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Abstract. We consider the quantum systems of interacting Bose particles
confined to a bounded region A of the configuration spaces R". For a class of
superstable interactions we obtain bounds on exponentials of local number
operators for any temperature and activity. The method we use is the Wiener
integral formalism in statistical mechanics. As a consequence any thermody-
namic limit states are entire analytic and locally normal in the CCR algebra. In
some cases these are modular states.

I. Introduction

In this paper we study a class of superstable interactions in quantum statistical
mechanics with Bose—Einstein statistics. There have been extensive studies on the
thermodynamic limit in statistical mechanics of interacting quantum systems and
fairly satisfactory results have been obtained for the thermodynamic functions
[2,12]. The results concerning the equilibrium states for such systems are less
satisfactory. In the dilute regime, detailed properties of the thermodynamic limit
states have been obtained for various classes of interactions [2—4,6,15]. There
are also some results on the thermodynamic limits of the finite volume Gibbs
states of interacting Bose particles for the charge conjugation invariant systems
[5] and for the repulsive systems (with activity less than one) [1]. For the classical
systems with superstable interactions, Ruelle established uniform bounds of the
finite volume correlation functions [13]. Using the bounds he obtained various
results on the infinite volume equilibrium states and the pressure. The results have
been extended to unbounded classical spin systems [ 14, 8]. The main purpose of
this paper is to extend Ruelle’s results to quantum statistical mechanics for
interacting Bose particles. The method we develop can be extended easily to
unbounded quantum spin systems and will appear elsewhere [10].

We give a brief discussion of the main result. Let p , be the Gibbs equilibrium
states for a system of interacting Bose particles confined to a bounded region A
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2 Y. M. Park

of the configuration space R” and let Ny be the local number operators for B < A.
We shall assume that the interaction between particles is given by a pair potential
@. Under the assumption that & satisfies one of the following conditions:

(1) @ is a positive function with non-zero around the origin.
(2) There are constants y,,y, and A such that

() zx7% Xl =y,
P(x)> — x|, Ix[ 2,

where A >0 will depend on v (e.g. 4> 6 for v =3), we then obtain the bound of
the form (v < 4 in case (2))

p A(el2) < exp[A(B, 2)],

where A(B,«) depend only on the diameter of B and |x|. We will give the exact
definition of models, conditions on the interactions and the main result in Sect. II.
As a consequence of the bounds it will follow that any limit point p of the states
p, in the weak* topology is entire analytic and locally normal state on the CCR
algebra.

The basic ingredients of the method we use are the representation of the
partition function in terms of the Wiener integrals [2,6, 7], and a modification of
Ruelle’s method used for classical systems [13]. In comparison to the classical
systems, the quantum systems are much more difficult to handle. One has to solve
problems originated from

a) quantum statistics,
b) fluctuations of Wiener paths.

In order to control the above, we will use the fact that the Wiener measure of a
subset of the paths with large fluctuations is small. On the other hand, the system
behaves like classical on a subset of paths with small fluctuations. The basic idea
is a decomposition of the Wiener space Q" of n-paths into disjoint subsets. On
each subset we utilize the above observation to obtain uniform bounds. For the
details, see Sect. I'V. 1-Sect. IV4. -

We wish to make a few remarks on merits and demerits of our method.
Remark. (a) Using our method (with some necessary modifications) one may be
able to get uniform bounds of other objects such as local perturbations of
Hamiltonians. These kinds of bounds are expected to be useful to investigate more
detailed properties of the systems.

(b) We were unable to obtain pointwise bounds on reduced density matrices.
By establishing decay properties one ought to be able to see whether the systems
do exhibit Bose—Einstein condensation. We believe that the method we use can
be extended to give these bounds.

(c) Because of technical reasons, we need additional assumptions in (2) ((2.2.2)
and (2.2.3) in Assumption A in Sect. I1.2) more than superstability. These conditions
on the interactions seem to be optimal in our method. We would like to know
whether the additional assumptions (and the restriction v < 4) are necessary.

(d) The Wiener integral formalism we use seems to be inappropriate to handle



Local Number Operators 3

the systems of interacting Fermi particles. These systems involve some negative
terms in the Wiener integral formalism [2,5,6]. Thus it would be nice to develop
a method in the pure operator approach, i.e., in the second quantization formalism.
The method should also given an answer to the problem in Remark (c).

We list the contents of the paper. In Sect. I1.1, we introduce notations and the
definition of models. We then list the assumptions on the interactions (Assumption
A and Assumption A’) in Sect. II.2. We also give some discussions on the
assumptions in the space dimensions v. In Sect. I1.3, we give the main result
(Theorem I1.3.1), and then we derive consequences from the main result such as
entire analyticity, locally normality and modularity of the thermodynamic limit
states (Theorem 11.3.3 and Theorem I1.3.4).

In Sect. I11.1 we introduce the Wiener integral formalism in quantum statistical
mechanics. Some estimates on the Wiener measure are given in Sect. I11.2. In
Sect. I11.3 we introduce ideas of partial symmetry spaces which will be needed to
control quantum statistics later.

Section IV is devoted to the proof of the main result. The expansion method
used in this paper is developed in Sect. IV.1. We decomposed the space of n-Wiener
paths (trajectories) into disjoint subsets to expand the partition function. In
Sect. IV.2. We give the basic ideas how to obtain uniform bounds on each subset.
With an assumption of one estimate (Theorem IV.2.1) we prove the main theorem
in Sect.IV.3. Section IV.4 is devoted to establishing the basic estimate,
Theorem IV.2.1, in this paper. The additional assumptions more than superstability
on the interactions are needed to get the basic estimate.

Finally in Sect. V we give some discussion on the reason why conditions (2.2.2),
(2.2.3) and the restriction v < 4 for the potentials satisfying (2) seem to be optimal.

II. The Definition of Models and the Main Results

I1.1. Some Notations and Definitions

We first introduce the Hilbert space, the Hamiltonian and the Gibbs equilibrium
states for systems of interacting particles, which satisfy Bose—Einstein statistics,
confined to a bounded open region A of the configuration space R”. Let

HO(N)= @ LXA, d'x)) (2.1.1)

i=1

be the subspace of L?(A",d"x) formed by the totally symmetric functions of
n-variables x;eA. The associated Fock space

FN)= @ HD(A) (2.12)

nz0
describes the states of an arbitrary number of particles. The total Hamiltonian is
given by
H,=@® HY (2.1.3)

n=0
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in terms of the n-particle Hamiltonian HY’, which has the form

n

HY = —% U((x,)), (2.1.4)

where 4 ; is the Laplacian in the variable x; with 0-Dirichlet boundary condition
on the boundary 04 of A, and the interaction energy of n particles at the point
(x), =(x;,%,,...,X,) is given by

U((X)n) = Z lD(xi - Xj),

15i<jsn

where @ is a two body potential between particles. If the interaction operator
satisfies the stability condition

U((x)n) ; - an

for all n and (x),eR™,HY is a self-adjoint operator on #(A). Self-adjointness
of HY ensures that the total Hamiltonian H , is a self-adjoint operator on % ()
[2,12].

Let B< A be a bounded region in R*. We define the local number operators
Ny by

n

Nt spoap(Xis-.-5 X,) Z L (x 1, ., X,), (2.1.5)

where yj is the characteristic function of B. We note that for any ye#P(A),
N oy =mj. If the interaction is superstable in the sense that, if A is a cube of
sufficiently large volume and (x,)e A, then
2
U((x))>AW—Bn (2.1.6)
with 4, B> 0, then the partition function defined by
E =Trgzo,exp[—p(H, — uN ,)) (2.1.7)

is bounded by 1 £5, _exp[aIA[] for all Be(0, ) and peR [6,12].
Therefore if the interaction is superstable, one may introduce the finite-volume

Gibbs states p , by
pA)=E;" Trzeo,(Adexp[— f(H, — uN ,)) (2.1.8)

for any bounded operator 4 on #Y(A), and for any Be(0, ), ueR.

I1.2. The Assumptions on the Interactions

We now list the assumptions on the interactions. We shall assume that the
interaction between particles is given by a pair potential @:

Uxy,...,x) =) ®(x;,—x;

i<j
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where @ is a Lebesgue measurable function which satisfies @(x) = &(— x) and which
may take real values and the value + co.
Let 0 <AeR. For every reZ” we define a cube

0(r) = {xeR*: (' =PI =x' < (" + DA} (2.2.1)

These cubes form a partition of R”. If Xe(R")", we let n(X,r) be the number of
points of the sequence X = (x,,...,x,,) which belong to Q(r).

