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Abstract. The method of weakly nonlinear geometric optics is one of the main
formal perturbation techniques used in analyzing nonlinear wave motion for
hyperbolic systems. The tacit assumption in using such perturbation methods is
that the corresponding solutions of the hyperbolic system remain smooth; since
shock waves typically form in such solutions, these assumptions are rarely
satisfied in practice. Nevertheless, in a variety of applied contexts, these methods
give qualitatively reliable answers for discontinuous weak solutions. Here we
give a rigorous proof for the validity of nonlinear geometric optics for general
weak solutions of systems of hyperbolic conservation laws in a single space
variable. The methods of proof do not mimic the formal construction of weakly
nonlinear asymptotics but instead rely on structural symmetries of the
approximating equations, stability estimates for intermediate asymptotic times,
and the rapid decay in variation of weak solutions for large asymptotic times.

1. Introduction

After the early work of Landau [13], Lighthill [9], and Whitham [26], the method of
weakly nonlinear geometric optics has evolved into one of the main perturbation
techniques for analyzing solutions of quasi-linear hyperbolic equations (see [24] for
a review of the applied literature before 1981). There are recent multi-dimensional
applications of these methods to the development of simplified models in reacting
gas flow [23], to the regular reflection of weak shocks [8], and to the formation of
Mach stems in reacting shock fronts [22]. Furthermore, systematic self-consistent
derivations using nonlinear geometric optics for simplified theories of both
nonresonant and resonant wave interactions in several space dimensions have been
developed recently ([9,10,20]). While the tacit assumptions used in the formal
derivation of the expansion of weakly nonlinear geometric optics are that the
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solutions of the hyperbolic system are smooth, these methods often yield good
approximate solutions even after shocks have developed for general weak solutions
of conservation laws. In this paper our main objective is to analyze this somewhat
surprising fact and to present rigorous proofs for the validity of the expansions of
nonlinear geometric optics for general weak solutions of systems of conservation
laws in a single space variable.

We consider solutions u of the n x n system of hyperbolic conservation laws,

Ut + f(u)x = 09 φc,0)=iιo(jc). (1.1)

We require that the Jacobian matrix, V/(w) = Λ(u) has n distinct real eigenvalues,
λ^u) < λ2(u) <" < λn(u) with corresponding right and left eigenvectors {r/u)}"= l9

{lk(u)}n

k=ι satisfying

Arj = λjrj, lkA = lkλk, lk rj = δkJ. (1.2)

In addition, we require that each wave speed is genuinely nonlinear so that

V Λ τ k ^ 0 , k = !,...,«. (1.3)

The prototypical example of such a system of hyperbolic conservation laws is the
2 x 2 system governing isentropic compressible fluid flow,

m2 \
— + p{p) \ = 0

with u = \p, m), p, the density, m, the momentum and p(p) determined by an equation
of state such as the ideal gas law,

A>0, y>l.

Before describing our rigorous results, we include a brief formal derivation of the
method of weakly nonlinear geometric optics for systems of conservation laws in a
single space variable (see [10,20] for details and generalizations). The constant state
u0 is a trivial solution of (1.1) and we consider perturbed small amplitude solutions
with the form

w(x, t) = u0 + ε f Uj(φj, τ) + ε2ύ($, r, τ), (1.4)

where τ = εt is a long time scale and φj(x, t) for 1 ̂  j fg n is a phase function to be
determined. We expand the nonlinear flux in (1.1) to second order about u0 to get

ε2

f(u0 + εv) = /(M 0 ) + sA(uo)v + y Vϊf(uo)(v, υ) + o(ε2). (1.5)

With the notation, ufθj9τ\ we substitute the ansatz from (1.4) into the equation
in (1.1) and attempt to construct formal solutions within o(ε2). The terms of order
ε vanish provided that

(o)φ{)θjj

for j = 1,..., n. These equations are satisfied provided that we choose

Uj = σj(θp τ)r/tt0)
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ϊorj = 1,...,«. At this stage in the argument, σ/0,-, τ) is an arbitrary scalar amplitude
function. Continuing the expansion, we compute that the ansatz from (1.4) yields a

formal solution to order o(ε2) provided that U2($9 τ) = £ ΰi(θj9 τ) with ΰj

2 satisfying,
7 = 1

(λfμo)l - Λ(uo))(ύi)θj = σ{rj + V2J{u0){rp r ,)(i(σ')% (1.6)

for j= l,...,n. The matrix on the left-hand side of (1.6) has zero as a simple
eigenvalue with left eigenvector //u0); thus, we can find ΰ2 to solve the equations to
order ε2 only if the inner product of lj(u0) and the right-hand side of (1.6) vanishes.
This requirement yields a decoupled system of scalar conservation laws for the
amplitude functions, σj; the σj(θ, τ) satisfy

°ί + bβ(σJ)2)$ = 09 lύjύn (1.7)

with the coefficient bj given by bj = lj(u0). V2/(wo)(rJ(wo),rJ (wo)). One well known
consequence of the genuine-nonlinearity condition from (1.3) is that bj ψ 0 for j =
l,...,n. (See [21].) Thus, the equations in (1.7) are decoupled inviscid Burgers
equations. Of course the region of validity of this expansion is further restricted to
spacetime domains where ΰ2 grows sublinearly in t. To summarize, we see that the
formal expansions of weakly nonlinear geometric optics suggest that smooth
solutions of general hyperbolic systems can be approximated within O(ε2) by the
geometric optics expansion,

Σ
7 = 1

where σj(θ,τ) satisfies the much simpler Burgers equation in (1.7) for7 = l,.. .,n.
The above derivation obviously relies on the fact that σj(θ9 τ) is a smooth function

(see (1.6) for example) and in contrast, solutions of the inviscid Burgers equation
typically develop shocks in finite time. Nevertheless, it was suggested in Chap. 1 of
[21] that the expansion in (1.8) should remain valid for times after shock waves have
formed. This conjecture was based on the following two facts: the explicit examples
analyzed in [21] suggested uniform validity for an arbitrarily large time where the
solution remained smooth with an error estimate independent of the first derivatives
of the solution; the work of DiPerna [2] and Liu [18] on the detailed large time
behavior of solutions of conservation laws gave a rigorous proof that solutions of
(1.1) with initial data of compact support approach decoupled TV-waves as T->co.
These N-waves are not weak solutions of (1.1) but are instead weak solutions of the
decoupled Burgers equations in (1.7).

Here we prove the above conjecture. We consider the general weak solution uε

for (1.1) (constructed by Glimm's method) with initial data of the form

uo + εv(x). (1.9)

We consider the corresponding weakly nonlinear asymptotic weak solution from
(1.8) where σj(θ,τ) is the weak solution of the Burgers equation in (1.7) with initial
data,

σ>(θ,0) = ljμ0) Ό0(x)9 1 Sj ^ n. (1.10)



316 R. J. DiPerna and A. Majda

We introduce the ίΛnorm, \u\1= J |u| dx and also denote the ίΛnorm of a periodic

P

function with period p by IM^ = 1/p)\u\dx. The remaining sections of this paper

contain a proof of the following result:

Theorem. (Justification of Nonlinear Optics)

A) Assume that vo(x) is an arbitrary function of bounded variation and with compact
support. Consider the weak solution uε(x, t) for (1.1) with the initial data in (1.9) and
the weakly nonlinear geometric optics approximation uε

w(x,t) defined in (1.8) and
(1.10), then we have the estimate,

max |uε( ? ί ) - t 4 ( ,ί)li^Cε 2, (1.11)
+oo

uniformly for all times where C depends on the support of vo(x) and the derivatives of the
flux function, f(u).
B) Assume that vo(x) is a periodic function with bounded variation per period. For
any scalar convex conservation law, i.e. n = 1, we have

max |uε( ,ί)-Ww( >Oli^Cε 3 . (1.12)
0^ί< +oo

On the other hand, for a pair of conservation laws, i.e. N = 2, and periodic initial data
with bounded variation per period, we have the weaker estimate

\u\ ,t)-u£

w(',t)\^tCε2. (1.13)

In B) the constant C depends on the derivatives of f, the estimates for the L00 norm of
vo(x), and the period, p. While the estimates for the global uniformly valid
approximation of uε

w to uε from (1.11) and (1.12) are much stronger than is
anticipated by the formal theory, we remark that the weaker estimate in (1.13) is still
sufficient to justify uε

w as the leading order asymptotic term for periodic waves
for M = 2 and any large time of order o(ε~2). These times are much longer than
the times of order 0(ε - 1 ) where smooth ε-amplitude periodic data develop shock
waves. On the other hand, the restriction in part (B) of the theorem to n ^ 2 is
not merely a technical one; for n ^ 3 and periodic initial data, the decoupled
in viscid Burger equations from (1.7) are not sufficient to describe the leading order
asymptotics for uε

w even at the purely formal level due to the appearance of
resonant wave interactions (see [20]). An accessible open problem for this more
subtle case will be described at the end of this introduction.

