enough to be worth reporting.

Further Work

It is quite clear then the next step in the linkage algorithm is the development of an
approximate linkage, i.e., an algorithm analogous to (16), (19) in which small
weights are neglected. Such an algorithm, as well as a discussion of its relation to
renormalization, will be presented in a subsequent paper together with further
applications.
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Note. The programs used above are available from the author.
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