Assumption A. (a) Strong Superstability: There exist A > 0, B> 0 such that if # is
a finite subset of Z” and

xl,...,xmek‘%Q(r), X=(xX1,. 05 X0,

then
UX)z Y [4n(X,r)? — Bn(X,1)] (22.2)

re
for p’(= 2), which satisfies the inequality

’ 200" —1
r (r'—1

L e 223
p—1 vp' +(2—v) ( )

(b) Strong lower regularity: There is a positive decreasing function ¢ on (0, + o)
such that

" lp(t)dt < oo, (2.2.4)

o3

and for all xeR",
D(x) = — o(]x]).

Assumption A'. Positivity: @ is a positive measurable function with the property
that there exist constants ¢ >0 and d > 0 such that &(x) > ¢ for |x| =<d.
We give a brief discussion on the assumptions on @. Let @ be of the form

D=0, +,, (2.2.5)

where @, is a stable pair potential and @, is a positive function. If @, is a continuous
function with @,(0) > 0, then the strong superstability condition (2.2.2) holds with
p' = 2. Moreover, if there exists d > 0 such that

Dy(x) = x4 if x| =4, (2.2.6)
then (2.2.2) holds with
p'=1+A/. (2.2.7)

We refer to the references [ 12, 13] for more detailed discussions on the super-stable
interactions. The inequality (2.2.3) came from the technical restrictions of our
method in the proof of the main result. Roughly speaking we need non-zero 4> 0
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in (2.2.6) if , # 0 in (2.2.5). An direct calculation shows that (2.2.3) implies

SV
4
3+\/§’ o2

2

pl

p'>

p'>3 v=3.

Notice that the right-hand side of (2.2.3) decreases as v increasing. Thus we need
stronger superstability conditions for higher dimensional spaces. On the other
hand (2.2.4) implies that the attractive part of the potential should decay faster
than |x|~*~2. Thus the Lennard Jones type potentials

&(x)=alx|"*—b|x|"?, a,b>0

satisfy Assumption A under appropriate restrictions on « and . For instance,
o> 6and a > > 5for v = 3. For pure repulsive potentials satisfying Assumption A’
one does not need any other restrictions. We will come back to the reason why
we need (2.2.3) in Sect. IV.4 and Sect. V.

11.3. The Main Result

We first give our main theorem:

Theorem I1.3.1. (a) Let the interaction satisfy Assumption A in Sect. 11.2. For given
Be(0,00) and pueR, let p, be the finite volume Gibbs state defined in (2.1.8) for the
interaction. Then for any B< A and a€R, there is a constant A(B,|«|) such that, if
v<4,

pA(elalNB) < ABlal)

holds, where A(B,|a|) depends only on diam (B) and |«.

(b) If the interaction satisfies Assumption A’, the same bound as the above holds
for any veN.

We will produce the proof of the above theorem in Sect. IV. Using the method
(with some modifications if necessary) of this paper, one may be able to get the
uniform bounds of other objects such as local perturbations of the interactions.
These kinds of bounds may be useful to analyze the properties of the models in
more detail. Because the proof of Theorem I1.3.1. already involves considerable
complications we do not establish other bounds here.

We next consider some consequences of Theorem I1.3.1. We first establish the
following result:

Proposition 11.3.2. Let B,,i=1,2,...,k, be subsets of A, B, = A. There is a constant
¢ such that

k k
pA< I1 NBI> <ck! ] N* (B,
i=1 i=1
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where N *(B) is the minimal number of the unit cubes which cover B.

Proof. Let {4, ;} be the set of the disjoint half open unit cubes which covers B;. Then
NB| = ZNB,'(‘\Ai,j é Z NAi,j'
j A, ;nBiF ¢
Thus

k k
pA< I NBi> < ¥y .. Y pA< 11 NAN,,). (2.3.1)
Are, Bt ¢ J

i=1 41,,nB1¥¢ j=1

Using the abstract Holder’s inequality for trace norms [11], commutativity of
local number operators and the cyclicity of the trace, we get

k k
pA< [IN ) =TT Loa(NG)TVE (2.3.2)
i=1 i=1

We now use the spectral theorem to obtain | N%exp(— N )| <k! (or one may
use the Cauchy integral formula for p ,(e*4). Thus it follows that

p4(Ng) = klp (exp(N,)) < ck! (2.3.3)

by Theorem I1.3.1. Applying (2.3.2) and (2.3.3) to (2.3.1) we proved the proposition.

We next discuss the thermodynamic limit of the finite volume Gibbs states p ;.
We introduce the CCR algebra of the local observables. For the details we refer
to reference [2]. For fel*(A,d*x), let a(f) and a(f)* be the annihilation and

creation operators defined on F®(A). Then &(f)= —1£(a( 1)+ a(f)*), for real f,

has a self-adjoint extension, which we write again &( /). We write the Weyl operators
by W(f)=exp(i®(f)), and let %(A) be the C*-algebra generated by the Weyl
operator W(f), fe L*(A, d*x), and let

A=) u)
AeR’
be the quasi local CCR algebra in the sense of [2]. As a consequence of Proposition
I1.3.2 we have:

Theorem I1.3.3. Consider an interacting Bose particle for which the interaction
satisfies either Assumption A (with v <4) or else Assumption A'. Let p , denote the
finite volume Gibbs states for some Be(0, ) and peR, and let {p Aa} be a subnet such
that

plA) =1lim p , (4)

exist for all Ae()U(A). Then p defines an entire analytic state over the CCR
A
algebra U. The state p has finite local particle density and hence is locally normal.

Proof. We adapt the method used in the proof of Theorem 6.3.22 of [2]. We note
that for @&(f), supp f = B< A, and for any feZ%®(A)
la(N)(Ng+ 1) 2 < | £,
la(f)*(Ng + 1721 < (| 155
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and

[Np,a(f)]= —a(f),
[Ng,a(f)*]=alf)*
See reference [2]. Using the above relation it is easy to check that for L?-functions
Jf; with compact supports, supp f; B, < A,

k k k
pA(H 4’(f,-)> épA< [T (N, + 1)“2) 1112

i=1 i=

< o(k!)'? ﬁ N*B)I £ (2.3.4)

i=1
Following the procedure used in the proof of Theorem 6.3.22 of [2] and using the
bound (2.3.4), we have shown the theorem. For the details of the proof, we refer
to [2].
Let @ be a real valued function satisfying the estimate: For some ¢ > 0

Jd"x(1 + |x[%)" 4| D(x)|> < . (2.3.5)
Then the following result follows from Proposition I1.3.2. and the same method
as in the proof of Theorem 6.3.31 of [2].

Theorem 1I1.3.4. Let @ be a positive function satisfying Assumption A’ and (2.3.4),
and let p , be the finite volume Gibbs state for the interaction given by the potential
. Let p be any weak*-limit of p, as A—R". Then p is a modular state.

Since the proof of the theorem is the same as the proof of Theorem 6.3.31 of [2],
we do not repeat the proof and refer to [2].

III. The Wiener Integral Formalism

II1.1. The Wiener Integrals

We first review the Wiener integral formalism in quantum statistical mechanics
for interacting boson particles. For the details we refer to [2, 6, 7]. In the remainder
of this paper we will use the following notation:

(%), =(x1,X5,...,%,), X,€R,

d(x), = f[ a’x;. (3.1.1)

The path space of the Wiener measure can be chosen to be

Q=X R’
[0,8
where R is the one point compactification of R*. The Wiener measure P? (x, y; dw),
conditioned on those paths weQ with w(0) = x, w(z = f) =y, is o-additive, finite
measure on €. It is the path space measure of the process with transition function
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exp[$t4]. The kernel of exp[£tA4] is denoted by p'(x, y):

t 1 IX - y,2
P(X,Y)—WGXPI:— T (3.1.2)
where |x — y| is the Euclidean distance between x and y. We have
PP(x,y) = [ PA(x,y;dw). (3.13)
Q

For any Borel subset B< R, let x4 be the characteristic function of the subset
{weQ:w(r)eB for all te[0, 8]}. We will drop the superscript B from y4 if there
is no confusion involved. We set

Pl (x,y;do) = 1 [(w)PP(x, y; dw),
Ph(()n, s d()) = T Phlx;, y;5dw)). (3.14)
=1
Then P (x, y;dw) is the path space measure of the process with transition function
exp[5t4,], where 4, is the Laplacian with 0-Dirichlet data at /4.
Let ¢/ ((x),; (v),) be the kernel of the operator exp[ — BH%] on L*(A"), where

HY is the n-particle Hamiltonian given in (2.1.4). By the Feymann—Kac formula.
see e.g. [2,6],

Yo (s (0)) = éf Pl ((x)ns (9)n d(c0) n)€Xp[ J Ul(o(v)),)d J (3.15)

Let S, be the group of the permutations of {1,2,...,n} and let A be the multiplication
operator by a function A((x),) invariant under any neS,. Then we have

TWS’(A) (Aexp[ — BHPT)

s
=— Z [ dx),A((x),) | Pﬁ((X)mn(x)n,d(w)n)eXp[—f U((o(7))n dl':l,
0

' nESy An

(3.1.6)

where 7(x), = (xn(l), X(2yse - xm)).