Next we give two instructive elementary examples which illustrate several
features of the theorem. First we consider small amplitude solutions about the zero
background state for scalar convex conservation laws,

ut + f(u)x = 0

with f(u) = a(u), f"(u)>0 and conveniently normalized with /'(0) = 0 and
/"(0) = 1. For discontinuous Riemann initial data with the form
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we have the solution uε(x, t) given by

f ε, x^sεt

with sε = (2ε)" 1 (/(ε)-/(-ε)) . Provided that /<3>(0)^0, sε satisfies C~h2^
\Sε\ ^ Cε2 with some C > 0. For this example, ι4(x, ί) is given by

ε x < 0 , ί > 0

ε x^O, tic" ( U 4 )

Thus, in this particular example, the deviation of uε

w from wε in the maximum norm is
always only O(ε) due to the difference in shock location. On the other hand, if we
compute the deviation in the L 1 norm, we have

C-4ε 3 g|w ε ( , ί ) - ι 4 ( ,0 l i^Cίε 3 . (1.15)

For a general system of conservation laws with n > 1, there will be additional errors
due to the production of secondary waves of different wave families. We illustrate
this by considering the weakly nonlinear approximation (around u0 = 0 with
λk(0) = 0 for simplicity) for the general system in (0.1) with initial data.

, εrfc(0), x < 0
uε(x,0)= ' -

-εrfc(0), x ^ j

We normalize the right eigenvector by the condition Vλk-rk = 1. We consider any
hyperbolic system so that with the above normalization for rfc, /y (VMrfc)rfe(0) Φ 0 for
some; Φ k. From this condition, it follows that the centered wave solution uε(x, t) of
the above Riemann problem necessarily has some waves of strength O(ε2) for somefh

wave field with] φ k. The solution uε

w(x, t) with the above initial data has a similar
form to the right-hand side of (1.14) multiplied by rk(0). In this example, the deviation
of uε

w from uε has two different sources of error. The first source is an error in
amplitude and shock location for the primary wave; = k yielding L1 errors of the
same form as in (1.15) for the scalar case. The second source of error arises from the
fact that uε

w completely ignores the production of the secondary waves of order o(ε2)
for; φ k. This second source of error dominates the first, yielding the error estimates
for this example,

C-Vί^|ut,0-t4( ,0li^Cε2ί (1.16)

with C nonzero provided that Vλk-rk = 1 and for some; / /c, //(Vurk)rk(0) φ 0. In this
last example, the error behaves in a qualitatively similar fashion as we have stated in
part B) of the above theorem for periodic waves and n = 2. The authors conjecture
that the similar weaker estimate in (1.13) for periodic waves is also sharp but the
mechanisms are somewhat different than in the above example and are explained via
examples in Sect. 6. The stronger estimates in the first parts of the theorem for initial
data of compact support and for scalar laws with periodic data occur through the
well-known large time cancellation of shock and rarefaction waves of the same
family which induces a rapid time decay of the total variation for uε and uw (see [7]).
The above simple examples also indicate that the resolution (in the sense of [16]) of
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weakly nonlinear approximations is often even better than the integral estimates
derived here.

The proof of the theorem does not mimic the classical asymptotic development
for smooth solutions described above. Even for scalar convex laws, the proof has
three main aspects. First we exploit the fact that solutions of the Burgers equation
respect a two parameter symmetry group in addition to uniform space-time dila-
tions and space-time translations; in particular, if σ(x, t) is any solution of

then for all constants u0 and ε > 0,

u = u0 + εσ(x — buot, εt)

is also a solution of the Burgers equation. This fact explains the appearance of two
distinct time scales in solutions of quadratically nonlinear conservation laws with
initial data of the form, u0 + εv(x) and also trivially justifies weakly nonlinear
asymptotics for solutions of the Burgers equation. The second part of the proof for
scalar convex laws involves a generalized L 1 -stability estimate for solutions of
inhomogeneous scalar conservation laws with inhomogeneous forcing terms given
by finite Borel measures. This key lemma is contained in Sect. 3 of the paper and
generalizes earlier estimates of this type in [2,18]. The L 1 stability estimate
together with the stability of total variation norms is used to control the deviation of
uε

w from uε in the beginning and intermediate asymptotic regimes in time. Finally, the
third main ingredient in the proof for scalar convex conservation laws uses the rapid
decay of total variation for large times and the L 1 stability estimate to control the
deviation of uε and uε

w for large asymptotic times. Section 2 is a preliminary section
summarizing facts from the theory of BV functions used throughout the paper while
the L 1 stability lemma is proved in Sect. 3. The proof of the theorem for scalar
convex laws and data of compact support is given in Sect. 4 and it uses the tools
mentioned above. The proof for systems is given in Sect. 5 in the case vo(x) has
compact support and this proof builds on the earlier proof in the scalar case. For
systems we exploit the fact developed earlier in [2,18] that weak solutions
asymptotically solve decoupled inhomogeneous scalar laws for large times where
the inhomogeneous terms are suitably small Borel measurers. Using refined
estimates of this decoupling, we reduce to the scalar convex case treated previously.
For simplicity in exposition, we only carry out all the details for n = 2 although it
should be clear to the reader that out arguments are readily extended to n > 2 by
incorporating the additional ideas from [19] in a straightforward fashion. Finally, in
Sect. 6 we discuss the modifications necessary for treating the periodic case. In
contrast to the case when the initial data vo(x) has compact support, it is quite
important in Sect. 6 that we have n = 1 or n = 2.

We conclude this introduction by pointing out that for periodic initial data, the
formal predictions of weakly nonlinear asymptotics do not yield decoupled Burgers
equations due to the appearance of resonant wave interactions when n ^ 3. In fact,
for the important 3 x 3 hyperbolic system describing compressible fluid flow with
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entropy variations, the weakly nonlinear asymptotic equations for the sound waves
are two Burgers equations coupled through a linear integral operator with kernel
given by the derivative of the initial entropy field (see [20] for the details). One very
interesting and accessible open problem is to assess the validity of this approxim-
ation for periodic weak solutions of the equations of compressible flow.

2. The Geometric Structure of Solutions

In this section we discuss several aspects of the structure theory for discontinuous
solutions to hyperbolic conservation laws,

0, (2.1)

which are relevant to the theory of weakly nonlinear asymptotics. We assume that /
is a smooth map from Rn to Rn whose Jacobian V/(u) = {dfι/dUj) has n real and
distinct eigenvalues

λί(u)<λ2(u)...λn(u),

at each state u in Rn, and that each eigenvalue is genuinely nonlinear in Lax's sense
[14], i.e. the directional derivative in the corresponding right eigendirection never
vanishes:

r /Vλ,.#0, where Vfrj = λjrj. (2.2)

This class of systems includes several classical 2 x 2 systems, for example, the
equations of isentropic gas dynamics and the equations of shallow water theory.

It is well known that, for systems of this type, the Cauchy problem does not in
general possess a globally defined smooth solution even if the initial data are
smooth. The nonlinear structure of the eigenvalues leads to the generation of shock
waves in a finite time. One must therefore develop an existence theory in the
framework weak solutions, i.e. solutions satisfying the conservation laws (2.1) in the
sense of distributions:

j j ΰtφu + dxφf(u) dxdt+ J φ(x, 0)φ, 0)dx = 0

for all smooth test functions φ with compact support in the upper half-plane ί ^ 0.
The classical prototype of a weak solution is provided by a piecewise smooth

solution, i.e. by a solution which is smooth except for a finite number of curves of
discontinuity. In mechanics, piecewise smooth solutions have, of course, a natural
physical interpretation: the regions of the x-t plane on which the solution is
smooth represent rarefaction waves, compression waves and their interactions,
while the curves of discontinuity represent propagating shock waves. Although the
class of piecewise smooth solutions is fairly wide, it is not sufficiently broad to
encompass all solutions, even those with compactly supported C°° data. As a
consequence, one is compelled to entertain wider function spaces for the purpose of
constructing and analyzing solutions to hyperbolic conservation laws.

Research in the area of conservation laws in one space dimension has indicated
that a natural framework for weak solutions is provided by the space of functions of
bounded variation in the sense of Cesari [5,25]. We shall recall several features of
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BV functions which are relevant to our analysis of the asymptotic structure of
general perturbations.

A real-valued locally integrable function u = u(y) defined on a domain Ω a Rm is
called a function of bounded variation if each of its first order partial derivatives is
represented by a locally finite Borel measure:

for all smooth compactly supported functions φ9 while the weight which the measure
μj assigns to an arbitrary compact subset K c Ω is finite. A vector-valued function
lies in the space BV(ί2) if each of its components satisfies the conditions above.

The relevance of the space BV for systems of conservation laws (2.1) was
established by a constructive existence theorem of Glimm [6] for solutions to the
Cauchy problem with initial data having small total variation.

Theorem 2.1. // TV u0 «1, then the random choice method generates a globally
defined distributional solution of (2.1) which assumes the initial data u0 at ί = 0 and
satisfies the following stability estimates:

|u( ,ί)loo ^ const IwoU (2.3)

TVu(-,t)S const TVu0. ( 2 4 )

Thus, in one space dimension, the L00 norm and the total variation norm provide
natural metrics in which to measure the amplitude and gradient of the solution,
respectively. For each ί, the amplitude of the solution is bounded by a constant times
the amplitude of the data (2.3), while the total amount of wave magnitude in the
solution is bounded by a constant times the total amount of wave magnitude in the
data (2.4). These sharp-time estimates provide the starting point in the structure
theory for solutions to (2.1), [3,17].

