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Abstract. A new approach is presented for the study of the probability that the
random paths generated by two independent Brownian motions in Rrf

intersect or, more generally, are within a short distance a of each other. The well
known behavior of that function of α-above, below, and at the critical
dimension d = 4, as well as further corrections, are derived here by means of a
single renormalization group equation. The equation's derivation is expected
to shed some light on the β-function of the λφ\ quantum field theory.

1. Introduction

The Brownian motion in addition to its own attraction has been a source of insight
in various branches of mathematical analysis and physics. In particular, its
properties have been quoted in the analysis of various "random walk" and
"random surface", expansions used in statistical mechanics and quantum field
theory. Since it is often the case that the insight is based on an analogy - rather than
a complete reduction, the interest is not confined to the results, but extends also to
the methods by which these can be proven. Thus we expect that something may
still be gained from new derivations of old results (some of which are improved
here).

With these comments in mind, we present here a new method for the study of
the probabilities of intersection, and almost-intersection, for the paths of two
independent Brownian motions: above, below and at the critical dimension a — 4.
In contrast with the previously available proofs, the analysis is based on a single
equation - whose derivation requires only the more basic properties of the
Bronian motion. In particular, a stronger use is made of the scale covariance - by
means of which a "^-function" is derived for this problem.
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The above terminology is used in recognition of the similarity of the main
equation with the one which appears in the Callan-Symanzik equations for the λφj
quantum field theory, where it is widely believed to describe Wilson's
"renormalization group flow" of the coupling constant. While the equations are
similar, their derivations are quite different. In fact, part of the motivation for this
study is the desire to develop some insight which might be useful for a non-
perturbative analysis of quantum-field theoretical and statistic-mechanical issues
(see Sect. 8).

A relation between the Brownian motion and the more complex scalar
quantum field theory, for which d = 4 is the critical dimension, first appeared,
more than a decade and a half ago, in the work of Professor K. Symanzik. He
also discovered the renormalization group equation whose analog is considered
here. Recent works on the subject, including this one, derive from, and were
inspired by his deep insights - which we are only beginning to understand. I
should like to present this work as a small tribute to Professor Symanzik's
scientific contributions.

The main problem studied here, and the organization of the paper, are
described in the next section.

2. Brownian Motion

With the term Brownian motion we refer to the stochastic process with continuous
paths b(t): [0, cx))-^ ,̂ which is described by the Wiener measure. b(f) has
independent increments, and its transition probabilities are:

J μx(db)δ(b(t) -y) = etΔ(x, y) = (2πt) ~ d'2e ~(x~ y)2/(2t), (2.1)

where μx(db) is probability measure for paths which start at xeR d (with
J μx(db) = 1), and A is the Laplace operator. The measure μ defined by the above
properties can be formally described by the following expression

_ _ l r db(s) 2

μx(db) = δ(b(U)-x) Π db(f)e J ds ^/Normalization. (2.2)
ίe[0,oo)

The realizability of the measure μ on the space of continuous functions is, of
course, not a matter of definition - but a well known theorem. The Brownian
motion has an alternative description as the continuum limit of a simple random
walk (with a proper scaling).

For each b(t) we denote by ω its "path" in KA Specifically:

ω[t^t2} = b(^t^t^\) = {yE^ά\y = b(s) for some se|A,ί2]}, (2.3)

and ω = ω[0 ̂  From this point on, by the term path we refer only to the set ω (not

6(0)-
We shall discuss the behavior, in the limit a \ 0, of the probability that the paths

of two independent Brownian motions are within the distance a of each other, i.e.

^α|0,x)

[U]><ί2])^] (2.4)
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The symbol χ[̂ ] will always denote a characteristic function which is 1 if the
condition ^ is satisfied, and 0 otherwise.1

Since the motion is continuous, the probability that the paths actually intersect
is also well defined, and for finite t{ it equals the limit of (2.4) as a \ 0.

The main intersection properties (but not all, see Sect. 8) of Brownian paths are
known. The pioneering works of Kakutani [1] and Dvoretzky, Erdόs, and
Kakutani [2] showed the following.

Proposition 2.1 [1, 2]. For independent pairs of d-dimensional Brownian motions:

for each xφO and ί1?ί2>0

One may be puzzled by the fact that the critical dimension is d = 4, since ωl are
the images, under the continuous maps b\ of the one dimensional R+. Nevertheless,
the Hausdorff dimensions of ωl are ("almost surely") 2.