II1.2. Some Estimates on the Wiener Integrals

We collect here basic estimates which will be used later. Let 4 < R* be a compact
subset. We write

P(x,y;1) = [ P(x,y;dw),
P (x,y,:0) = [ P'(x, y; dw)y 4(w), (3.2.1)

and
Wa(x, ,30) = P(x,y58) = Py(x, y30) = [ P(x, y;do)[1 — z4@)].  (3.22)
We note that for fixed ye 4 (or for fixed xe 4) W,(x, y;t) is a solution of the diffusion
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equation

ou
PRl
with initial condition u(x,0) =0, xe4 and boundary condition u(x,t)= P(x,y;t)
x€0A4,t> 0. From the maximum principle we have the following (see Theorem 6.3.8
of [2] and its proof):

Lemma II1.2.1. Let A = R’ be a compact subset whose boundary A is a C*-surface.
Then for all x,yeA, 0=t =f

1
0 S Wy(x, y:t) < e?Q2nt) =2 CXP[ — 4 0A)* +d(y, 0/1)2)]

where d(x, 0A) is the distance between x and 0A.

Remark. Notice that the right-hand side of the above inequality is independent
of the compactness of 4 and also the smoothness of 04. Thus, by an approximation
argument the inequality holds for any regular subset A = R* with piecewise smooth
boundary 4.

For a unit cube 4 and for [ = 0, we write

A4, )= {xeR“: max inf|x’— y| < l}. (3.2.3)

15isvyed

That is, A(4,]) is the cube with its volume (2] + 1)” containing 4 at the center. Let
us denote

Eqy= {weQ:w(t)ed,w(t)e A(4,l + 1)\ A(4,]) for some 7,7'€[0, f],
and w(t")¢A(4,1+ 1)° for any t"€[0, 5]}, (3.24)
€4 1 ={weQ:w(t)ed for any 1€[0, 5]},

where A¢ is the complement of 4. Note that any path in &,,,/=0, must visit 4
and A(4,1+ 1)\ A(4,]), but not A(4,!+ 1)°. We define

Ky (x, 0= | PAx,y;dw)

gA,l

= I PB(X,y;da))}(A(A,H 1)(60)[1 - XA(A,:)(CU)D — Z4(@) ] (3.2.5)
Q

The second equality of (3.2.5) follows from the definition of &,, and an easy
observation. Let P, , be the projection operator onto L*(A(4,1)) = L*(R"), and let

- B
Kai =P s+ 1)eXp|:Z APy q141y- (3.2.6)

We write the integral kernel of K, , by K, (x,y): (327)

'KA,I(xo V) = Lai+ X j Pﬂ/z(xa y;dw)XA(A,H 1)()’)«
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For = — 1, we write

K, ()= [ Plx,y;dw)=[Px,y;do)w),

Sa,-1

Ky, 0%, 9) = 24) [ PP2(x, y; deo)y 4(y), (3.2.8)

and let IKA,~1 be the operator corresponding to the kernel IKA,_I(X, y).

Proposition III.2.2. For |= —1,0,1,2,... there are constants ¢, >0 and ¢, >0
such that

I\~
a) I, (x,y)=¢; exp< - @“)KA,I(X, ),
b) TI'LZ(M(KA,I) < CzlA(A, I+ I)L
where |A(A,1+ 1)| is the volume of A(4,1+ 1).
Proof (a) We first note that from (3.1.2) and (3.1.3)

v/4
[ P(x,y;dw)]'? = (%) [ PP (x, y;dw). (3.2.9)

Using (3.2.5) and Lemma II1.2.1 (and the remark below that) we have
K 4106 Y) = Xacay 2O 4,06 V) + Lacagy2)e ()4 (%, ¥)
= Lacay2X) J PP y;do)[1 = g 44,()]
+ Lacaaa() [ PPx, y3do)[1 = ¥ 4o(e)]

gcexp<— é}) (3.2.10)

and
(€ % )2 < ([ PP, p3do)g gia,i 4 @)

U acaae OO PP Y5 Al 0,04 1,02
el (%, ). (3.2.11)

Here we have used (3.2.9) and (3.2.7) to get the last inequality. For /=0, the
proposition follows from (3.2.10) and (3.2.11). For /= — 1, the proposition follows
from (3.2.9).

(b) Using (3.1.2) and (3.1.3) we have

IA

IIA

_ 1
Trpey (K, )= d'x [ PP(x, x;dw) = ———
o A(A,jl‘+ 1) j (nﬁ)v/z

This proves the proposition.

|A(4,1+1)].

II1.3. Partial Symmetry Spaces
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Let S, be the group of permutations of {1,2,...,n}. As before we write

# (M) = ® XA, d'x),

i=1

HOUN) = ® LA, d*x)

i=1

Let 4,<S,. The subset 4, is not a necessary subgroup of S,. Let {f;} be an
orthonormal base for L*(4,d"x), and let #°$ (1) be the subspace of #,(A) spanned
by the following vectors:

Card(An)_l Z fi,(xnu))fiz(xn(z))- . fi,,(xn(n))s

neAy,

where card(4,) is the cardinal number of 4,. Let P(4,) be the projection operator
onto #¢) (A). For any fe# (A) we have

(P(4,)/)(x),=card(4,)"" Y f(a(x),). (33.0)

nedn

If 4 is an operator of the trace class on #,(A) which admits an integral kernel
A((x),, (»),), it follows from (3.3.1) that P(4,)AP(A4,) admits the following kernel:

P(A,)AP(A4,)((x),,(»),) = card(4,)"* Y Ar'(x),,7" " (), (3.3.2)
n,m'€An
and so we have

Trp, o(P(A)AP(4,) = card(4,)"> Y [ d(x),A(x"(x),, 7'~ (x),). (3.3.3)

T, €A, A"

The following is obvious: If 4 is positive operator.
Trfn(A)(P(An)A P(An)) g Trfn(A)(A)- (334)

In Sect. IV.3 we will consider the kernel of operator AP(A,). Using (3.3.1) it is easy
to derive that

(APA)((0,, (1)) = card(4,) " T A((x),. 7 (). (3.3.5)

nedA,

In the applications in the following section, we will frequently take A4 = R".

IV. Bounds on Local Number Operators

IV 1. The Expansions

In order to show Theorem II.3.1 we employ an expansion method similar to
Ruelle’s method [13]. Some modifications are necessary to control quantum
statistics and fluctuations of paths. We first express the expectation of local number
operators in terms of the Wiener integrals. From (2.1.1)-(2.1.5), (2.1.7), (2.1.8) it
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follows that

)

A= ZO ZnTrﬂ’i,‘) (A)(exp['— BH(/;')]),

pAeVB) =511 Y 2"Tr (A)(e"’“"B exp[ — HY]), 4.1.1)
n=0
where z = e?* and the term corresponding to n=0 equals 1. In the rest of this
paper we use the following notations:

B
U((@),) = | Ul(w(1),)dr,
0

Ng((x),) = En: rp(x), x,eR. (4.1.2)
i=1

From (3.1.6) it then follows that

Tryfé.” (1) (elalNB exp[ _BH(/;')])
1
n!

Y [ dx), e N [ P((x),7(0),d(@))e” O (4.13)
neSn A, Qn

Since B can be moved to any place by a translation (A will be also moved), one
may assume that B is contained in the ball of diameter diam(B) centered at the
origin. We will also take A = 1 in (2.2.1) to avoid non-essential complications arising
for A# 1 in the proof of Theorem II.3.1. Thus Q(r) is the unit cube centered at
reZ”. If superstable interactions satisfy (2.2.2) with A # 1, we replace unit cubes
Q(r) by the cubes having the length of each side 4. Then the proof for 1 # 1 is the
same as that for 1 =1 with some trivial modifications.