With regard to structure we recall that a scalar function w of one variable lies in
the space BV (R) if its classical total variation is finite, after a possible modification
on a set of measure zero. The quantity TVw is computed as follows. Consider a finite
partition xx < x2 < < xn, calculate the sum of the associated increments of w,

£ \w(Xj)-w(xj+1)l
7 = 1

and take the supremum over all partitions:

TVw = suplΣjw(Xj)-w(xj+1)\:{Xj}eRy

From the classical viewpoint, the simplest example of a BV function of one variable
is provided by a piecewise constant function with a finite number of jumps. The
distributional derivative is represented by a measure with point masses located at
the jump points; the total variation is given by the sum of the heights of the jumps.
On the other hand, if w is smooth, the distributional derivative is represented by a
measure which is absolutely continuous with respect to Lebesgue measure, namely
w'(x)dx, and the total variation reduces to the L1 norm of the first derivative:
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00

TVw= J \W(x)\dx. A mixture of these two cases useful for many engineering
— oo

purposes is presented by the piecewise smooth category. Here the total variation
norm registers the sum of the jumps plus the L 1 norm of the first derivative
restricted to the intervals of smoothness:

TVw = ΣI [w];| + Σ Ί' Iw'WI dx, (2.5)

where

[ w ] ; = lim w — lim w,
χ]Xj xiXj

and Xj specify the jump points. In the setting of a piecewise smooth solution to a
system of conservation laws (2.1) restricted to a fixed time ί, i.e. u = u(-,t), the first
term in (2.5) represents the sum of the shock strengths in u at time ί, while the second
term measures the fluctuations in the rarefaction waves and compression waves at
time ί. In general, the profile of the solution u at a fixed time t presents a function of
bounded variation in x with a more complex structure.

In the geometric theory of conservation laws, one of the central problems
concerns the structure and regularity of the solution as a function of x and t jointly.
In this regard, the calculus of BV functions proves to be quite useful. Although the
space BV is rather broad, there exists a strong analogy between the measure-
theoretic structure of general BV functions and the classical pointwise structure of
special piecewise smooth functions. Indeed, the subject of geometric measure theory
has established a variety of qualitative and quantitative links between the BV
category and the piecewise smooth category. We shall conclude this section with a
brief discussion of several aspects of the BV structure theory and the BV calculus
which are relevant to the computations associated with a rigorous treatment of
weakly nonlinear asymptotics in the setting of discontinuous solutions.

Suppose w is a function in BV (Ω\ Ω c= Rm. It turns out that, with the possible
exception of a set with zero (m — l)-dimensional Hausdorff measure, each point in
the domain of definition Ω is either a point of approximate continuity or a point of
approximate jump discontinuity. At a point p of approximate continuity the average
behavior is controlled and locally isotropic: the function w admits an approximate
limit with respect to every half-plane through p and all such approximate limits are
equal. In contrast, at a jump point p, the function w experiences a first-order dis-
continuity in a unique direction v; w has distinct approximate limits Lvw and L_vw
with respect to complementary left and right half-planes through p determined by v.

The technical formulation of these properties runs as follows.
At a point of approximate continuity, the m-dimensional measure of the set of

points where w deviates from w(p) by some fixed amount, inside a ball Br(p) or radius
r centered at p, vanishes faster than the m-dimensional measure of the ball as the
radius shrinks:

limr"m J \w(x)-w(p)\dx = 0.
r->0

At a jump point, there exist two distinct values w^p) and a unique direction v such
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that

limr-m J \w(x)-w±(p)\dx =
r-0 BH^

where

H±{x:(x-p9v)>0} and w±(p) = L

The overall picture of the geometric structure of a BV function is the following. Most
of the domain of definition is filled with points of approximate continuity and first-
order jump discontinuity. In addition, the jump points are organized inside sets with
a differentiable structure: the set Γ of points of approximate jump discontinuity
forms an at most countable union of rectifϊable sets of dimension m — 1, i.e.

oo

Γ-pίΓ>
where Γj is the image of some compact subset of Rm~x under some Lipschitz map
from Rm~x to Rm. By analogy with fluid dynamics it is standard to refer to Γ as the
shock set of w: the set Γ° is reminiscent of the "continuous" region of flow, the set
recalls the propagating discontinuities.

Finally we shall recall several theorems in the BV calculus. For the purposes of
this paper it suffices to work with functions in BVnL 0 0 .

Theorem 2.2. // weBVnL°°(jRm) and E is a bounded subset with finite perimeter,
then the weight which the gradient of w assigns to E is expressible as a boundary
integral with respect to (m — l)-dίmensional Hausdorff measure,

dw
— ( £ ) = J wvjdHm.lt (2.6)
OXj d*E

where v = (v l 5...,vn) represents the outward unit normal to the essential boundary
d*E of E and w~ is the inward trace of w~ on δ*E.

If w is smooth, then formula (2.6) assumes the classical form of Green's Theorem:

JVw(x)rfx= J

In general, the inward trace w coincides with w at points of approximate continuity
and with the half-plane limit L_ vw at points of approximate jump discontinuity, with
the possible exception of a subset of d*E having zero (m — l)-dimensional Hausdorff
measure.

The second main form of Green's Theorem describes the weight which the
gradient assigns to sets with codimension one.

Theorem 2.3. // weBV nL°°(Rn) and S is a Borel set which can be covered by a
countable union of essential boundaries of sets with finite perimeter, then

| ] v ί / / ί ; w _ 1 , (2.7)

where
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We observe that the jump quantity v[w] is well-defined, with the exception of an
insignificant set with zero (m — l)-dimensional Hausdorff measure.

In conclusion we record the generalized chain rule for B V functions which plays
a major role in the derivation of the generalized characteristic equations for BV
solutions.

Theorem 2.4. //weBVnL°°(Kπ) and f:R-+R is smooth then /(w)eBVnL 0 0 and

where the mean value of the derivative of f is defined by the equation

/ ' = } f'{sLM*) + (1 - s)L_ vw(x)} ds,

and where the equality in (1.8) is understood in the sense of Borel measures.

3. The Stability of Solutions to Scalar Conservation Laws

In this section we shall present a general stability theorem for BV solutions to
inhomogeneous scalar conservation laws. For simplicity in notation we shall treat
the problem in one space dimension; the extension to several dimensions is
immediate.

Suppose / : R -> R is an arbitrary smooth map and ux, u2 is an arbitrary pair of
functions in BV nL^iR2). Let μ̂  denote the Borel measure corresponding to the
divergence of the field (uj9 f(Uj)):

μj = dtUj + dxf(uj). (3.1)

Given two times tx < t2, the problem is to estimate L 1 difference between uί and u2

at time t2 in terms of three quantities: the L 1 difference at time ίx, the total mass of μ}

in the closed strip [ ί l 9 ί 2 ] a n d the magnitude of an appropriate entropy field. In
order to view the problem in a general context, we shall briefly discuss the notion of
generalized entropy for systems of conservation laws in one space dimension,

= 0, u = u(x9t)eR\ (3.2)

and then adapt the discussion to the scalar setting.

Definition. A pair (η, q) of real-valued maps on the state space Rn is called an entropy
pair of system (3.2) if all smooth solutions tφc,ί) satisfy an additional conservation
law of the form

dφ) + δxq(u) = 0. (3.3)

Thus, a pair of state variables serves as an entropy pair if the divergence of the
corresponding entropy field {η(u(x, ί)), q(u(x, t))} vanishes for all smooth flows u(x, t).

The existence of an entropy pair is based upon the solvability of a differential
compatibility condition in the state space Rn, which takes the form

or equivalently, Σ ! ^ = | 1 (3.4)
dUdu dU
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and which is derived as follows. Suppose u(x, t) is a smooth solution to (3.2).
Writing (3.2) and the entropy identity (3.3) in quasilinear form,

dtu + Vf{u)dxu = 0; Vη(u)dtu + Wq(u)dxu = 0,

leads to the formal equation

which holds for all smooth solutions u if and only if the coefficient vanishes
identically. One therefore deduces a compatibility condition between the gen-
eralized entropy η and the generalized entropy flux q, in the form (3.4) of a first order
linear system of n differential equations for two unknowns. In the setting of a scalar
equation (n = 1) the relation is underdetermined; η may be chosen arbitrarily
provided that the companion flux q is defined by

q(u) = ]η\u)f\u)du. (3.5)

In the setting of systems of two equations, the compatibility condition represents a
determined first order linear hyperbolic system [15] and therefore has many
solutions. In the setting of mechanics, the existence of an entropy pair is both
familiar and explicit: for example any smooth flow {p(x, ί), m(x, ί)} conserving mass
and momentum in the form of system (1.3) also conserves mechanical energy, i.e.

dtE + dx(uE + up)x = 0; E = \pu2 + pε(p),

where ε denotes the specific internal energy at a fixed value of the thermodynamic
entropy. Thus, for insentropic gas dynamics, the total energy E plays the role of a
generalized entropy η, while the transport term uE plus the work done by the
pressure field plays the role of a generalized entropy flux q. For systems of more than
two equations, the existence of an entropy pair is a rare event which fortunately
occurs for the basic systems of continuum mechanics. Furthermore, in the setting of
mechanics, the "natural" generalized entropy η is a strictly convex function of u, in
terms of which the physically meaningful solutions are distinguished from the class
of all possible weak solutions through the following admissibility criterion.