Each of the previously available proofs of (2.5) deals separately with the two
cases distinguished there, and (except for d>4) employs some property of the
Brownian motion which is a not quite trivial consequence of its definition. Our
main purpose is to present a simple, and unified proof. As a bonus, we hope to shed
some light on a renormalization-group equation which has appeared (by quite a
different reasoning) in quantum field theory.

For simplicity we shall focus our attention on the single function,

g(ά) = ί dxjdt.e-^j dt2e~^Prob( distίω^ωfo.^αlO,* ), (2.6)

which can be shown to describe also the limiting behavior of the probability (2.4),
as α->0, at each fixed x φO and tl912 >0. [It is easy to see that g(a) < oo e.g. by the
argument used in (6.13).]

The arguments presented here offer a simple proof that, as 0->0, g(a) exhibits
the following behavior (in a strong sense - see Proposition 5.2):

d<4,
ln{0'6~d})) d>4 (2.7)

Φ6,
4)) d = 6

(2'8)

and, in the critical dimension d = *

c

Here, and in the rest of the paper C stands for various constants, which we can
bound from above and below. Furthermore, these bounds have natural extensions
to non-integral values of d - which are regular (i.e. neither vanish nor diverge for
finite d).

1 In this work the superscripts on b* and ωi should always be read as indices, not powers
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The leading behavior in (2.7) and (2.8) has in effect been known. Previous
results, and methods, are briefly described in the next section. The emphasis in this
paper is on the β-function formalism, which is introduced in Sect. 4. Our bounds on
the β-function, W(g), are summarized in Proposition 4.1. Their derivation is
postponed to Sects. 6 and 7. In Sect. 5 the results on W(g) are used to present a
simple picture of the d-dependence of 0(0), and for the derivation of the above
asymptotics for g(ά). Some open problems which call for an improvement and
extensions of this approach are mentioned in Sect. 8.

Section 7 contains also some useful direct bounds on g(ά). Yet another point of
view is described in the appendix.

3. Previous Arguments

The earliest analysis of the intersection properties of Brownian paths in d = 4 and
d< 4 dimensions [2] was based on the fact that the probability of a d-dimensional
Brownian motion to hit a set AcR* does not vanish if and only if the sets'
Newtonian capacity is non-zero. Furthermore, an additional basic - yet not
entirely trivial - result of potential theory has been invoked for the case d = 3 and
for d = 4 use was made of the somewhat sophisticated (yet by now standard)
uniform estimate of Levy2

\b(s)-b(t)\^M(b, T}]/\t-s\\κ\t-sΓl, 5, t e [0, T] . (3.1)

Closely related questions were considered in [3] with regard to intersection
properties of discrete random walks (see Sect. 8). The stopping-time argument used
there, led to an analog of the |lnα| ~1 law for d = 4 dimensions [see (2.8)]. An error of
method (which led to incorrect results in other cases) was pointed out by Lawler
[4], who proved this law by rather detailed considerations, combining stopping
time arguments with another property which will not be described here.

Our quest for simpler methods is motivated by the desire to eventually be able
to analyze the interaction in physical models which admit stochastic geometrical
(interacting-) random walk or random surface representations, or expansions.
Needless to say, for such models one does not yet have an analog of the potential
theory, nor detailed information like (3.1).

The one case for which a simple argument has been known is the proof of the
non-intersection of Brownian paths in d>4 dimensions (first derived in [1]). In
Sect. 7 we recall a specially simple upper bound of Spencer [5] and derive, by a
related method, a rather good lower bound for all d. An analog of Spencer's
method was used for some of the results mentioned in 8iii.

2 In fact, Levy's estimate can be used more effectively by considering the stopping time value of
the function f(b(t^), where
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4. A Renormalization Group Equation

a) A Heuristic Argument

A key idea in our approach to the study of the function g(ά) is to consider its
changes under scaling. In particular, we shall make use of the Brownian motion's
self similarity:

b(t) = αfc(α~ 2ί) with respect to μ0(db) , (4. 1)

3f meaning that the two functions have the same distribution. The well known
scaling relation (4.1) is clearly seen in the formal expression (2.2), as well as in (2.1).

The scale covariance is, of course, broken by the constraint that dist^o,^],
β>JΌ,ί2]) = fl Let us first offer a heuristic analysis of the resulting behavior of g(ά).

For an integer n, g I - I may be related to g(ά) by the change of scale: x = x/n,

V*' „ ίa\
t = t/n2. When presented in terms of x and ί, in (4.1), g I - 1 expresses the integral of

the probability of pairs of longer paths to come within the distance α. The volume
integral is dx = n~ddx, and the change in the time scale can be accounted for by
replacing each path by a chain of n2 linked paths - whose time duration is again of
the order 0(1). The required contact would occur if in any of the n2 x n2 pairs the
paths are within the distance α. Therefore, by the inclusion-exclusion principle:

n2'2n-dg(a)-R(a,n), (4.2)

where R is a (positive) multiple-intersection correction, which for a fixed n we
may expect it to behave as 0(g(a)2).