We will use the following notations:

O(r) = {xeR":(r" =3) =x' < (r' + ), reZ"},

Ir|= sup |r,reZ",
<

15isy
Aq= | p Q(")aq :0, 152""9
rl=q
[4,/=(2q + 1)": the volume of A,
Po: a fixed natural number such that B< 4, . (4.14)

For any given path configuration {w,}, let n(r,7) be the number of w;, i =1,2,...,n,
such that w/(t)eQ(r). We decompose the space of path configurations {w,} into a
union of mutually disjoint subsets

Q"= (S’Ou< U £q> 4.1.5)
4P,

as follows: For fixed p>[> 1 which we will choose later, let
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&, the subset of paths {w;:i=1,2,...,n} satisfying
sup Y. n(r,7)? <|A4,[, (4.1.6)

=[0,8] red o
&, the subset of paths {w,;:i=1,2,...,n} satisfying
sup Y n(r, 1) = |4,/ 4.1.7)

w10,6] ren,

and for all ¢’ > ¢

sup Y n(r,7)? < |4, (4.1.8)
wel0.81 v 1,
The above is the first decomposition of Q" into disjoint subsets.

For given q = p, we further decompose &, into a union of subsets as follows.
Since, if &, is empty, &, does not contribute in the following estimates, one may
assume that &, is not empty. Let K be a subset of {1,2,...,n} and let ng(r,7) be
the number of w,’s, ieK, such that w,(t)eQ(r). For any configuration of n-paths
in &, there is at least one smallest subset K < {1,2,...,n} satisfying the following
condition:

su ne(r,7)? = su n(r, 7)?, 4.1.9
re[Og] re%q K( T) re[Og] rEZAq ( T) ( )
and for any K' < {1,2,...,n} with card (K') < card(K),
su e, T)P < su ng(r, 7)7. 4.1.10
b 3 nelt,eP < sup ¥ g (4110

We define
&= 1{wjeé,: There exists a K satisfying (4.1.9)
and (4.1.10) with card(K) = k}. (4.1.11)

We remark that the paths w,;,ieK, must visit 4, at least one time at t,€[0, f]

simultaneously by the definition of K. We have
£q=kk)é”q,k. 4.1.12)

q

From (4.1.7) and (4.1.8) it follows that
AP <k S A, P TP, (4.1.13)

The first inequality follows from Lemma IV.4.2(a) in the next section and the
second inequality follows from (4.1.8) and the Holder inequality:

1/p
Z n(r"t)él/lq+1|<|/1q+1|_l Z n(r,z)p> él/lq+1|1+(l‘1)/p0n épq'
redg+1 redq+1
(4.1.14)

Thus, from44.1.1), (4.1.3) and (4.1.12) we have

o0

PG+ Y Y Y G, (4.1.15)

n=0qzpy kz|Aqllr
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where G, is the contribution from &,,:

o © 1 ) ; ~
Go=E;"Y — 3 [ dx),e™Ns [ Ph(x,),n(x),;d(w),e” V",

* eSSy, An &o
(4.1.16)
and
G;",i=3;‘§,— Y [ de),e N [ Ph((x),, w(x), s d(w),)e . (4.1.17)
* eSSy An Ea.x
Since, by (4.1.13)
Ne((x))= Y n(r,t=0)=[4,,,'" "7 oné&,.
redAdg+1
We have
Go=exp[laf|4, |" "¢ 1"], (4.1.18)
and
G S B 2expllalld, ' VPIGE, (4.1.19)
where
- 1
Gor=—y X [ dR), | PL(00), (X)) Je (4.1.20)

neS, An Eq,k

The problem is now reduced to obtain uniform bounds of (4.1.20) so that the
expression in (4.1.19) is summable.

IV. Basic Ideas

We recall that for any configuration of paths {w,} in &, , there is a subset
K< {1,2,...,n} with card(K)=k such that (4.1.9) and (4.1.10) hold. There are
n!l/(n — k)!k! ways to choose k-paths among n-paths. If one reindexes k-paths w;,
ieK, so that K ={1,2,...,k}, and if one defines

E,=1{{ojed, K ={1,2,...,k} satisfies (4.1.9) and (4.1.10)},  (4.2.1)
it follows from (4.1.20) that

- 1

G = Y fdx), [ PA((x),, n(x),;dw))e V@ (422)

( - k) 'k_' neS, An Eq,k

Notice that we have an (n — k)! factor instead of n!. The total number of terms in
the above is card(S,) = n!. This is the main problem arising from quantum statistics.
For any configuration {w;} of paths in &, we write

8
U= Y [owf) r))df—JU o(t))d,

1Si<j<k0

U(@),-d= X f‘P(w(f w,-(f))drffUz((w(f)),,_k)dr,
i 0

B

k n il
W@ (@),-) =Y. Y [ P0) — of0)dt = [ W((@()), (@()),-dt.
A . 0
4.2.3)
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Then
U((),) = U ((w)) + W((@), (@), - 1) + U,((®),-x)- 4.24)

From the definition of éaq’k in (4.2.1) and from (4.1.9) and (4.1.7) we conclude that
there exists 1,€[0, f] such that

Y A t) =4 on &, 4.2.5)
redgq
where a(r, 7,) be the number of w,’s, i =1,2,...,k, such that w{z,)e Q).
We now discuss basic ideas briefly. First, one has to control the divergence
factors in (4.1.19):

exp[lall4,, (' 77V,

which come from the bounds for exp[aNy] on &, (or on E’q’k). We will obtain
some convergence factors from the interaction terms U,((w),). We note that for
any configuration {w,} of paths in &, there exists 7,€[0, f] such that (4.2.5) holds.
From the strong superstability condition in Assumption A in Sect. II.2, one obtains
that

U, ((o(co))) 2 X [AA(r, 7o) — Bii(r, )]

> Z An(r, 1o)P — Bk, 4.2.6)
reAgq
where k is bounded by (4.1.13). Using the Holder’s inequality and (4.2.5) one gets
that for 1 <l<p<p’

U ((0ltg)) = AlA,|M VPP — Blg, PO Dir, 4.2.7)

Thus, if the above inequality holds for any t€[0, f], one gets the convergent factors
from exp(— U,((w),)). But one does not expect that (4.2.7) holds for all [0, ],
because of the fluctuations of paths w;, i =1,2,..., k. If the fluctuations are large,
one expects the contributions are small in the sense of Lemma [I1.2.1 and
Proposition II1.2.2. On the other hand, if the fluctuations are small, one expects
that (4.2.7) holds approximately. Thus one may be able to permit a small amount
of the fluctuations.
We define the fluctuations of k-paths as follows: We write

Viw)= sup olr,)— w(Tz)lz,
71,72€[0,8]

k
V((w)y) = Z V(w,). (4.2.8)

The following result which we will prove in Sect. IV.4 shows that if one adds a
small fluctuation term one gets convergent factors from the interactions. We write

v, p) =14+ Q20" = Djyp'—(v—2)) (4.29)
We then have:
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Theorem IV.2.1 a) Let the interactions satisfy Assumption A in Sect. I1.2. with p’
satisfying the inequality

p /
——— <7y, p)
p —1

Let p> 1> 1 have been chosen such that
(1) I/p <2/v,

P’ ,
(2) =——=p=yv,p).
p—1

Then for any b>0, p, in (4.1.4) and (4.1.6) can be chosen sufficiently large such
that there is a constant ¢ > 0 independent of q,k and A such that

U ((0)) + bV (0)) + W((@), 0l@), ) Z el 4, |17 e

on &, for q=p,.

b) Let the interactions satisfy Assumption A' in Sect. I1.2, and let p > 1> 1 have
been chosen such that p <y(v,p"). Then for any fixed b >0 there is a constant ¢ >0
independent of q,k and A such that

U1 + bV((a))k) > Cl/lq+ 1|[1 (= 1)y(v.p)p)]
holds on 5"‘1,,‘ Sfor sufficiently large p,.
From the fact that y(v,p’) > 1 it follows that
I—1 -1
1+ —<1+
p p

and so we have convergent factors from the interaction by the above theorem.