Definition. A weak solution u = u(x,t) of a system of conservation laws (3.1),
endowed with an entropy pair (η, q) for which η is strictly convex, is called admissible
if the divergence of the corresponding entropy field is nonpositive:

dtη(u) + dxq(u)S0. (3.6)

In the case of isentropic gas dynamics, strict hyperbolicity of the system (1.3)
corresponds to the condition that p\p) > 0, and thus to the presence of a strictly
convex generalized entropy

η = E = \pu2 + pε(p) = \m2jp + pε(p), dε = p/p2 dp,

in terms of which admissibility of the solution reduces to the statement that all of
its shock waves dissipate mechanical energy.

Remark. It can be shown that the notion of admissibility is well-defined, at least
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for solutions with small oscillation: if (3.5) holds for one entropy pair (η, q) with
V2η > 0, then it holds for all entropy pairs (η, q) with V2η ^ 0.

In the setting of a genuinely nonlinear system, it can be shown that a single
entropy inequality of the form (3.5) is sufficiently powerful to rule out all nonphysical
solutions. However, if the system is not genuinely nonlinear, then additional
constraints are required. At the present time it is only in the setting of a scalar
equation that a complete understanding of the proper formulation of an entropy
admissibility criterion is available together with its role in inducing stability of
solutions.

Definitions. A weak solution u to a general (non-convex) scalar conservation law is
called admissible if

(3.7)

for all convex functions η, where the corresponding flux is given by (3.5).

Theorem. // u1 and u2 are two admissible solutions to a general scalar conservation
law mBVnL°°(R2), then

] lu^ή-^i^ήldxS J M*>0)-i<2(x,0)|&c. (3.8)
- o o - o o

This L 1 stability theorem was established by VoΓpert [25] and subsequently
generalized by Kruzkov [12] to the L00 category. An independent proof was given by
Keyfitz [11] in the category of piecewise smooth solutions. Our purpose here is to
extend the analysis to inhomogeneous scalar equations

dtu + dxf(u) = μ, (3.9)

where μ is a locally finite Borel measure.
Several preliminary remarks are in order concerning the structure of the entropy

fields for a general solution M in BV π L 0 0 . We recall that if (η,q) is an arbitrary
entropy pair for system (3.1) and if u is an arbitrary solution of (3.1) in BV n L00, then
the associated dissipation measure βu = dtη(u) + dxq(u) is concentrated on the shock
set Γ(u) of u, i.e. βu(E) = βu(EnΓ) for all Borel sets E, and may be represented by
integration, βu(S) = j v,[yy] + vx[q] dH±, when restricted to Borel subsets S <z Γ. Here

the local rate of entropy change is given by

v t M + vx[<?] = vt{Lvη -L_vη] +vx{Lvq -L_vq}

at points of jump discontinuity. Both facts are straightforward consequences of the
generalized version of Green's Theorem for BV functions and the generalized chain
rule, cf. Sect. 2. We refer the reader to [4] for details of the derivation. One may
therefore formulate a local version of the admissiblity criterion for BV solutions to a
general scalar laws as follows:

Definition. A solution MGBV nL°° of a general scalar law is admissible if for all
convex functions η the inequality

VrM + v . M ^ O (3.10)

holds at Hί -almost all points of the shock set Γ(u).
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Remark 1. In the setting of a scalar law there is a variety of ways to formulate the
entropy condition. One could take, for example, any (countable) set of convex
functions whose closed convex hull generates the space of all convex functions and
postulate the entropy inequality (3.6), (3.9) just for those. The general case would
follow by closure. Indeed this is frequently done, with a simple standard choice
provided by the collection of all absolute value functions η(u, k) — \u — k\9 together
with the affine maps η = au + b. Thus, a solution u of a scalar law is admissible if

St(\u - k\) + d&gfi(u - k){f(u) -

for all fc, or equivalently for all rational k.

Remark 2. The entropy pair

φ , k) = \u- fc|, φ , k) = sgn(κ - k){f(u) - f(k)}

plays a distinguished role in the subject of stability for scalar laws due to the
symmetric dependence oΐη and q on u and k: for each fe, (η, q) is an entropy pair in u
and for each w, (η, q) is an entropy pair in k. The presence of symmetric entropy pair is
a distinguishing feature of the scalar equation and is the ultimate source for the L 1

contraction property (3.7) of the solution operator. This symmetry is an essential
ingredient in analyzing stability for the inhomogeneous equation.

Remark 3. From the piecewise linear entropies, one can easily derive Oleinik's
original form of the entropy condition which requires that a jump discontinuity
propagating at speed s and joining two states u~ and u+ from left to right have the
following property. The graph of / lies below the chord joining (M~,/(W~)) to
(w+,/(w+)) whenever u~ >u+, and above the chord whenever u~ <u+, i.e.

f(uΊ-m^f(u-)-m
u+—k ~ ~ u —k

for all k in the interval between u~ and w+, where s is given by the Rankine-
Hugoniot relations,

f(u+)-f(u-)
s = - u+ —

In the case of a BV solution, the speed of propagation associated with a jump point
with normal v is defined as the negative ratio of components: s = — vt/vx.

Remark 4. For general flux functions /, admissibility implies the standard Lax
geometric entropy inequality

λ(u+)<s<λ(u-l λ = f(u),

u+ = lim u(x + ε, t\ u ~ = lim u(x - ε, ί), (3.12)
ejO ε|0

asserting that nearby characteristics run into the shock in the forward direction of
time. For convex / , (3.10) reduces to the statement that the left-hand limit M" exceed
the right-hand limit u" .

We shall now turn to the stability problem for BV solutions to an inhomo-
geneous scalar law (3.8). For the purpose of estimating the L 1 deviation between
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solutions it is natural to consider the maximal rate of entropy production associated
with the canonical pair (ηk,qk). For each triple (V,M~,U+), let

φ , w, k) = vt[>/k] + vklqk~] and τ(v, u) = sup τ(v, u, fc).
k

We observe that if k does not lie in the interval I(u~,u+) with ends points u~ and w+,
then the rate τ(v, w, fc) of entropy production in (ηk, <?k) is independent of k and reduces
to the Rankine-Hugoniot form:

φ9u9k) = vt{ηj{u+) - ηk(μ~)} + vx{qk(u+) - qk{u~)}

= R(v9u) = vt(u+ - II") + vx{/(w+) - / ( K - ) } .

Thus, the supremum is well-defined and we may introduce a maximal measure θ
concentrated on the shock set,

Θ(E)= f φ,u)dHl9

EnΓ(u)

in terms of which we shall establish the following stability theorem.

Theorem 3.1. // uλ and u2 are arbitrary functions in BV nL°°(R2), then

J |Ml(x,ί) - w2(x,ί)| dx g f \ut(x9τ) - ιι2(x,τ)\dx + Σ ^ / ^ + Σ N ( n
— oo — oo

w/ẑ r̂  Θ7 is the maximal measure associated with ujf \μj\ denotes the total variation
measure of the divergence field (3.1), and 9* denotes the closed strip [τ, t].

For a genuinely nonlinear equation, the contribution from 0 ; may be dominated
by μj.

Corollary 3.1. // / " > 0 and if Uj is admissible in the sense that uj > uf9 at Hx-
almost all points of Γ(Uj), then

ϊ \ut-u2\(t)dx^ f |w1-w2|(τ)dx + 2Σlμ yl(n
— oo — oo

Proof of Corollary. For an arbitrary triple (V,U~~,M+), let s and σ denote the
associated speed of propagation and slope of chord respectively,

We note that s and σ coincide if and only if the Rankine-Hugoniot form vanishes, i.e.

As a consequence of the definitions, we have

s = σ-R/vx[_ul

and the following identity for the rate of entropy production associated with an
arbitrary pair (η, q):

v,M + vxlq] = - v x{sM
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In the special case of a piecewise linear entropy ηk, a simple upper bound holds,

V J Λ J + v x fe] ^ - v,{σ[ifJ - [ήfJ} + \R(v,u)\.

If/" > 0, the standard entropy inequality [M] ^ 0 implies that

gO, for

and we conclude that τ(v, α) ̂  |JR(v, M)|. Thus, if £ is an arbitrary measurable subset of
Γ(Uj), then

θJ(E)=ϊφ9uJ)dHί ί ϊ\τ(v,uJ)\dHi ^^Riv^dH,.
E E E

The corollary follows from the fact that

(3.13)

One may deduce (3.13) from the form of Green's theorem given by (2.7): the weight
which the divergence structure measure

μj = dtuj + dxf(uj).

Assigns to a subset E of the shock set Γ(Uj) admits the representation

μβ) = I vluj] + vJJiuj)-] dfli s J Λ(v, uj) dHx.

The total variation measure for any (signed) measure represented by integration is
given by the integral of the absolute value of the kernel.