Under iteration (4.2), with some more specific information on R(a, ri), leads to
Theorem 1. We shall now present a more careful, and complete, argument in
which (4.2) is replaced by a differential equation.

b) The Main Result

It is evident from (2.6) that g(a) has the following properties
i) g(a) is a strictly increasing function of α,

ii) Iim0(β)=oo,
α->oo

iii) lim g(ά) = 0(0) (by the monotone convergence theorem).
α^O

The differentiability of the function g(a) is certainly not manifest in (2.6). The
situation may however be remedied by means of the scaling relation (4.1), with
α = α. One gets:

= aSdx f A^β-'2'1 +t2) ί μ0(db1)μx(db2)χldiSt(ωl0ιtί], ω^,2]) ί 1] . (4.3)

g(a) = f dx j dttdtte-to+v J μo(dbί)μxla(db2)χldίst(ω^tί/a2}9 ω2

0>t2/a2]) ^ 1]
1Rd 0

ad+4

IRd 0

Equation (4.3) shows that g(ά) is infinitely differentiable in a e (0, oo), and
allows one to obtain an expression for its derivative, which is given in Lemma 6.1,
below. The above listed properties of g(a) allow one to define implicitly the
function W(g), on (0(0, oo)cR, to which we refer in the next proposition.
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Proposition 4.1. The function g(ά) obeys the following differential equation

), (4.4)

where W (the "β-function" ) is a continuous function, defined uniquely in the regime
[0(0), oo), having the form

W(g) = (d-4)g + 4f(g)9 (4.5)

with a non-linear term which, for g^g(l) in the lower bound, satisfies

~ (for any δ>0) . (4.6)

Furthermore, F(ά) = F(g(aJ) (given explicitly by (6.2)) obeys the following
bounds (for a^l)

2
d_4)+min(0,6_ d) -

=^w/Lα J = l }
d=4

With the restriction of the lower bound to gxg(0), (4.6) holds with:

Summary of the Proof. The main results here are the bounds on the β-function. The
exact expression for W(g(a)) is derived in Lemma 6.1, where F(a) is defined
explicitly. The continuity of W(g) at g(0) follows from the obvious monotonicity of
F(ά) [see (6.2)]. For the bounds (4.6) and (4.7) we use two different sets of
arguments. (4.6) is proven by Lemmas 6.2 and 6.3; and (4.7) is derived, by direct
estimates, in Sect. 7c. D

Of the two inequalities in (4.6) the more faithful one is the lower bound. The
other may in fact be improved using (4.7). However, (4.6) represents our a priori
estimates which allow one to establish the main elements of the picture described
next.

Let us precede the derivation of the results described above by a presentation of
their implications.

5. Analysis of the Renormalization-Group Inequalities

The function W(g) and a single value, say g(\), contain all the information about
g(a) - the question of the vanishing of 0(0) being determined by W(g) for g<ξ 1.
Notice that in (4.5) we give W's leading linear term exactly, and determine that the
non-linear part is positive. In the role it plays, and its dependence on g and the
dimension d (Fig. 1), W is quite similar to the β-function of the φ\ euclidean-field
[6], which was mentioned in the introduction. Its analysis belongs to the standard
repertoire of physics literature (see, e.g. [7]).

For g>g(0), W(g) is positive and, by (6.2), it converges to a limit as g^g(0}.
(4.4) shows that this limit has to be zero. For convenience, we shall refer to W( )
as if it is defined for all g e [0, oo). Clearly, W(g} has such extensions which have
all the properties listed in Proposition 4.1.
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d<4

Fig. 1. The shape of the function W(g)

Proposition 5.1. In any dimension d, g(a) takes values only in the region [#*, oo),
where

g* = sup{g\W(a) = 0} (5.1)

Furthermore, g(Q) = g* and it satisfies:

0(0) = 0 for d = 4 (5.2)

far d<4. (5.3)

Remark. While (5.4) shows the main result for d<4, its d dependence in the "d-»4
limit" is not optimal, see the direct bound (7.12).

Proof, g* is well defined since W is a continuous function, with

W(0) -0 and lim W(g) = oo . (5.4)

The continuity of g(ά), and its properties i) and ii) (Sect. 4b) imply that
g(a) G (g*, oo) for α>0, where W(g)>0.