(v, p’), (4.2.10)

Lemma 1V.2.2. Under the assumption in Theorem IV.2.1, one can choose p> 1> 1
such that (1) and (2) in the theorem hold for v <3.

Proof. For v =3 the assumption implies p’ > 3 and so

’

p 3 :
lﬁ<§ andy(3,p)>%

If one chooses [ =1+ ¢ for ¢ > 0, the condition (1) in the theorem implies that p
has to satisfy p>3(l +¢). For given p’ one can choose ¢ sufficiently small such
that 3(1 + &) < (3, p’). Thus p can be chosen so that (1) and (2) hold. The argument
similar to the above gives the proof for v=1,2. This completes the proof of the

lemma.

2
If v= 4, then y(v, p’) <1 +—for any p’ = 2. The condition (1) in Theorem IV.2.1
v

v
2
in this case. This is the reason why we require v < 4. We will discuss the reason
in Section V in more details.

implies p >— and so p> y(v,p’). The bound in the theorem will be failed to hold
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IV.3. The Proof of the Main Result: Control of Quantum Statistics

In this section we prove Theorem I1.3.1 under the assumption that Theorem IV.2.1
holds. From TheoremIV.2.1, (4.2.2) and (4.2.4), and from the fact that
W((w)y,(w),—,) = 0 for repulsive interactions, it follows that

G;"}( sexp|— c|/1q+ 1|1 - 1)7”"’,)/”]17"}1':}‘, 4.3.1)
where
- 1
(n) — B
Fq.k - (n _ k)'k’ n;g /_1[“ d(x 5 P ((x n»n(x)nsd(w) )
exp[bV((w)y) — U,((®),- )] 432)

As we have discussed before, there are n! terms in (4.3.2). Therefore one has to
show that many terms in (4.3.2) do not contribute. The main idea is decoupling of
the pathsin {w;:i=1,2,...,k} from the paths in {w;;i =k + 1,..., n}. On the subset
€.x @ path w,i=1,2,...,k may join to a path w,l=k+1,...,n, to form a
composite path, ie., x,; = x;. If the fluctuation of w; is small, there will not be
many ways to form the composite trajectory. On the other hand, if the fluctuation
is large, there will be a convergent factor by Proposition II1.2.2. Thus we further
decompose the subset (?q‘k into a union of disjoint subsets corresponding to large
and small fluctuations. The decomposition is as follow. We remember that
w;,i=1,2,...k, must visit 4, at least one time. Thus we have

| Ph((x),, (x),; d(c),). ..

Eq,k
k
= | Ph((),,m(x),;d(@),) [T [1 = gas(@)] .. 433)
éﬂqk i=1

where A is the complement of A,. Notice that

(1= tus@)]= Y [1 = spp@)] 43.4)

redgq

That is, in order to visit 4, at least one time the path has to visit some Q(r) in
A,. We define

A4,),6,, and &, _,
as in (3.2.3) and (3.2.4). We also note that

[1— )] = [XA(CU) + i LA+ 1)((0)(1 - XA(A,I)(CU)):'[I — xal@)], (4.3.5)
=0

and

_f P hx,y;dw)-- = jPﬁ X V5 dw)/(A(A 1+ 1)((0)[ XA(A,I)((U)][I — La)] .-
éDAI
[ Ph(x,y;dw) = [ Ph(x,y;do)y ). ... 4.3.6)

g;t—\
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From (4.3.4), (4.3.5) and (4.3.6) one obtains that for any positive function F on Q

[P yida)[1 — 2@ F@ S Y Y | PHxyidolF@),  (337)

dcdgl= 16,

where ) is the summation over unit cubes 4 =Q(r)< A,. Let &%, be the
Ac Aq

subset &, for the i-path,i=1,2,...,k. We write

EX(A, 1), ..., (4, 1) = {(a))neg"q,k tw €6 i=1,2,... k). (4.3.8)

We note that for any configuration (w), in EZ((Al,ll),...,(Ak,lk)) and for any
ie{1,2,....k},

sup |wy(t,) — CUi(fz)|2 édiam(/lz, ) Sl + 2)%,
71,72€[0,]

where diam(A) is the diameter of 4, and so
k
V(w)) =4v Y (I, +2)? (4.3.9)
i=1

on éT’Z((Al,ll),...,(Ak,lk)). We now apply (4.3.3), (4.3.7) and (4.3.9) (in that order)
to (4.3.2) to obtain the bound

1

Rl é("-—k)!k—!AEAq ”.AEAQ 11=Z—1 mzkzz—l
“exp |:4vb i (I, + 2)2]F’;((A1,ll),...,(Ak,lk)), (4.3.10)
where .
Fy((4y, 1), (4 1)) = 7,; /{ d(x), K((x),,, 1(x),),
4.3.11)
K((X) (V)) = ) Pl (%) )y dlw),)exp[— Us((),— ) ].

E*((A1,11), ..., (41, 1))
We recall that for any configuration of n-paths (w), in c?’;((AI,l,),. .., (4,,1)), the
path w;,i=1,2,...,k, must stay inside of A(4;,];+ 1) by (3.2.4) and (4.3.8). This
means that w;,i=1,2,...,k, cannot form a composite path (trajectory) with any
path o, if w,(r =0)eA(4;,]; + 1)°. According to the bounds in (4.1.14) there are at
most

Agragral "0

number of paths which can hit A(4;,l;+1)=A,,,,,, at =0 (or 7= f). Thus, if
l,,i=1,2,...,k, are small, many terms in (4.3.11) will vanish. If /s are large, there
will be convergent factors by Proposition II1.2.2. This is the idea of controlling
quantum statistics.

We will use the following abbreviated notation:

ML) = Ay ot T, 4.3.12)
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We also introduce the following notations:
S(k,n): the subgroup of S, consisting of the
permutations of {k+ 1,k +2,...,n},
E(m,m’): the subset of S, consisting of the interchanging
of m withoneof m,m+1,...,m' form=<m <n. (4.3.13)

We make the following convention: E(m,m’)= E(m,n) if m" > n, and for any
n,0€S,, o means that ¢ followed by n;k — n(o(k)). We define

El 1y ) ={P=PP,_,...P,: P,eEG,[2M(l)]) fori=1,2,...,k},
Efl,ly,....[)={PeS,: P 'eE(l,,...,1)},
E,,={P=PP,...P,:PeE(i,n) fori=1,2,...,k}. (4.3.14)

Here we have used the symbol [a] for the greatest natural number which is not
greater than a, and M(/;) has been defined in (4.3.12). We note that

S,=E, Stk,n) = {po: PEE, ,, €Sk, n)}, (4.3.15)

and

:::-

card(E(1,,...,1)) =card(E,(,,...,1,)) <

i

2M(1). (4.3.16)

1

]

For any oeS(k, n) we will use the following notation:
1. : the characteristic function of the subset

{(x)ne(Rv)n3 ”xa'(k+ 1)“ = ”xa'(k+ 2)” == ”Xo'(n)“ }, (4.3.17)

where | x| = max |x{. We then have
1=jsv

Y %A= Y rle®))=1, (4.3.18)

ao’eS(k,n) o’'eS(k,n)

where ee S(k, n) is the identity element.

Lemma 4.3.1. K((x),,(v),) be defined as in (4.3.11). Then
Fi(A, 1), (A1) Sk Y Y| A (x),)K(e'(x),, Pa(x),).

PeEy(ly,...Ix) 6 ,0€S(k,n) A™
Proof. Substituting (4.3.18) into (4.3.11) and doing a change of variables
(¢'(x),— (x),), we obtain

Fi((d, 1), (40)= Y ) | dX),x/(x),)K(0'(x),, Po(x),). (4.3.19)

PeE,, i 6’,0eS(k,n) A"
Here we have used the fact the S,=E, ,S(k,n). Under the assumption that
I, =1, < £, we will show that the summation over PeE .k 10 the above can be
replaced by the summation over PeE,(l,,...,1,). Then for general I,,1,,...,1,, the
lemma follows from reindexing w,, ®,,...,w, such that [; <[,--- <[, in the new

indexes. This is the reason why we have k! in the lemma. -
We now assume that [, <[, <--- <I,. Assume that P¢E(l,,...,]) in the
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integrand of (4.3.19). Then there is at least one P;¢E(i,[2M(l;)]) such that
P=P,...P,...P,and P;eE(j,[2M(l)]) for all j <i. Write

(7))
m i m; j

Then m > 2M(l)) and m; <m for all j <i by the assumption [; <, for j <i. A simple
inspection shows that Po(i) = P(i)=P,... P,_,(m)=m. We recall that by the
definition of K(g'(x),, Pa(x),), a)([f = Xpgp = X Since w,e€Y), in the definition
of K((x),,(),) in (4.3.11), w(p)e A}, », and 50 X, €4, ,, , . Because of the factor
1.((x),) in the integrand in (4.3.19), the integration variables x;, k + 1 =<j < m, should
be restricted to x;eA,., ,,. This means that at least m — k paths have to pass
Agip,42 at t=0 (and also at t = B). In the definition of K((x),,(y),) the integration
over path configuration space has been restricted to &* (A 0), (A L)) = &y,
and so more than M(l;) paths can not pass A, ;, at 1=0 by (4.1.14). We
note that m —k > M(l)) by (4.1.13). Thus K(o'(x),, Po(x),) must be vanished if
P¢E(l,,...,1,). This completes the proof of the lemma.