Proof of Theorem 3.1. Following VoΓpert [25], we introduce the divergence D of
the vector field

where σ = sgn(Mx — u2) and obtain from Green's Theorem the identity

? Mή-uMdx- J Mτ)-M2(τ)|dx = D(n
— oo — oo

D = dt(\Ul - u2\) + djμgfifa - u2){f(ux) - f{u2)}\

where Sf denotes the strip [τ, ί]. The measure D may be decomposed into two parts
related to the forcing measures μj and the entropy condition with the aid of the
following theorem of VoΓpert [25]. Suppose u and v lie in BV nL°°(.Rm) and satisfy
|t?| ^ M\u\ for some constant M. If s = sgn u(x) then su is a BV function for which the
measures

d / X A ~ d

-—(su) and s-—u
dXj dXj

coincide on the set Γc(u). Here s denotes the symmetric mean of s obtained by
smoothing with a standard symmetric mollifying kernel φε:

s=
ε->0



Validity of Nonlinear Geometric Optics 329

Thus, the derivatives of the function sgn u(x) are effectively zero on the set where u is
approximately continuous, a fact which facilitates the analysis of the measure D in
the following way. With the choices

u = uι— u2, v = u1—u2

and

u = u1-u2, v = f(ux) - f(u2),

we may split D as follows

where

D\Γc{ux - u2) = σ{dt{u1 - u2) + dx(f(Ul) - f(u2))} = σ(μ\ - μ2\

and the vertical line denotes restriction to the indicated set. Since |σ| ^ 1, D may be
estimated from above in terms of the total variation measures of μj9

reducing the problem to one of showing that the restriction of D to the jump set
of uί — u2 is dominated by the maximal measures, i.e.

for all E c Γ(ux — u2).
From the second form of Green's Theorem it follows that

D(E) = J v t [ K - tι2 |] + vxlQ(u
E

Q(uuu2) = sgn(Mi - M 2 ) { / ( M 1 ) - /(ιι2)},

for E c= Γ(u1 — u2). As a consequence of the symmetry of the integrand /, we may
split / into two terms such that one of the two functions is held fixed in each:

/ = v J X - ul | ] + vJC[β(M1,M2

+)] + vtl\u2 - wΓ |] + v,[β(ιι2,ιιΓ)].

Thus by appealing to two special choices of k, namely k = u2 and k = uΐ, we
obtain the desired upper bound / ^ τ(v, MJ + τ(v, u2).

4. Weakly Nonlinear Asymptotics for Scalar Laws

We are concerned with the response of the solution operator of a scalar genuinely
nonlinear equation

dp + dJ(u) = 09 /">0 (4.1)

to compactly supported small amplitude perturbations of constant initial data:

The classical theory treats C 1 perturbations uγ{x) and postulates a response in the
form of a regular multiple scale expansion

u%x, t) = u0 + εMi(x, t, τ) + ε2u2(x, t, τ) + ...,
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involving a slow variable τ = εt, for an interval of time of order 1/ε prior to shock
development.

Several remarks are in order concerning the impact of symmetry groups on
the structure of the expansion. For simplicity, we shall begin by contrasting the
general law (4.1) with the special Burgers equation

etu + dx(bu2) = 0, (4.2)

based on a quadratic nonlinearity. For the general law (4.1) the symmetry group
consists of translations in space and time together with uniform dilations in
space-time: if u(x, t) is a solution then so are u(x + δ, t), u(x, t + δ), and u(δx, δή.
For the special law (4.2), two additional one-parameter families are present in the
form

u(x, t,c) = c + u(x — bet, t),

reflecting Galilean invariance and

u{x,t,ε) = εau(εβx,εa+βt),

reflecting joint scaling invariance. Thus, for a second order flux

f(u) = bu2, (4.3)

the solution operator commutes with a two-parameter group of linear transform-
ations acting on the product of physical space and state space. The special
symmetry

tφc,ί,ε) = εtφc,εί) (4.4)

can be seen to induce the two-scale structure of the leading term of the asymptotic
expansion.

A second consequence of the invariance (4.4) is that the formal ansatz of weakly
nonlinear asymptotics becomes an exact solution in the case of a one-term
expansion applied to Burgers equation, a fact which can be demonstrated as
follows. The standard expansion for a general law takes the form

u\x, t) = uo + εσ{x - λot, εt) + O(ε2),

where, by definition, the perturbation σ satisfies the quadratic law

dtσ + dx(bσ2) = 0, b = f"(uo)/2 (4.5)

with rescaled initial data σ(x,0) = uί(x) and λo = f'(uo). For a second order flux
(4.3), the group invariance (4.4) implies that the exact solution to the Cauchy
problem with perturbed data

u(x,0) = uo + εu1(x) (4.6)

is given by

uε(x, t) = u0 + εσ(x — λot, εt),

where σ solves the canonical law (4.5) with b = f"{uo)β and initial data σ(x,0) =
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uγ(x). Thus the first two terms of the weakly nonlinear expansion, namely

uε

w(x, t) = uo + εσ(x - λot, εt\ (4.7)

is an exact solution for the problem (4.3), (4.6).
With this fact in mind, one may regard a small amplitude solution of the

general law (4.1) as a solution of an inhomogeneous second order law

u0)=-dxc, (4.8)

where Qf denotes the quadratic part of / at u0 and c the cubic residual:

M, u0) EE f(Uo) + f'(uo)(u - u0) + ̂ ψ-{μ - uo)\

The problem is therefore to compare a solution of the inhomogeneous law (4.8)
with the solution of the corresponding homogeneous equation dtu + dxζ)f = 0 with
the same initial data, u0 + εu^(x\ using the uniform L1 stability theorem of Sect. 3.

The main result of this section is the following uniform approximation theorem
for compactly supported perturbations.

Theorem 4.1. Suppose uγ(x) is a compactly supported function of bounded variation
and uε(x, t) the unique admissible solution of the scalar convex law (4.1) with data (4.6).
Then, the L1 deviation between uε and the two-term asymptotic solution u% given by
(4.7) in terms of the solution σ of the Burgers equation (4.5) with data ux(x) is
quadratically small, uniformly in time:

J Iuε(x, t) - uε

w(x, t)\dx^ constε2,
- o o

where the constant depends only on the diameter of the support of the perturbation
uγ and f"(u0).

Thus, for a genuinely nonlinear scale equation, we may legitimately write

uε(x91) = u0 + εσ(x - λot, εt) + 0(ε2)

if the error is interpreted in L1.
One of the main reasons for anticipating the temporal uniformity of the

expansion stems from the large-time decay to equilibrium in the total variation
norm. For simplicity in the statements we shall henceforth restrict our attention
to flux functions / which are uniformly convex, i.e. f"(u) ^ <5 > 0. In general
circumstances δ would be replaced by the minimum of / " on the range of the
solution in question. We first recall that for arbitrary / the solution obeys a
maximum principle in the total variation norm:

(4.9)

Second, the solution decays at the rate t1/2 provided / is strictly convex and the
data u0 are compactly supported: if |woloo ^ M, then

TVu(', t) ^ const(7Ύu0/ί)1/2,
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where the constant depends only on M and the diameter of the support of u0 [1].
In the special case where / is uniformly convex, i.e. f"(u) ^ δ > 0 the constant
depends only on δ.

By interpolation, one obtains a general decay law of the form

TVu(', t) ^ const (TVuo)
a/tβ (4.10)

for 0 ^ β ^ 1/2, α + β = 1. We note that if one were to surmise a decay law with
the structure (4.10) it would then follow from the group invariance (4.4) that
α + β = 1. In the special case of Burgers equation (4.9) is an exact group invariance
while for a general law it is an infinitesimal invariance. In any case, it is sufficient
for the purposes of this section to appeal to a decay law of the form (4.10) where
α and β are arbitrary positive numbers such that α + β = 1.

Proof of Theorem 4.1. The approach is to compare the solution uε of

dtu
ε + dxQf(u\ w0) = με = - dxc{u\ u0)

with the solution u% of the truncated law

Since both have the same initial data and both satisfy the entropy condition in
the sense that they decrease from left to right across discontinuities, it follows from
the stability corollary 3.1 that

where Sft denotes the strip [0, ί]. In order to estimate the total mass of the cubic
residual over the strip Sft we observe that

\με\(S?t) ^ const j \u - uo\
2(t)TVu(', ήdt

as a consequence of the chain rule for measures, cf. Sect. 3. We have used the fact
that

dxc(u, u0) = q(u, u0) dxu = O(u - u0)
2 δxu.

The L00 norm may be conveniently dominated by the total variation norm to yield
a cubic bound of the form

\μ\{S?t)£ const \τv*u{-,s)ds.

We estimate the right-hand side of the above inequality by using the maximum
principle from (4.9) and the decay law in (4.10) as follows. For any 0 < τ g Γ, we have

T x T

]{TVu(% s)f ds ^ const J TV3u0 ds + const J (7Ύu o ) 3 / V 3 / 2 ds.
0 0 τ

Since TVuo = εC, we choose τ = min(Γ,ε"1) to obtain \μ\(Sft)£Cε2

9 and this
completes the proof.
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5. The Asymptotic Theory for Systems

In this section we shall establish the uniform temporal validity of weakly nonlinear
asymptotics for systems of conservation laws

dtu + dxf(u) = 0, (5.1)

which are strictly hyperbolic and genuinely nonlinear in the sense of Lax [14]. As in
Sect. 4, the problem deals with the response of the solution operator to small
amplitude perturbations of constant data,

w(x, 0) = u0 + εu^x), (5.2)

where u1 is an arbitrary BV function with compact support. The general existence
theorem of Glimm [6], discussed in Sect. 2 constructs a globally defined distribution
solution of (5.1) using the random choice method with data (5.2) if ε is sufficiently
small. Our analysis will be restricted to these random choice solutions; the
uniqueness problem for admissible solutions to conservation laws is currently an
open problem in the general setting in which we are working.