As β->0 g(ά) which obeys Eq. (4.4), is driven all the way to g*, since on the
logarithmic scale of Inα""1, the interval αe(0,1] is mapped onto [0,oo).

The properties (5.2) and (5.3) of 0* are simple consequences of (4.5) for which we
choose δ = 2. D

For dimensions d ̂  4, where g(0) vanishes, one is also interested in the actual
behavior of g(ά) for small a.

Proposition 5.2. i) For dimensions d>4:

(5.5)

in the strong sense that 0<cd^g(l) and the lower order term is also of not less than
the indicated order, up to a logarithmic correction for d = 6.

ii) In d = 4 dimensions i
g(a) < /1λ A — - - Γ (5.6)yv '- ~1 v J

for any a^l. (An opposite bound of the same order is provided by (7.12) J
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Proof, i) d^4. Notice that the simple bound

ί-V-* (5-7)

[which is a consequence of the positivity of F(g), in (4.5)] implies that

g(ά)^g(l)ad-\ for a£l . (5.8)

For more complete information, let us write down the equation for g(d)

* _ι = -F(α)α4~d= -0(αmίn(2'd~4) {l + |lnα|χ[d = 6]}) (5.9)
a ma

[by (4.5) and (4.7)]. Hence

g(α) = g(l) — J dzO(e~mm(2'd~4)2{l+zχ[ίZ = 6]}). (5.10)
o

Splitting

lnα - 1 oo oo

J dz...= J dz...— J dz...,
0 0 Ina- 1

we get

(5-11)

which proves (5.5). Notice that the lower bound in (4.7) shows that the second term
in the right-hand side is in fact of the indicated order of magnitude, up to
logarithmic corrections for d = 6 (and d = 4).

ii) d = 4. In this case W(g} has no linear term, see (4.5). To integrate (4.6) we cast
it in the following form:

which directly leads to (5.6), and to a lower bound which looks like the right-hand
side of (5.6) raised to the power 3 + (5. [A better lower bound is given in
(7.12).] D

Remark. An alternative way to integrate bounds on W(g) [but not those on
W(g(a))~] is to invert and integrate (4.4), by which:

(5.13)
0(«)

This is the expression used in physics literature when one has a perturbative ex-
pansion for W(g).

We have seen here how the problem introduced in Sect. 2 can be solved by the
"renormalization group" equations (4.4) and (4.5). It still remains to prove the
inequalities which lead to the bounds (4.6) and (4.7). This is done in the next two
sections.
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i)g(α) ίi)F(α)
Fig. 2. A diagramatic representation of the functions g(ά) and F(a). Each wiggled line represents a
Brownian path, and a circle indicates that the paths come to within the distance a. g and F are
obtained by integrating over x and over the corresponding Brownian motions with an exponential
killing time

6. Proof of the Bounds on the ^-Function

a) An Exact Expression for W(g(ά))

We start by differentiating the expression (4.3) for g(ά), producing in effect an
exact version of the heuristic argument which led to (4.2).

Lemma 6.1. The function g(a) is infinitely differentiable in (0, oo), with the derivative

a^=(d-4)g(a)+4F(a), (6.1)

where
oo 3

F(a)= ! dxίίί Π (dtke-')^0(db^x(db^x(db3)
Rd 0 fc=l

• χ[dist(ωϊ0ttί), ω[0f fi]) ̂  a; i = 2 and 3] (6.2)

(see Fig. 2).

Proof. The C°° property follows directly from the expression (4.3) for g(a).
Differentiating (4.3) [which is symmetric in (tl9 ί2)], and then changing back to the
scale of (2.6), we obtain:

-2.I, (6.3)

with da a

/=
JRd 0

oo

The integration J dt2e~Ϊ2t2 in (6.4) may be replaced by
o

00

^dsίds2e~(Si+S2\.. with t2 = si-\-s2. For each (s1?s2),we split the path
o

ω[2o,r2] = ω[

2

0fs1]^ω[2lfSl+S2]. (6.5)

For a specified fe( sι):=:}; the two paths in the above splitting are independent.
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Furthermore, translation invariance permits us to replace Jdx by \dy. Thus:

oo oo

Rd 0 0

(6.6)

(where we also used a reflection in time, for ω2).
By the simplest case of the inclusion-exclusion principle,

1, ω2uω3) ̂  α] = χCdistίω1, ω2) ̂  α] + χ[dist(ωl, ω3) ̂  α]

- χCdisttω1, ω1) ̂  a; i = 2 and 3] . (6.7)

Using it in (6.6), we get I=2g-F(a), (6.8)

which, when combined with (6.3), yields the claimed (6.2) D
The right-hand side of (6.1) provides us with an exact expression for W(g(ά)).