Let P(S(k,n)) and P(E(l,,...,l)) be the projection operators onto H#°§) , (A1)
and HE) ., (A) respectively, which we have introduced in Sect. ITL3. For any
a€S(k,n), let y, be the (projection) operator defined by (y,f)(x), = x.(0(x),) f((x),)
for any fes# (R"). From (4.3.18) we have

Yo =1. (4.3.20)

o€S(k,n)

In order to avoid notational complication we will use the following abbreviated
notations:

Pl = P(S(k7 n))5
P,=P(E(l,...,1)),
C, ,=card(S(k, n))>card(E(l, ,...,1,)). 4321

Let K be the operator on #,(A) defined by its kernel K((x),. (1)), where K((x),, (v),)
has been defined in (4.3.11). We recall the definition of Ey(l,,...,1,). Using (3.3.2)
and (3.3.5) in Sect. I11.3, the following is easy to derive:

Tr 2P P Poye)

=Ci> X Y dX)rd(x),) Ko (x),, Po(x),),  (4.322)

Pei(ly,....l) a”,aS(k,n) A"
and so by Lemma IV.3.2 we have

F’;((A ol (A b)) SKIC, , Try, (0P KPPy (4.3.23)

Thus if P, and y, commute with each other and if I is positive, one may use
(3.3.4) to eliminate P, from the above trace. Then our job will be done. Although
P, does not commute with y,, we will show that P, and y, almost commute with
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each other. To do this we use (4.3.20) to obtain
Tr,, (1P KP,Pyy,) = Z Tr,, (1P KP 1, Poy.), (4.3.24)

o’ eS(k,n)

) — -1
Tr (PP 100 Pox) = Ci 2 . >
PeEx(ly,...,lk) 0’,0€S(k,n)

[ A0, d(¥),)K(0 (), Po(x), )P’ (x),)

We define (4.3.25)

A(k,n)={c"€S(k,n): Tr,, (PP, P,x.) # 0},
y=max{l,,.... L}, M, =[2|4,, .,/ """ (4.3.26)
We then have the following:
Lemma 1V.3.2.
card(A(k,n)) < card(E(l,,..., LM Y(M, —k)!

Proof. Because of y,((x),)y.(Pa”(x),) in the integrand in (4.3.25), the trace for
a”e€S(k,n) will vanish if the following set

{0, 1% 1 S S Il 0 { Gt 1 Xpgrger pll S -0 S Xpgrnll }
has measure zero for any PeEk(ll,...,lk). This means that for given ¢” the
sequence { Pg”(m):m=k+1 and Po”(m)=k+ 1> must be a subsequence of

{k+1,k+2,...,n> for some P to give non-zero contributions. Since ¢”€S(k, n),
we have Po”(i) = P(i),i <k, for any ¢”€S(k,n). We assert that if

Pg”(m) < k for some m> M, 4.3.27)

then the integrals in (4.3.25) are zero. We note that x;e4, ., , for i <k (€6 ).
Thus, if (4.3.27) holds, M -integration variables in (4.3.25) must be restricted to
Ay 4,42 by the factor y (Po”(x),). This is impossible by (4.1.14) and the definition
of K((x),,(»),)- This proves our assertion. For given PeE,(,,...,1), Po” == will
have the following form.

<1 2.k k41 .. M, n>

4328
my my  my wlk41)..0p .y (M) (n) ( )

where i;€{1,2,...,k} and m; = P(i) < M,. By the assertion, m <M for n(m)=1i;.
We recall that the sequence {m(m):m =k + 1 and n(m) # i, in (4.3.28) must be a
subsequence of {1,2,...,n),and son(M, + 1) =M +1,...,7(n) = nin (4.3.28). For
fixed P, the i’s will be moved if one changes ¢”.¢" should not change the

M
order of m(m). Thus, for given P there will be at most k!< k’) number of ¢”

which belongs to A(k,n). Varying PeE(l,,...,l,) we arrive at the conclusion in

the lemma.
From (4.3.23), (4.3.24) and from the definition of 4(k, n) in (4.3.26), it follows that

Fo((y 1), (4 1) SKIC 50 3 Tryp (P KP g Pay). - (4329)

¢ eAlk,n)
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The next step is to get a bound for (4.3.29). From (4.3.8) the following is obvious:

k

X gﬁf,h> x Q" K,
1

EX(4,, 1), ..., (4, 1) = (

From the definition of K((x),,(y),) in (4.3.11) it follows that

|
(0 (1)) < ( X 85 ) PHCes (93 ) @xp(— BHE ™) (D)0
(4.3.30)
where we have used the fact that
exp(— BHY™)((X),_» 1), _) = fﬁkPﬁ((X),,_k,(y),,_k;d(w),,_k)exp(— U((@),-))-
(4.3.31)

We now use the definition of I 4 (x, y) and I, (x, y)in (3.2.5) and (3.2.7) respectively
into (4.3.30), and then use Proposition II1.2.2 to arrive at

k l~2
K( 0 = [T [qexp(— 16’,3>]Y<(x>n,(y),.), (43.32)

where

( n,(y |:l=_[ xn,Vz):|[eXP( BH(/?_k))]((x)n—ka(y)n—kl
(4.3.33)

Notice that the above is the kernel of the operator

k
Y= < [ KA,,L)eXp[‘ pHG 1, (4.3.34)

=1

which is a positive operator on # ,(R"). From (4.3.25), (4.3.29) and (4.3.32), it follows
that

Fk((Alall) oo (Ak9lk))
12
<k!C, 2[ [T e exp< )} Y Try((eP1YPiy,Ps). (4.3.35)
16B tr”..EA(k,n) .
We now use the positivity of Y and the abstract Holder’s inequality [11] to
conclude that
Trf (XeP YPI/(J )<[Tr]fn(XeP YPl):Il/Z [Tr}fn( 2%0‘ P Y‘Plya 2)]1/2
é[Tr#,.(XeP1YP1)]U2 [Tryf,,(Xa"P1YP1)]1/2- (4.3.36)

A direct computation gives us that for any ¢”€S(k, n),

Try, (e P1YPy) =card(S'(k,n))"2 Y. [d(x),1.(0"(x),)Y(c'(x),,a(x),)

o’,6eS(k,n)

=[—k172 Y [dx),xl0' ()Y ((x),, 0(x),)

o’ ,0eS(k,n)
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=[n-k1"2 Y [dx),Y((x),,0(x),)

o€S(k,n)

=[(n—k)!]~ ' Tr, (P, YP)).