The main assertion is that the spatial ίZ-norm of the error term in the expansion

u%χ, t) = uo + s£ φp θ)φ0) + O(s2) (5.3)

is quadratically small, uniformly in time, cf. Theorem 5.1.
The proof is based upon uniform decay of the total variation norm together with

refined estimates on the asymptotic rate of uncoupling of the characteristic fields
with large time. For simplicity in the exposition we shall concentrate on systems of
two equations for which the presence of Riemann invariants reduces several of the
technicalities.

We shall begin with a brief review of the derivation of the generalized
characteristic system for weak solutions of (5.1). We recall that in regime of smooth
solutions, the conservative system (5.1) may be recast in characteristic form through
the introduction of the left eigenvectors of V/: /,-V/ = λβj. Multiplication of the
quasilinear form,

by the left eigenvectors Z, yields the canonical form

lf{dtu + λJ{u)dxu}=Q,

which reduces to diagonal form

dtWj + λkdxWj = 0, kφj, Wj = Wj{u(xj)), (5.4)

in terms of the -Riemann invariants Wj. The characteristic coordinates Wj are usually
introduced as solutions of the first order linear p.d.e.,

r/iι) VwJ(ιι) = 0,

over the state space R2 the diagonal form (5.4), for the composition of vv,- with a
smooth solution u = u(x, t\ follows from the biorthogonality of left and right
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eigenvectors:

lk-rj = O9 kφj. (5.5)

In view of (5.5), the mapping

(M 1 ,U 2 )->(W 1 ,W 2 ) (5.6)

is locally invertible, leading to the common practice of writing the characteristic
system in the form

dtWj + λk{wί,w2)dkwj = 0; 7 = 1,2, kφj, (5.7)

for unknowns wx(x, t) and w2(x, t). Once (5.7) is solved, the original components are
recovered by inverting the map (5.5).

Before discussing the generalized version of (5.7) for discontinuous solutions, we
shall comment on the manner in which genuine nonlinearity is reflected in its
structure. We recall that system (5.1) is genuinely nonlinear provided that the
eigenvalues λj are strictly monotone in the corresponding eigendirection:

A simple computation shows that the first eigenderivative of λj may be expressed as a
second eigenderivative of /,

and therefore that genuine nonlinearity means convexity in the eigendirections of a
distinguished linear combination of the components of /. In the coordinate system
of Riemann invariants, we have

— = τyV, kφj9δWj

and the condition of genuine nonlinearity becomes the monotonicity of λk in the
complementary direction:

^-^k(wi,w 2 )^0, jφk.

For weak solutions in BVnL0 0, a generalized version of the classical character-
istic system was introduced in [2] for the purpose of studying the large-time
asymptotic behavior of the solution, in particular, for proving the Lax conjecture
that the decay to ΛΓ-waves of solutions to systems of conservation laws with
compactly supported data. In [2] it was shown that if weBVnL00, then the
conservative system (5.1) is equivalent to an inhomogeneous diagonal system of the
form

dtWj + λkdxWj = μj9 (5.8)

where μ7- is a locally finite Borel measure concentrated on the shock set Γ(u) of u. The
derivative of (5.8) proceeds by rewriting the divergence form (5.1) in quasilinear form
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by applying the generalized chain rule for BV functions to the spatial gradient of the
flux, cf. Sect. 2. Then one multiplies by the mean value,

1

Vw; = J VW(SLVM + (1 - s)L_vu) ds,

of the y-Riemann invariant wj9 in order to obtain

VWJ dtu + VWj V/ dxu = 0,

VWj. dtu + λk %Wj dxu = {λk Vwj - Vw, V/} dxu.

Since the chain rule implies that

dtWj = V Wj dtu; dx\Vj = V w,- δxu,

we arrive at the diagonal system

dtwj + 2fc 3,wy = μ, ; ^ = {4 Vwj - Vwj V/} δxw (5.9)

for the composite Riemann invariants Wj = w/w(x, ί)) associated with a BV solution
M. As always, the indexj and k are distinct. The forcing measure μ^ is concentrated on
the shock set Γ of u since the associated coefficient vanishes at H1 -almost all points
of Γc: if (x, ί)eΓ(u), then the mean values reduce to pointwise values and we find

λj Vwj - $Wj V/ = λj Vwy - Vw, V/ = 0.

Remark. The technical derivation of the generalized characteristic system (5.9) is
facilitated by replacing, at the very onset, a given BV n L00 solution by its symmetric
mean,

ε->0

obtained by mollifying with a standard radially symmetric approximation φε of the
^-function. It is easy to verify that, with the possible exception of a set with zero 1-
dimensional Hausdorff measure, ΰ and u coincide, Γ(u) and Γ(ΰ) coincide and ΰ
assumes the average value ΰ = (Lvu + L_vw)/2 on the shock set. Henceforth we shall
assume without loss of generality that u = ϋ, H1 almost everywhere.

In the study of asymptotic behavior, there are a number of interesting
consequences of the characteristic equations (5.9). We recall from [2] that the
nonlinear modes of the system uncouple asymptotically at the rate t ~ 3 / 2 as a result of
spatial total variation decay at the rate t ~1/2. Specifically, the solution generated by
the random choice method applied to a genuinely nonlinear system of conservations
with Cauchy data supported in a bounded interval I decays uniformly to
equilibrium in the total variation norm at the same rate as a scalar solution:

TVuti)^ const {TVuo/t}112,

where the constant depends only on |/| and /, provided that the total variation of the
initial data is sufficiently small.

We shall demonstrate next that the restriction of μ7- to a fixed time is cubic with
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respect to the total variation of u at time t, in the sense that

\μj\ S?(tl9 t2) ̂  const jf TV3u(', t) dt, (5.10)

for each strip between t1 and ί2. The estimate (5.10) suggests that a midly coupled
pair of scalar laws for Riemann invariants are governing the large-time behavior of
the solution. The proof of (5.10) proceeds as follows. Since the forcing measure μj is
concentrated on the shock set Γ, we may conveniently represent its action by
appealing to the second form of Green's theorem to obtain

μβ) = J vjwj + V * K ] dH, (5.11)

for all Borel subsets BaΓ cf. Sect. 2. We assert that the integrand is cubic in the
sense that

|vt[w,.] + λkvxlwj] I ̂  const | [u] | 3 . (5.12)

Now, across a y-shock, the change in a j-Riemann invariant is third order with
respect to the magnitude of the shock, so that (5.12) is obvious. Across a fc-shock,
k=f=j\ the change in a /-Riemann invariant is first order while the speed of
propagation 5 coincides with the average characteristic speed to second order [15]:

s = - v,/vx = {λk(u+) + λk(u-)}/2 + O(u+ - u-)2.

Since, for any smooth function g, the mean value of g coincides with g of the mean
value to second order,

2 ) 2 ' κ ' '

it follows that at each jump point p (corresponding to a fc-shock), we have

vt[w,.] + v A K ] = - vxls - 4 ] [wj] = O(u+ - u-f.

The second stage in the analysis of the asymptotic uncoupling of the
characteristic coordinates vv, is to extract the Burgers' operators from the left-hand
side of the generalized system (5.9) in order to produce a purely diagonal "principal
part" responding to an asymptotically small inhomogeneous term β/.

dtwj + λ°kdxwj = βp λ\ = λ^uw
oά λ°2 = λ2(w°uw2), (5.13)

where w° denotes the value of -Riemann invariant at the unperturbed state u0. The
structure (5.13) is obtained by rewriting (5.9) in the form

dtw1 + λ2(wl9 w°2)dxwί = μx + {λ2(wl9 w£) - λ2(wu w2)}dxwl9

dtw2 + Ai(w?, w2)dxw2 = μ2 + {Ai(w?, w2) - λx(wl9 w2)}Sxw2,

so that βj consists of two contributions, βj = μj -I- μ] where

Mi = {A2(Wi, w5) - A2(w!, wJJδjWi

μ'2 = {λM^2)-^(wuw2)}dxw2. (5.13a)
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In general, the measure βj is not concentrated on the shock set of M, but it has the
same asymptotic rate of decay as the total mass of the basic forcing measure μ .

\βj\ ST(tl912) S const J TV3u(', t)dt

+ const J TV2u(', πt)TVu(-9 t)dt (5.14)

for an appropriate delay parameter π, 0 < π < 1. Thus the restriction of βj to a fixed
line t = τ decays like τ " 3 / 2 . The proof of the bound (5.14) depends upon a refined
estimate dealing with decay rates of major and minor waves in each of the
characteristic fields. We shall return to this point below.

The final stage in the asymptotic analysis of the coordinates Wj is to formulate an
inhomogeneous pair of conservative scalar equations to which the stability
theorems of Sect. 2 may be applied to yield the desired approximation theorem for
weakly nonlinear asymptotic in the L1 norm. Let us introduce flux functions Λk as
the primitives of the background characteristic speeds:

A\{z) = λMΛ (5.15)
Λ'2(z) = λ2(z,w°2\ (5.16)

where the dependence of Λk on (w?, w2) is suppressed for simplicity. We then arrive at
the conservative inhomogeneous system

Wj) = p j 9 (5.17)

where

Pi = βi + ft = βi + {M2(wi) - λ^w^w^w,},

It is easily seen that the forcing measure Pj satisfies the same decay estimate (5.14) as
βj. For example, the term

β'i = {^'2(wi) - λ2(wuw2)}dxw1

is concentrated on the shock set Γ as a consequence of the definition (5.14) and the
chain rule. On the shock set it admits a quadratic coefficient

^2(w1)-A2(vv1,w5) = O ( W

+ - W - ) 2

from which the estimate

Ift l^(ίi, h) ^ const jf TV3u(', t)dt

follows easily. An identical argument works for β'2 using (5.16) and the chain rule.
The main observation for both cases is simply that the mean oίg differs from g of the
mean by second order terms.