In order to derive the bounds (4.6) one has now to produce bounds on F(α), in
terms of g(ά). This is done next.

b ) The Lower Bound on W(g)

The lower bound is quite natural. Since F(ά) represents events with two
intersections (see Fig. 2) one may expect it to be related to the square of g(ά). The
key tool for the following result is just the Schwarz inequality.

Lemma 6.2. In any dimension, for a^a:

F(α)^c+(α)0(α)2 (6.9)

with a dimension dependent constant c+(α)>0 for which c+(Q) is given in (4.8).

Proof. Let us denote by (^i the condition

. , , , - . ! A f . 0sup ± — , , — ̂ -^^ ' , with + for ι=l, and - for ι = 2.
o^s^f f pc| 2

Clearly oo

• ί dt2e-<>$ μx(db2)χldist(ω^ω^t2]) , (6.10)

since without the characteristic function χ[^i] we have an equality. Applying the
Schwarz inequality we obtain.

0

ίdx
rf 0 0

I 2

ίωiV f j, ω2

θ5f2]) ̂  α] > . (6. 1 1)
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By the symmetry of the integral in the brackets { - }, one may replace χ[^J there
with

the inequality being subject to the second constraint which is present in (6.11).
Without χp^jj, the bracketed expression is just g. Therefore we have derived

(6.9), with the following value for c+(α):

c+(*Γl=* ί dx]dte-*Sμo(dx)χ sup

To evaluate the integral, we use the reflection principle for the one dimensional
projection of b(s). One gets

K.d 0

oo J

Rd o |*-«u/2 |/2πί

[using (2.1)]. The value of c+(0) is given in (4.7). D

c) The Upper Bound

Lemma 6.3. For any δ>0

(6.13)

d+2+δ (6.14)

wίί/ι ί/ie constant given in (4.8).

Although the above inequality completes the derivation of the qualitatively
appealing picture described in Sects. 4 and 5, it is less satisfactory than its
counterpart (6.9). Note that any upper bound on F(a) leads to a /ower bound on
g(ά). It turns out, however, that g(ά) may be bounded below by means of a more
direct argument - with a better result for the critical dimension d = 4 (see Sect. 7).
For these reasons, the proof of (6.14) would be described here in a somewhat
abbreviated form.

The main difficulty in bounding F from above by const g2 is that the two
"intersections" required in F(a) (see Fig. 2) can be highly correlated - if both occur
in the vicinity of x. In fact, the contribution from the simplest of such events has the
following consequence [see (7.22)]

^constα(6-d>^(α)2. (6.15)

Hence F(α)/#(α)2->oo, as α->0, in d>6 dimensions.
The above problem does not exist in estimating the quantity

T(α)- J dxί dyTx,y(a),
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where

Tx,y(a) = Πί Π (^-'Ό ί μo(db1)μx(db2)μy(db*)χl@2]χl@3'] (6.16)
0 n = l

with ̂  denoting the events,
The event ̂ 2

n^s is the non-exclusive union of two sequences of events. In
one, the trajectory of bl(f) comes to within distance a from ω3

0>ί3] after reaching
such a neighborhood of o}2

0)t2]. In the other sequence, the roles of ω2 and ω3 are
reversed. By a simple stopping time argument, the contribution to T(ά) of each of
these scenarios is exactly g2. Thus one gets:

(g(a)2ϊ)T(a)ϊ2g(a)2. (6.17)

Proof of Lemma 6.3. Returning to F(α), one may combine the integrations over the
two paths b2 and b3, in (6.2) into a single-path integral [reversing the step (6.5)],
and a single time integral. This leads to the following representation

F(a)= f dx] dt.e^J dte~^ μ0(dbl)μx(db2)
Rd 0 0

• χCdistίω^. tl], ω[0,f]) ̂  a] x (ίL - ίF) , (6. 1 8)

where ίF and ίL are the values of the first and the last times 5 e [0, ί] at which

Without the term (ίL — ίF), the right-hand-side of (6.18) would be just g(a). By
the Holder inequality, we get for each p > 1

(6.19)

where B(ά) is the quantity obtained by replacing (ίL — ίF) in (6.25) with the factor:

(ίL-ίF)
p = p(p-l)ίdwt/- 2ί Λχ[s^ίF;s + ιι^ίJ. (6.20)

o o

Reversing the steps which led from (6.2) to (6.18), and using (in addition to the
strong Markov property) Eq. (2.1), one gets