We substitute the above equality into (4.3.36), and then we use the definitions of
P, and Y in (4.3.21) and (4.3.34) respectively to obtain

1
Try,(xeP 1 Y Py P) = =T, (P,YPy)
(n—Fk)t 7
1

k
=———[H Trpp (K, l)JTr% [(exp[— BHYPT)

(n 1

=

(n—lk). “j (2l +2)" Trom (exp[— BHGT) 4.3.37)

IIA

for any ¢”€S'(k,n). Here we have used Proposition II1.2.2 to obtain the third
inequality in the above. We now combine (4.3.35) and (4.3.37) to obtain

FE(A 1) (A 1) S MK, g3 1. L) Tr e (exp[ — BHEHT), (4.3.38)

where

1 12
Mk, q;1,,...,1) = card (A(k, n))k!Cl,Z(—n_—k)- ck ]_[1 2L+ 2)”6xp< 16ﬁ>
(4.3.39)

From the bound in Lemma IV.3.2,
card(A(k,n)) < card(E(l,,..., )M,

and from the definition of M, in (4.3.26) it is easy to check that there are constants
¢" and ¢” such that

MY <exp(c'klog|A, |+ c'klog(y + 2))
sexp(c’klog|a, . 1|+ ¢"(y +2)). (4.3.40)

Here we have used the fact that klog x < 2x + klogk for x = 1, and the bound in
(4.1.13). From (4.3.16) and (4.3.12) we also have that for some d,,

k
card(Ey(ly,..., 1)) Sexp[d klog|4,, ] [T exp(d,(l; +2)). (4.3.41)
i=1
We recall that y =max{/}. We combine the definition of C, , in (4.3.21), and
(4.3.40) and (4.3.41) to (4.3.39) to conclude that there are constants ¢, and ¢, such
that

k 12
Mk g3 1., ) < f exp(caklogl Ay, [n = ! [] ex [m] (43.42)

We now substitute (4.3.42) into (4.3.38), and then (4.3.38) into (4.3.10) to obtain
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the following bound:
F < chexpleyklogld, 1)) Trop,” (exp(— BHG ™)

Ij[ Y Z exp[—ﬁlz+4vb(li+2)2]
k

Ay Aq L=

< chexpe,klog|d, . ) Tr ppm (exp(— BHG ™). _ (4.3.43)

Here we have chosen b such that 4vb < 1/32f to get the second inequality. Using
(4.1.13) and the fact that y(v,p’) > 1, it follows that for any constant |«/, ¢,, ¢, and
c there are constants D,, D,, D, >0 such that

ek +2ckloglA, |+ ] A, [P TEDP — cl/lq+1l”(’_ Dipy(v.p)
<D, ~ D,q — D;k, (4.3.44)

by (4.1.13). We finally combine (4.3.43), (4.3.1) and (4.1.19), and we then use (4.3.44)
to obtain

Gfl}(gE 'z"exp(Dy — Dyq — D3k) Tty (exp(— BHE ™9))

for some positive constants D,, D, and D,. Thus

i 2 Z Gor=e’3," (i Z"'Tr}f;sﬂ(—ﬁHX'")>=

n=0g2pok2|Aq/lP ‘=0

for some D > 0. The theorem now follows from (4.1.15), (4.1.18) and the above
bound. This completes the proof of the main theorem.

IV.4. The Proof of Theorem IV2.1.

In this section we produce the proof of Theorem IV.2.1, and so we complete the
proof of Theorem I1.3.1. From (4.2.5) we recall that for any configuration (), in
&, x there is 7,e[0, f] such that

Y iitr Tl 2 |4, (@4.1)

redq
where 7(r,7,) is the number of w;,i=1,2,...,k, such that w,(1,)eQ(r). If the
interaction satisfies either Assumption A (strong superstability) or else Assumption

A’ (positivity) in Sect. I1.2, we have
U (@), = Y. (Aa(r, )" — Bi(r,7)], (4.4.2)

reA
where U ,((w(7)),) has been defined in (4.2.3). From the definition of é_"q’k in (4.2.1)
we also have that for any g’ > g,

Y n(r 0P <4, oné,,. (4.4.3)

redgq.

For a given configuration of paths (w), in 5"(],", we pick 1,e[0, f] so that (4.4.1) is
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satisfied, and we define
T)k)— Z lwi(t) = of1o) (4.4.4)

From the definition of V((w),) in (4.2.8) it follows that

B
V({(@)) 2z | V(o). (4.4.5)
0
For p’ =2 we have written in (4.2.9)
2p' —1)
p)=14+—">-——. 4.4.6
(v, ) =) (4.4.6)
If the interaction satisfies Assumption A4, the following inequality holds:
pl
——— <y, p’). (4.4.7)

p'—1

For the interactions satisfying Assumption 4 we choose p>[> 1 such that the
following inequalities hold:

Ip <2y (4.4.8)

’

p ,
e <p <y p). 44.9)
p—1

In Lemma IV.2.2. we have shown that, if v <3, we can choose p>1[>1 so that
(4.4.8) and (4.4.9) holds simultaneously. We will discuss other choices of p and [
in the next section in more detail. For the replusive interaction (Assumption A4’)
we only impose the condition

p <y p’). (4.4.10)

We now begin to prove Theorem IV.2.1. For any fixed constant a,b >0 and
for a given configuration of paths (w), in (fq,k, we write

B(t) = aU,((o(1),) + bV ((w(7))y)- (4.4.11)
We have the following:
Proposition 1V.4.1. For 1 < < p, there exist constants ¢, >0 and c, > 0 such that

B(t) = ¢, Z (r,t )"””—CZIA Jrra=np
red,

for any given (w), in & .

Proof. From (4.4.2) and (4.4.4) it follows that

Br)= ), [aAn(i‘, 7)? +é Y loft) - wi(to)lz] —aBk.

red B @,(1)eQ(r)

Let ii.(r,7) be the number of paths w; i=1,2,...,k, such that w{1)eQ(r) and
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w{(to)€Q(r'). Since w(ty)eA, for any i =1,2,...,k, we have

a(r,7)= Y f.r1).

r'edq
Since 7(r, ) and 7, (1, T) are non-negative integers, we have that for any p’ >2 (see
Lemma IV.2.2. below)

ar, ) = Y nr)P.

r'edq

Thus
] b ,
Br)z Y |ad ) a(n1)f+— Y o) —oft)l? [—aBk
r'edq reA ﬁ w,(1)eQ(r).

@ (1)eQ(r’)
(4.4.12)

As before we denote [a] the greatest integer number which is less than or equal

to a.
We first consider the case in which for a given ¢ > 0,

card ({o;:0{t)eQ(r') and |w(t) — (to)l S K, 7o)"}) = [F7(, 7o) ]-
Note that
Z ﬁr’(r9 ,L.)p' g z ﬁr'(r’ T)pl'
red rir—r’| Sn(r',10)q

Since the number of ’s such that |r — r'| < 7+, 7o)?is not larger than [2a(r', t)? + 177,
we use Holder’s inequality (or Jensen’s inequality) to obtain

2 (T Z (280, 7o) + 11 (2407, 7o) + 117 [37(r, 70) P

red
2 i (v, ), 1) (', 7o) T P — (v, p)
for some constant cj,c; > 0. On the other hand if
card ({o;: 0(1o)€ Q(r') and |wy(t) — oto)| £ ', 70)7}) < [37(r, 70)],
then

Y lofe) = o) ? Z G, 1)1 (', 7o) — 1)
w;eQ(r):
w;(t0)eQ(r)
Z ey, 1)t T2 — ¢
for some constant cj,c; > 0. By choosing ¢ such that
vg+ (1 —vgp' =1+2g,

(ie., g=(p' —1)/[vp’+ (2 —v)], and by (4.1.13) we have proven the proposition.
The following facts are probably well known. But we produce the proof.

Lemma IV.4.2. Let {n(1),n(2),...,n(k)} be a finite sequence of non-negative real
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numbers. Then

k k p
@ n(l‘)"é(_z n(l')) , pzl,

k k q
®) Y n(i)q;<z n(i)), 0<gsl

i=1
Proof. (a) The inequality obviously holds if p, is a natural number. For a
non-natural number p, the inequality follows from the Hadamard three line
theorem [11] for the function

k

f@)= 3 np*:

i=1

with a non-negative integer p.

(b) The inequality holds for g=0 and g=1. For M>0 and 0<gqg <1, let
f be the function on [0,3M] defined by f(x)=(M —x)?+ x4 Then it is easy to
check that f(x) is an increasing function on [0,4M], thus if we set n(1)= M — x
and n(2) = x, then n(l)+n(2)=M and n(1)?+ n(2)? is increasing as |n(1) — n(2)|
tends to zero. Now the lemma follows from an induction argument.

Theorem 1V.4.3. Let 1 <1< p be chosen such that p <y(v,p’). Then for any given
a>0 and b> 0 there exist constants ¢, >0 and c, > 0 such that

aU,((w),) + bV ((w)) Z ¢,l4,]! +( = 1)y(v.p")P) _ il Ay IR
on &4

Proof. We note that from (4.4.5) and (4.4.11)
U ((@)) +bV((w f B(t)dx

Let p and y be given numbers. If 1 < p <v,we use Holder’s inequality to obtain

k

Z p<(K z p//1<p<y.