We have thus obtained a structure where each of the invariants satisfies a scalar
law with rapidly decaying forcing term from which the main result on the uniform
validity of weakly nonlinear asymptotics may be deduced.

Theorem 5.1. Consider a random choice solution uε of the Cauchy problem for a
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strictly hyperbolic genuinely nonlinear system of two conservative laws with initial
data of the form

7 = 1

where σ° are arbitrary compactly supported functions of bounded variation. Then the
formal weakly nonlinear asymptotic solution

2

uε

w(x, t) = u0 + ε £ σjiφp τ)r/M0),
J=I

whose profile is modulated along linearized characteristics φj = x — λj{uo)t, in
accordance with Burgers equations

dτσj + idφ(bjσ2

φ) = 0, bj = lj V2f(rp r^),

satisfies a uniform estimate

J \uε-uε

w\(t)dt^ constε2,
— oo

where the constant depends only on f and the diameter of the support of the
perturbations σ°.

Proof. Since the mapping (ul9u2)->(wί9 w2) is locally invertible it suffices to estimate
the L1 difference between the composition of the Riemann invariants vv, with the
exact solution uε and the approximate solution uε

w. Now, as a consequence of the
uniform decay law

TVu(', t) ̂  const {TVuo/t}1/2

for compactly supported solutions, it follows that the total mass of the forcing
measure βj is quadratic in ε,

0, ί) ^ const ε2,

in a fashion similar to the scalar case. Thus the function w7- satisfies a scalar law (5.17)
for which the right-hand side is quadratically small. We may therefore apply the
stability theorems of Sect. 3 if Wj satisfies the entropy condition, stating that the left
limit exceeds the right limit across shocks. For the moment let us assume the entropy
condition and proceed.

The function Wj is uniformly approximated by a multiple-scale expansion.

where φj = x — λj(uo)t, τ = εt and σ} satisfies the Burgers equation

dτσj + ±dx(bkσl) = 0. (5.18)

As we remarked above, a simple calculation shows that

bk = Λ'ί{w?) = J ^ K , w o } = /2.j2/(rfc5 Γ f c ) ( M o ) ( 5 1 9 )

The initial data for (5.18) are determined as follows. Write the data for the Riemann
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invariants w,- in the form of a compactly supported perturbation of a constant state:

wj(x, 0) = Wj(u°) + εw) (x) + O(ε2), (5.20)

where O(ε2) and wj vanish outside a bounded interval. Take the initial value of the
structure function σ,- to be σ/x, 0) = w) (x). It then follows from the stability results of
Sect. 3 that the solution of (5.18) with truncated data w/w°) + εwj(x), and the
solution of (5.18) with exact data (5.19) differ in L1 by a quantity O(ε2) uniformly in
time. The former solution is the weakly nonlinear asymptotic solution vή and we
obtain the desired result

00

J Wj-w/wo)~tVjiΦj,τ)\dx^constε2.
— oo

Several normalizations remain to be discussed in conjunction with the entropy
condition. It is standard to normalize the direction of genuinely nonlinear
eigenvectors by the condition

rj'Vλj>0, (5.21)

and to normalize the direction of the gradient of the corresponding Riemann
invariant by the condition

r/Vw fc>0, kφj. (5.22)

Under these normalizations, the entropy condition for weak shocks in a 2 x 2
system requires that, across ay-shock, the major Riemann invariant wk9 kφj
decreases from left to right. The change in the minor invariant w, across a -shock is
third order and adopts a sign depending on the state and system in question. It turns
out that for the isentropic equations of gas dynamics for a polytropic gas, both
invariants decrease from left to right across an admissible shock, so that the entropy
condition for Riemann invariants, viewed as solutions to scalar inhomogeneous
laws is automatically satisfied. More generally, one may assert that for any system of
two equations satisfying the Glimm-Lax interaction condition (that two /c-shocks
interact to produce a /c-shock and a j-rarefaction wave,; ψ k) admissible shocks are
those for which both Riemann invariants decrease from left to right. Since the
random choice method generates admissible solutions [15], the proof is complete
for the aforementioned broad class of systems once we remark that the flux functions
Λk are convex due to the identity (5.19) and the normalizations (5.21), (5.22).

An additional remark is required to complete the proof for systems which do not
satisfy the Glimm-Lax interaction condition. It is a straightforward corollary of
Theorem 3.1 that the L1 deviation between BV solutions u1 and u2 to inhomo-
geneous scalar laws can be estimated from above by the total mass of the forcing
measures μs and the total variation of those shocks which violate the entropy
condition

Proposition. // w,eBVnL°°(K2) then

f | W l - u 2 | ( ί ) ^ J |w1-M2|(0) + 2χ|μJ.|(^) + Σ|aχ
— oo — oo

where 9* denotes the strip [0, t] and N = {peΓ(u): [u](p) < 0}.
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For general systems we need only remark that the total strength of all waves
which violate the entropy, when viewed from a specific Riemann invariant, is cubic
in the total variation of the solution w, since the change in a minor invariance across
a shock is third order in the shock strength. Hence the violation produces an error
on exactly the same order as the forcing measure /?7 itself, namely ί~3/2.

The final detail in the proof concerns the verification of the decay estimate (5.14)
for total mass of βjt As a preliminary remark in this connection, we observe that the
structure (5.13a) immediately yields a quadratic estimate since the coefficients are
themselves first order:

l ^ i , vvi>)- λ2(wl9 w2)\ S |w2 - w°2U g const TVu,

\h{<>W2)-λ1{wι,w2)\ S K - wjL ^const TVu.

We therefore have a crude estimate

\U\y(h, h) ^ const J TV2u{', ί)at.

In order to see how the cubic form (5.14) arises let us assume without loss of
generality that

and consequently that

^i(Wi, w2) ^ - δ < δ ^ A2(w1? w2)

for small amplitude solutions w,- = W/M(X, £))• In this situation, initial data with
compact support generates a wave pattern where eventually most of the 1-waves lie
in the left-hand space x > 0 while most of the 2-waves lie in the right half-space x < 0.
Indeed it can be shown that waves in the complementary half-spaces satisfy

TV wx('91) S const TV2u(', πί) 4- const ΓF3w( , t\ (5.23)

TVw2{-, t) g const TV2u(', πί) + const TK 3 M( , ί), (5.24)

for an appropriate delay parameter π, depending on the size of the support of the
initial data. The upper bounds (5.23) and (5.24) imply the desired estimate (5.14).
Since estimates of the type (5.23) and (5.24) are discussed in some detail in [2] and
[18] we shall only give a brief indication of the proof.

Consider (5.23), fix t0 and let xb(t) denote the background generalized 2-
characteristic through (0, ί0). Since the speed of propagation is strictly positive, this
characteristic exits the left edge of the support of u at a time ί* ^ πt0 for some
π, 0 < π < 1. Consider the closed "triangular" region Ω bounded on the top by

and on the left and right sides by
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where xt denotes the left edge of the support of u. By construction, Ωha% no incoming
1-waves. The only 1-waves which cross the boundary of Ωaτe those which leave
through the horizontal top segment Cτ. Now, for a general region, it is known for
random choice solutions, that the total amount of outgoing j-waves equals the total
amount of incoming '̂- waves modulo a quantity which is on the order of the square of
the total variation of the solution restricted to the domain of dependence of the
region which is here contained in the line t = τί0. Since there are no incoming 2-
waves for Ω, the total amount of outgoing 2-waves is of the order TV2u(-9 πt0). Since
the change in wx across 1-waves is cubic we arrive at the estimate

ά, t) g const TV2u{ , πt) + const TV3u{', ή.

6. Weakly Nonlinear Asymptotics for Periodic Solutions

This section is concerned with the validity of weakly nonlinear expansions in the
setting of the Cauchy problem with periodic data. We shall first discuss genuinely
nonlinear scalar equations

= 0, / " > 0 , (6.1)

and establish the uniform temporal validity of the first two terms of the classical
expansion.

Theorem 6.1. Suppose that u^x) is an arbitrary periodic function of bounded
variation with period p and that uε(x91) is the unique admissible solution of the convex
scalar law (6.1) with perturbed data

where u0 is a constant. Then, the L1 deviation per period between uε and the two-term
expansion

u£

w = uo + εσ(x-λot,εt),

determined by the unique periodic solution σ of Burgers equation

dtσ + bdxσ
2 = 0, b = Γ(uo)/2

with data ux(x\ is cubically small uniformly in time:

a + p

J \uε(x,t)-uε

w(x,t)\dx^ constε3, (6.2)
a

where the constant depends only on the period p and the L°° norm of the structure
function uv

Proof. The demonstration follows the lines of the case of compactly supported
perturbations. In the periodic case, the total variation is computed over a period
interval

TVpu = TV{u(', ί ) : α g x ί

For the periodic case we have both the estimate from the classical maximum
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principle,

',O) (6.3)

and the well known strong decay estimate ([1, 14]),

TVp(;t)^ const M ,0)|Ll/ί

obtained from studying the spreading of characteristics. One can estimate the L1

norm per period by the product of the period and the total variation norm,
ML1 UpTVpu, and the above three facts yield the estimate

TVpu(', t) S const TVpu0/ί +1. (6.4)

We remark in passing that the relevant constants actually depend only on the
minimum value of /" over the smallest closed interval containing the range of the
initial data; in particular, if / is uniformly convex, /" > δ > 0 the constants depend
only on δ.