B(d)=p(p-\)] duup-2e-» ί dx j dyeuA(x,y)Tx,y(a). (6.21)
0 Rd JRd

By (6.17), the uniform bound euΔ(x, y) ̂  (2πu)~d/2 [see (2.1)], and the choice of
p=l+(d + δ)/2, we have

tf

The substitution of (6.22) in (6.19) (with the above choice of p) results in the
claimed bound (6.14) on F(ά). Π

7. Direct Estimates of F(a) and g(a)

In this section we derive the bounds (4.7) on F(ά) (part 7c). It is also shown (in 7a
and 7b) how g(ά) may be estimated by a more direct approach, which yields the
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leading behavior of g(ά) (in a qualitative sense) in all the cases except for the
important logarithmic upper bound in d = 4 dimensions (derived in Proposition
5.2). Note that the logarithmic lower bound for d = 4, presented in 7b, is better
than what we got via the a priori estimate of the /^-function of Lemma 6.3 [in a
remark after (5.12)].

The upper bounds of 7a and 7b are derived by an adaptation of a specially
simple (and quite versatile) argument of Spencer [5] for the proof of non-
intersection in d>4 dimensions. The crux of it was an upper bound on the
probability of intersection of the paths of lattice random walks, provided by the
expected value of the size of their intersection. For the opposite bound, of 7b, we
evaluate also the second moment, and use the Schwarz inequality.

The direct lower bound on g(a) has also an alternative derivation, due to Sokal,
which is given in [14]. I am grateful to Felder and Frόhlich for reminding me of
the relevance of this estimate for the problem discussed here.

a) An Upper Bound for d>4 (Following Spencer [5]̂ )

The basic ingredient needed for the direct estimates is the exact expression for the
ball-hitting probability (which has an easy derivation)

f ΛJ μx(db)χ[ϋst(ω[0^y)^ά]= (7.1)

for \x—y\^a, where G(x,y) (the "free propagator") is the kernel, G(x,y)
= (-A + l)-^,?), (and G(0,0) stands for G(0,z) with \z\ = a).

The Fourier-transform of G(0,x) is (1 +p2)-1. We shall also use its following
properties

and -*1 as |x|->0, (7.2)

\B(r)\ being the volume of the ball of radius r, and

ii) fώcG(0,x) = l . (7.3)

Let us denote

\v(dbldb2)...= I dX]dtle-'^dt2e-^ho(db^x(db2)... (7.4)
Rd 0 0

and

4i = ω[oft l]. (7 5)

Thus v is the measure over pairs of paths, with which

g(ά)=ίv(db1db2)χ[dίst(Al9A2]^ά]. (7.6)

Trivial geometric considerations show that

(7-7)

where Vr(A1,A2) = {ze*R.d\dist(Ai,z)^r}9 and \V\ is the d-dimensional volume of
the set V.
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We shall now apply (7.7) - the main point being that while it is difficult to
evaluate the integral (7.6), it is easy to evaluate the corresponding integral of | Va\ (as
well as to estimate its higher moments).

Proposition 7.1. In any dimension

g(ά)^cad-\\+o(\)}(as α^O) (7.8)

Proof. Substituting (7.7) in (7.6) one obtains

9(d)^ ί
]Rd

= J dz J v(dbίdb2) Π X[dist«ti], z) ϊ 2ά]/\B(ά)\
i= 1

= \B(a)\-1G(0,2aΓ2 J dx J dzG(0, z)G(0, x)
IRd Rd

HBWΓ^ίUα)-2, (7.9)

where use was made of (7.1) and (7.3). By (7.2), the last expression reduces to
(7.8). D

Thus the simple estimate (7.7) leads to a rather good bound for d > 4, although
the above result does not, by itself, convey any information about d < 4, and not
much about the critical dimension d = 4.

b) Direct Lower Bounds for g(ά)

Using the left-hand side of (7.7), and then the Schwartz inequality we obtain the
following lower bound for g(a).

«* I Hβ
Evaluating the moments of \Va/2\ one gets:

Proposition 7.2. In any dimension
1 (7.11)

(with c of (7.8),) and hence, for a^l,

C(d-4)ad~4, d>4,

i d = 4' (7-12)
= C(4-d), d<4.