If 1 £y <p, one may use Lemma IV.4.2. (b) to obtain

Yon@y=[ Y n@FIrr, 1<y<p.
i=1

i=1

The above inequalities imply that

Y d(r, 7o) Z (A Ty = p, (4.4.13)
redqg
Y ATy 2|47y =p. (4.4.14)
redq

If one chooses y = y(v,p’), then the theorem follows (4.4.13), Proposition IV.4.1.
and (4.4.12)
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Proof of Theorem IV.2.1 (b). The theorem is a consequence of Theorem 1V.4.3.

and the fact that y(v,p’) > 1 for any v and p’ = 2.
The rest of this section is devoted to prove Theorem IV.2.1. (a). We write

K(w) = {w, ®,,...,w,}. Applying Assumption A(b)in Sect. IL.2, we have that on (f’q,k

B
W) (@),-)=3 Y [Plwft)—wf)d

wielg (w) o
wje K (w)°

B
=3 X ol - ofdld
weK (w) O
wje K(w)c

1\

—le Y ollr =7 Dn(r,0)i(r', )de (4.4.15)

0 red
r'eAd

for some constant ¢, where n(r,7)= card ({w(1t):wek(w) and @ (1)eQr)}).
For a given configuration of paths (), in (?q’k we write.
Wix)=c ) (Ir—1Dn(r, D, 1),

redaq
red2q

Wity =c ) o(lr —r'n(r, nl, 7),
reAG,
r'edag

Wyt =c Y. o(r—r'Dnlr, t)a(r', 7). (4.4.16)

1\%

From (4.4.15) it follows that
B
WM(0)ys (@),— ) = — [ [W;(7) + Wy(x) + Wi(z)]dx. (4.4.17)
0
For any given constant a > 0, we use (4.4.2) to obtain that on z?q,k,

aU,((w(x))) — Wi(x) 2 ad Y, ', o) —c Y, o(|r —7'|ar, on(r, tn(r, 1) — aBk

r'ed2q redaq
r'edaq
=z Y o(r=rDla'a(’,7)" — cnlr’, t)n(r,7)] — aBk,
reAagq
r'edaq

-1
where a’ = aA[ 2, q’(lrl)] . We note that a'|x|” — c|x||y| = — ¢/|y|P/?"~! for some

v
reZ

constant ¢’, and so
aU,((0@)) =W, (2 —¢" Y o(r—tDnr,0)P "~ —cik

reAaq
r'edaq
> —cy Y (TPt =k
reAaq
LS N2y YL (e
rédagq
1 M L A 9 (4.4.18)
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Here we have used the condition (4.4.9), Holder’s inequality and (4.4.3) to derive
the above inequality. If one choose p <p’/p’ — 1, one may use Lemma IV. 4.2(a)
instead of Holder’s inequality to obtain the bound:

aU((o(1))) = Wy(1) = — ¢} | Ay |P/P7 =D — ¢k (4.4.19)

To estimate W,(1), we use (2.2.4), (4.4.8) and the fact that n(r,t) <|A,,|"? < c|r|*"/?
for any |r| = g (by (4.4.3) and Lemma IV .4.2. (a)) to obtain

Y o(r—rDnt)Sc Y o(r —r|)Irl> < const,

redqq redq,
Ir—r'|=2q lr=r'l22q
and so it follows from the definition of W,(1) in (4.4.16) that
—Wy(r)= — sk (4.4.20)

for some constant ¢} > 0. Finally we estimate Wj(z). Since w(tp)edi=1,2,... .k,
we have

j07) — )2 2 (1] — g — D? f o ()eQ() = A5,

and since n(r,7) < |r|*? for |r| > q by (4.4.3), it follows from (4.4.4) and (2.2.4) to
conclude that for any given b> 0

~ W@ +bV(w@)) =2~ ¥ Al T)[C 2 ol =r]ire —%(lr’l —q- 1)2]

r’equ reAg,
g _ Z r—l(r/’ T)I:c//lr/lvl/p_ilrIIZ+c///
redAs, 4,8
>0, (4.4.21)

if p, is sufficiently large (g = p,). Since
IA4q'/IAq+ 1' é COnSt,
kS Ayl H 000

by (4.1.13), integrating (4.4.18), (4.4.20) and (4.4.21) with respect to t and using
(4.4.17) and (4.4.5), we arrive at the following bound:

W((@)e (@), - ) + aU () + bV ((@)) = — " Ay, |} T DPRE=I) - (4.4.22)

We now use the assumption (4.4.7) and Theorem IV.4.3. to conclude that for any
given a > 0,b > 0 there is a constant ¢ such that

2aU ((0)) + 2bV((@)) + W(@)el), 1) Z €| A, o] T D702

on &, This completes the proof of Theorem IV.2.1. (a).

V. Discussions

There were two restrictions for choosing 1 </<p in the proof of Theorem
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IV.2.1. (a), namely, (4.4.8) and (4.4.9). We first discuss the condition (4.4.8):
I/p <2/v. 5,1

We have used (5.1) to derive the bound in (4.4.21). That is, one has to bound the
following:

Lan(r,7) — blw(t) — w(ty)|* = alr|™? — br|>.

where w(1)eQ(r) and w(ty)ed,, and n(r, 1) < IAMI”" by (4.4.3). If (5.1) does not hold,
more than |r|>—paths pass a unit cube Q(r) at some time 1[0, 8). In this case we are
not be able to control Wj(t) by the fluctuations of paths V((w(z)),). Thus the
condition (5.1.) seems to be essential. If v = 4, we have to choose p = 2. Since (v, p’)
<1+ (2/v)forany p’ =2, p > y(v, p) for v = 4. In this case we use (4.4.14) instead of
(4.4.13) to obtain the result similar to that of Theorem IV.4.3. with the following
replacement of 1+ ((I — 1)/p)y(v, p’) by (I/p)y(v, p'). One notices that Iy(v, p')/p < 1
for v = 4 if (5.1) holds. Thus we do not have enough convergent factors from the
iteraction terms to control local number operators.
We next consider the condition (4.4.7):

’

p !
———<7y(»p'). (5.2)
p —1

The above condition gives the restriction on p’ for the interaction satisfying
Assumption A. If y(v,p’) < p'/p’ — 1, there are three possible ways to choose p. If
we choose p <v(v,p’), the exponent in the right-hand side of (4.4.18) should
be replaced by Ip’/p(p’ — 1) by Lemma IV.4.2 (b). Combining with Theorem 1V.4.3
we need the following necessary condition to get the bound in Theorem IV.2.1:

I p -1 !
— 14 y,p), for p<yvp) < ,p—.
pp'—1 p p'—1
Since 1 —9(v,p")/p =1 if p<y(v,p’), the above is a contradiction. If we choose
yv,pY S p =p'/p’ — 1, by the reason discussed in the previous paragraph, we have
the following necessary condition:
l p/ l , , p/
————<-y,p) for y(v,p)Sp= .
pp'—1 p p'—1

The above is a contradiction. An argument similar to the above gives us a
contradiction for p =p’/p’ — 1 2 y(v, p').

Thus, in order to remove the condition (5.2) one has to somehow improve the
bounds in Theorem IV.4.3 and in (4.4.18). Choosing specific configurations in &,
one may able to show that these bounds are optimal. We first consider the bound
in Theorem IV.4.3. To improve the bound one has to improve the bound in
Proposition IV.4.1. Consider the following configuration (), of paths: For a given
unit cube 4 < A,, assume that w{to)€4,i=1,2,...,k, for some 7,e[0, f]. Without
loss of generality we may assume 4 to be the unit cube centered at the origin.
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Then the problem becomes the minimalization of the following expression:

Z |:Clﬁ(r, ) +c, Z wi(T)z]a

reA @i(t)EQ(r)

which is related to the minimalization of the following non-linear functionals:
HUf) = [ QL + f(2) (53)
under the restrictions:
f)20, [dxf(0)=K (54)

where K is a given number. In our case K = l/lql”l’. Using a variational method
the following fact can be proven: The minimum is achieved at

T =[—xyp1r=L |x=/e,
=0, |x|>./c, (5.5)

where ¢ is determined by (5.4.). From (5.5.) and (5.4) it is now easy to check that
there is a constant b > 0 such that H(f) = bK""?). From the above fact we conclude
that the bound in Proposition IV.4.1. is optimal.

For (4.4.18) one may choose a specific configuration to show that the bound
in (4.4.18) is optimal. Thus, in order to remove the condition (5.2) one may need
a further decomposition of &, into a union of disjoint subsets.
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