In the presence of the decay estimate in (6.4) one may establish the uniform cubic
bound in (5.3) by restricting attention to a period interval [α,α + p], where a is
arbitrary and repeating the steps in the proof of Theorem 4.1 for compactly
supported perturbations. We only need to remark that immediate extensions of
Theorem 3.1 and Corollary 3.1 are valid for periodic functions. Specifically, if u1 and
u2 are arbitrary functions in BVnL00 with spatial periodicity p, then the following
uniform L1 stability estimate holds:

a + p a + p

j ^ J Mx,τ)-u2(x,τ)|dx

where ^p denotes the intersection of the closed temporal strip [τ, ί] with the spatial
period interval [α, a + p]. Here / is an arbitrary smooth function and the measure μ ;

and θj are defined exactly as in Sect. 3:

θj(E)= j τ(υ,j
En Γ(uj)

In the special case where / is strictly convex and u>3 is admissible in the sense that
uj > uf at H1 -almost all points of its shock set Γ(Uj), one easily obtains the
analogue of Corollary 3.1, namely

a+p a+p

I K(x,t)-u2(x,i)l<ix^ J ^{x^-u&^dx + l^W,). (6.6)
a a j

With the aid of the stability estimate (6.6), one may regard uε as a solution of the
inhomogeneous equation

dtu
ε + dxQf(u\ u0) = με = -

and compare it with the solution uε

w of the quadratically truncated homogeneous law
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Here we have the stronger estimate

\με(6fp)\ = const JI TVpu
ε(-,s)\3 ds

^const(TVpu
ε(,0))3](l+sΓ3ds

= const ε3

by using the faster decay law from (5.4). This completes the proof.
We shall next discuss the response of the solution operator of a genuinely

nonlinear system of two conservation laws to initial data in the form of a periodic
perturbation of a constant state.

Theorem 6.2. Consider a random choice solution uε to the Cauchy problem for a
system of two genuinely nonlinear equations with initial data of the form

2

uε(x,0) = uo + ε X σ?(x)r>0)>

where σ° are arbitrary periodic functions of bounded variation with period p. Then, the
asymptotic solution

determined by two Burgers equations

along linearized characteristics φ = x — λj{uo)t, satisfies a uniform estimate

° (\uε - uε

w\(t)dx = constε2T, (6.7)
a

in the interval 0 = t = T. The constant depends only on f and T is arbitrary.
Several remarks are appropriate concerning the interpretation of the stability

estimate (6.7) in view of the decay laws for periodic solutions. For a genuinely
nonlinear system, the random choice solution to the periodic Cauchy problem with
small data satisfies the following two sharp estimates:

TVpu(', ή ^ const TVpu(x9 0) (6.8)

if TVpu0 is sufficiently small, and

TVpu(,ή ^const/t (6.9)

if lufoO)^ is sufficiently small. The constants depend only on / and the point in
state space in the neighbourhood of which the analysis takes place. We shall show
below that the bound (6.8) in conjunction with the generalized characteristic system
leads directly to the quadratic L1 bound (6.7). The additional information contained
in the decay law (6.9) is not required for the proof of (6.7).
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As a corollary, one deduces that the L1 deviation per period satisfies

α j V r (6.10)

in the interval of time 0 ̂  t ̂  T = 1/ε1 " r of 0 ̂  r ̂  1. The estimate is meaningful
if r > 0, since each of the terms of the integrand has order ε in the interval
0 S t S 1/β.

A question arises regarding the optimality of the bound at times of order 1/ε. It
appears that phase shifts induced by the nonlinear structure of the eigenvalues of a
system will preclude agreement of uε and u% beyond first order at time 1/ε. We shall
argue that for genuinely nonlinear systems with periodic data of amplitude ε, the
wave form retains the order ε in an interval of time of order 1/ε. Thus in general both
the exact solution and the approximate asymptotic solution will be of order ε at
times of 1/ε, with discrepancies in wave location which lead to a global first order
error:

a + p

ί ue[ - ) — tfJ •,- )| at si const ε.
ε / V ε

The supporting evidence for the argument that (6.7) is sharp at time T = 1/ε is the
following. We recall that for a uniformly convex scalar law

the temporal decay profile of a periodic solution tφc, t) with period p is independent
of the pointwise amplitude of the data in the sense that

(6.11)

while

l imφ( , ί ) - « L = /"(«), (6.12)
ί->00

see [14]. Here ΰ denotes the time-invariant mean of the solution:

1? 1?
u = -\ u(x, 0) dx = - j u(x, t) dx.

Po Po

We observe that the right-hand sides of (6.11) and (6.12) are independent of the
amplitude of the initial data.

One of the striking features of the temporal evolution is that the size of the initial
data influences only the time at which the decay law (6.11) becomes accurate. The
smaller the amplitude of the data the longer the elapsed time before (6.11) becomes
sharp; the larger the amplitude of the data the shorter the elapsed time.

We shall illustrate this feature with an explicit solution of Burgers equation,
dtu + dx(u2/2) = 0, with piecewise constant periodic data consisting of two constant
states:

-b if 0<x<l]
Λ9 b>0.

L<x<2J

= ιφc,0).



Validity of Nonlinear Geometric Optics 345

The jump discontinuities located at the even integers generate centered rarefaction
waves while the jump discontinuities at the odd integers generate stationary shock
waves. The resulting solution u(x,t) presents a pattern of decaying (centered)
rarefaction waves separated by decaying (stationary) shock waves. In the period
interval — 1 ̂  x ^ 1 the solution is expressed explicitly in form

u(x,ί) = x/ί if -b^x/t^b

= -b if x/t^-b

= b if x/t ̂  b,

representing a centered rarefaction wave. At each time t the strength s of the
stationary shocks,

s = lim {u(n + /?, t) — u(n — β, t)}, n = odd integer,

is independent of the amplitude b if t ^ 1/fc, i.e.

s = -, if t^l/b.

In other words, oscillating data of amplitude b generates a solution with amplitude
θb at time θ/b:

The only feature which the number b influences is the time at which the rarefaction
waves begin to interact with the shocks: the smaller the value of b the larger the
elapsed time before interaction begins.

In the setting of genuinely nonlinear systems, one may anticipate a similar result:
for a broad class of periodic data with amplitude ε, the wave form retains the order ε
in an interval of time of order 1/ε:

Thus, in general both the exact solution and the approximate asymptotic solution
with periodic data of order ε will contain waves of order ε and times of order 1/ε. Phase
shifts induced by the nonlinear interactions of waves indifferent characteristics fields
will most likely preclude agreement of uε and uε

w beyond first order at time 1/ε. It is only
for a scalar law (governing a single nonlinear channel) that phase errors are absent,
allowing temporally uniform agreement of order ε2.

Proof of Theorem 6.2. The main step in the demonstration is an analysis of the
generalized characteristic system

dtWj + λk dxWj = μ j (6.13)

for the Riemann invariants vv7. As in the case of compactly supported perturbations
one is lead to rewrite system (6.13) in the form of two coupled scalar equations

d,wi + λ2(wl9 y^0

7)dx^1 = ji! + {λ2(w» w§) - λ2(wl9w2)}dxwl9

dtw2 + Λ1(w?,w2)dxw2 = μ2 + {λ1(wo

ί9w2)-λ1(w1,w2)}dxw2. (6.14)



346 R J DiPerna and A. Majda

The cubic character of the measures μj concentrated on the shock set leads directly
to an estimate of the form

\μj\{Sp(T)} S const ε2

by appealing to the decay estimate

TVpu('91) ^ c o n s t ( Γ * > 0 ) 7 ^ α + β = 1, (6.15)

in the same fashion as in the case of compactly supported perturbations. Here

a is an arbitrary number and the constant is independent of T. The remaining terms

on the right-hand side of (6.14) admit a bound which is quadratic in ε and linear T,

e.g.

βi = { ^ ( w i ^ - ^ ί w ^ w J J δ j W !

satisfies

\βi\{^P(T)} £ const J TV2

pu(', t)dt S const Tε2,
o

by virtue of the basic total variation bound (5.8),

TVpu
ε(', t) ̂  const TVpu% 0) = const ε.

Taking into account the information in the refined estimate (6.15) does not lead to an
improvement if one merely employs a quadratic bound for βx and optimizes with
respect to a parameter τ in [0, Γ] :

\βi\{^P(T)} ύ const} TV2u(ήdt + const ] TV2u(ήdt

τ T F2a(TVu ) 2 a

^ const J ε2 TV2u0 dt + ) const v

 2β

 ω dt

= const < ε2τ + ε2a

 2 / ? - 1 > ^ const ε

for the optimal choice of τ.
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