Proof. To estimate the denominator in (7.10) we write:

ί v(db1db2) \Vφ(Aίt A2)\2 = J du J d»f vtf&WMn,o e V^A,, A2)-\ . (7.13)
lRd Rd

There are two possibilities for the order in which the neighborhoods of u and υ can
be reached by each of the paths bl(t). Splitting the paths in a natural way, i.e.
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conditioning on the site of the first hit, one easily obtains:

Sv(db1db2)\Va/2(Aί,A2)\2 = S!dudv!v(dbldb2)χ[u,veVal2(A1,A2) ]

^2 JJJ

+ JJJ dxdudvG(0,u)G(x,u)/G(0,a/2)2

\u-v\^a

= 4 J dzG(Q, z)2 /G(0, a/2)4 + \B(l)\ad/G(Q, a)2 . (7.14)
\z\>a/2

The numerator in (7.10) equals [G(0,α/2)~2]2, by the argument of (7.9). The
substitution of (7.14) (with (7.2)) in (7.10) results therefore in the claimed bound
(7.11). The transition to (7.12) can be made using the Fourier transform of G(0, x),
which is (1+p2)-1. D

c) Direct Estimates of F(a)

The method used in 7a yields rather directly the following upper bound for the
quantity F(ά), defined by (6.2):

dx ff
R" H^α

ί

(7.19)

where

V(d)= ff dudvG(Q,u)G(u,v)G(v,0) ^

,
6 — a

const |lnα|, d = 6, (7.20)

as
Therefore

ό]}. (7.21)

For an opposite bound, let us first make the trivial observation that by (7.1)
(with y = 0)

F(a) ^ J dxG(0, x)/G(0, a) ̂  [d|B(l)|] ' V~ 2 . (7.22)

Combining it with (6.9) we have

F(α) ̂  [id|B(l)|] - V- 2 +ic+^(α)2 , (7.23)

and thus, using (7.12),

F(α)^Cα2(d-4)+mίn(0'6^^^ (7.24)

These results are summarized in (4.7) of Proposition 4.1 and used in Sect. 5.
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8. Summary and Open Problems

We have seen in Sect. 5 that the "renormalization group" equation described by
Proposition 4.1 is an effective tool for the study of the intersection properties of
Brownian motion. It would be interesting to see refinements of these techniques,
e.g. to resolve the issue mentioned next. An even more important development
would be an extension of these methods to some non-Markovian cases. Following
are some specific problems.

i) Find the exact behavior, ind<4 dimensions, of the quantity

κ(ά)= ϊ dί^-'1 J Λ2e-ί2Prob(d^ (8.1)

in which x(ά) scales, as α->0, with \x(ά)\ = 2a.
We join [4], where such a quantity is reconsidered for the random walks (and

an error of [3] is corrected), with the conjecture that for d = 4

as α->0. (8.2)

Such a quantity plays an important role in the physical models which are
mentioned in iii).

ii) The probability that Brownian paths come to within distance α is of course
analogous, and related to, the probability of an actual intersection of random
walks on a lattice of spacing a. Considering the lattice random walks, it is natural
to look at the ensemble, Ωx, of all the paths ω on Zd, with a given starting point x
and the weight eβ^9 where |ω| is the number of steps. The normalizing factor and
the mean square length are

S= Σ **N, ξ2= Σ |x(ω)|V|ω|/5, (8.3)
coeί?o ωeΩo

with x(ω) = the last site visited by ω.
For simple random walks S and ξ diverge at the critical point j8c = ln(2d)~1.

The following quantity

g(β) = Σ e"ωι1 e^lχlVnω2 Φ0]/[S2<f] (8.4)

is analogous to g(ά)9 with a = γβc — β^ l/ξ.
Our methods are easily adaptable to the study of the limiting behavior oϊg(β),

as β 71 βc, with results which are given by (2.7), with the above correspondence. The
problem is to study the analog of g(β) for self avoiding walks. E.g., prove there that

#->0 as ξ-+ao (i.e. when βsβc)9 in d^ 4 dimensions. (8.5)

iii) Derive non-perturbative bounds on the β-function of the λφj field theory
and ferromagnetic spin systems. The renormalized coupling constant in these
theories admits a random walk representation which is similar to (8.4), albeit with
weights which are more complicated than just eβ\ω\. Nevertheless, the analysis of
the critical behavior in these models has already been greatly aided by the intuition
gathered from the study of the Brownian motion [8-10, 15]. (The physical
significance of the quantity κ(d) for such models is described in [9-12].)
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0

Fig. 3. A random-tree formulation of the intersection problem. (After [9])

Appendix: A Percolation Formulation of the Intersection of Paths

Another approach to the question of intersection of paths was presented in [9].
While it has not yet been useful for any complete argument, it offers yet another
point of view. We shall provide here the proof of the main assertion which was
made in the appendix of that work.

Since the probability of intersection of the paths of two independent Brownian
motions depends only mildly on their starting points (being either zero or nonzero
for all x1 φx2)> it maY be studied by means of the following quantity.

s s ' l\s )

where B is the unit ball in Rd, and σ(dx) is the surface measure on Sd = dB. P is
therefore the probability that two paths which start independently on the
boundary of a unit ball, intersect inside.

Let Qi = {qιj}jeπ+ be a partition of the unit ball B into a family of balls, qitj

C J5, whose interiors are disjoint, and which exhaust the volume of B, i.e. for which

Σ l«ι ,1 = \B\. (A.2)
7=1

Subpartitioning each of the balls of Ql9 and iteratively repeating this
construction, one obtains a hierarchy of partitions which has the structure of a
tree, whose "ascending" paths correspond to points of B. The correspondence is
1 — 1, up to a set of measure zero (the "cheese") which may be ignored. For each
pair of paths ω1, ω2 we now mark those points on the tree which correspond to
balls (of various generations) which are hit by both paths. The marked points, and
the edges which connect them form a random tree. The problem of paths
intersection is thus reformulated as one of "percolation" (see Fig. 3, or the more
detailed description in [9]).

A classical result states that for trees whose branching numbers are independent
and identically distributed, the answer to the main question is determined by the
single quantity E(N1), which is the expected value of the number of ascending links
from the first vertex (and hence from each vertex which is reached). Specifically, the
probability of "percolation" does not vanish if and only if E(Nί)^l (unless Nί

= 1). In the case obtained here there are subtle correlations between the branching
numbers/Consequently, we are not able to solve the problem in this form.
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Nevertheless, we would like to point out the following striking property of the
Brownian motion.

Proposition A.l. Let N^ω1, ω2) be the number of balls of Q1 which are hit by both
paths, and let E(-) represent the average with respect to the probability measure

σ(dx)σ(dy)μx(db2)μy(db2)l($ σ(dz)\2.

Then I(S '
Γ < 1 if d>4

ECJVΛoΛω2)) is I =1 d = 4 (A.3)

[>1 d<4,

for every (nontrivial) partition Q± of B into balls {q1j}jez+' Furthermore, the
conditional distribution of the number of the next generation balls in qk>j which are
intersected by both ω1 and ω2 - conditioned on qkj being intersected, has the same
distribution as ]V1(ω1,ω2).

Thus, were we to ignore the existing interactions between the numbers of lines
which are drawn at the various stages of our construction, we would obtain a
solvable model. This "approximation," and Proposition A.I. offer another simple
insight (but not yet a proof) into why

P Φ 0 if and only if d < 4. (A.4)

Proof. Consider a path which starts at z, with \z\ > 1. The probability of it
intersecting the unit ball B is eactly \z\2~d. If the intersection does occur then the
site of the "first hit" of B has a slightly α-symmetric distribution, which tends to

σ(dx)l$ σ(du) when |z|->oo. Thus, by the renewal property of the Brownian
Js*

motion: . Λ „ _
P- lim Jμz(^1K(rffc2M

J;i=l,2] (A.5)

and, similarly,

£(JV1(ω1,ω2))= lim Σ Prob(ω ln^f1>jφ0; i=l ,2 |z,z)/
z->coj= 1

•Prob(ω ίnBΦ0;i=l,2 |z,z). (A.6)

Let (xp rj) be the centers, and radia, of the balls qlj. Then, by (A.6) and the
formula mentioned above

E(N1)= lim ]

1 oo

Σkh>Γ4 (A.7)
00

Equation (A.3) follows now from the fact that Σ \qltj\ = |B(1)|, and r^ are less than

1. The above argument implies also the other statement made in the
proposition. D
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Remark. Instead of using balls in Proposition A.I one could also take any
which is the closure of an open bounded subset of IRA For such a set, σ(dx) should
be replaced with the unique measure which minimizes the capacity integral:

1 =inf{{ ρ(dx)!ρ(dy)- - ̂  J ρ(Λc) = 1 1 . (A.8)
(.A A |X y\ A )

The general result is that if one partitions Av into sets which are similar to A2,
then

\a i
E(N1)= Σ TΓT which is =1 d = 4 (A.9)

where (%4i) = C ί̂)/!̂ ,-). In particular, (A.3) holds in the general self similar case.
The derivation of (A.9) rests on the above argument and the facts that

C(A)
i) the hitting probability, for large z, behaves as -jby, and

ii) for similar sets a and A: C(q) = C(A){ ^~
VMI

Note. After the submission of this article I learned that a ^-function approach to
the problems discussed here has been advocated by J. Frόhlich [13]. A closely
related work of Felder and Frohlich [14] appears in this issue. I am grateful to T.
Kara, T. Hattori, and H. Tasaki for pointing out that Lemma 6.2 requires a
restriction on α.
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