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Abstract. We construct an analytic interpolation in 1/JV for the iV-vector [O(N)
non-linear <τ] models with iV-component fields on a lattice. This interpolation,
valid at sufficiently high temperatures, extends over a large domain in the
complex plane containing the half plane Re (1/iV) > 0. We use this result to show
that the 1/JV expansion of the free energy density and of the correlation functions
is Borel summable in the thermodynamic limit and at high temperature.

1. Introduction, Notations and Main Results

In this paper we continue a mathematically rigorous analysis of the 1/N expansion
in the JV-vector models, initiated by A. Kupiainen [1,2]. Kupiainen has shown
that the 1/N expansion is asymptotic for two families of models, the N-vector
models on a simple, (hyper) cubic lattice Zd, d = 2,3,4,..., at temperatures above
the critical temperature of the spherical model (N = oo), and a class of weakly
coupled JV-component λ\φ\4 models in two space-time dimensions. A careful
analysis of the 1/JV expansion for the three-dimensional O(N) σ-models in the
continuum limit has been carried out by I. Aref'eva [3] who, however, has not
determined its nature. For a summary of the history of 1/JV expansions and
references to important, earlier work, see Kupiainen's papers [1,2].

A natural problem is to study the analyticity properties in 1/JV and to determine
the summability properties of the 1/N expansion for the models mentioned above.
Billionnet and Renouard have recently proven that the 1/JV expansion for weakly
coupled iV-component λ\φ\4 models in two dimensions is Borel-summable [4]. In
this paper we establish the same result for the O(N) non-linear σ-models on a
lattice of arbitrary dimension, at high temperature. The methods used in this paper
are different from the ones in [4]. In [4] the main technical difficulty appears in
the construction of the continuum (ultraviolet) limit. Here we do not construct
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the continuum limit. However, the l/N expansion for the N-vector models is an
expansion around a stationary point of a complex measure which has only "poor
fall-off at infinity" and which is hard to control when l/N is close to the imaginary
axis. We resolve this difficulty by superimposing a second expansion related to a
standard high temperature expansion. Each term in this double expansion can be
calculated explicitly and turns out to be analytic in l/N everywhere except on the
interval [ — 1/2,0]. Our double expansion can be interpreted as a random
walk—or polymer representation of thermodynamic and correlation functions of
the N-vector models. It is inspired by work of Symanzik [5] and a rigorous version
thereof [6] which has recently been applied intensively to the study of the Ising
(N = 1) and classical rotor (N = 2) models [6-8]. The representation described in
[6] can be interpreted as a double expansion in powers of N and β. It is used in
[9] to derive joint analyticity in N and β near N = 0, β = 0. As in [6], our double
expansion represents the JV-vector models as gases of random walks or polymer
chains with soft core interaction. In contrast to the random walks used in [6], the
random walks introduced in this paper make steps of arbitrary length, but with
exponentially decaying probability. Our random walk representation is chosen in
such a way that the spherical model limit, N -> oo, is reached smoothly along rays
in the half plane Re l/N > 0.

The convergence of our double expansion is controlled by cluster (or polymer)
expansion methods described in [10]; see also [11,12].

We establish convergence at high temperature in a large domain of the l/N
plane, uniformly in the volume cutoff. We also derive bounds on the kth derivative
in l/N of thermodynamic and correlation functions. When combined with a
theorem due to Nevanlinna and Sokal [13] they suffice to prove Borel summability
of the l/N expansion.

Our paper is organized as follows:
In the remainder of Sect. 1 we define the lattice N-vector models, introduce

some notation and summarize our main results in the form of a theorem.
In Sect. 2 we derive the basic random walk representation of our models and

express it in a compact form which makes the methods of [10,12] accessible.
In Sect. 3 we recall the cluster expansion [10-12] and use it to control the

convergence of our random walk representation. We construct the thermodynamic
limit of our models and verify analyticity in l/N in a large domain and prove
Borel summability at l/N = 0, for sufficiently high temperatures; (see Theorem A
below).

In Sect. 4 we discuss our results and describe some open problems related to
the main theme of this paper.

Some technical estimates needed in Sects. 2 and 3 are proven in an appendix.
Throughout this paper we follow quite closely the notation introduced in [1].

We adopt the conventions that

an empty sum — 0,

an empty product = 1.

With each site,;, of the simple (hyper) cubic lattice Zd, d = 2,3,4,..., we associate
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a classical, JV-component spin

^. = ( 0 j , . . . , ^ ) , ΛΓ= 1,2,3,... (1.1)

of length JV, i.e. \φj\2 = N. The Hamilton function of the model in a finite sublattice
A of Zd is given by

H ^ ) = - Σ ΦJ ΦJ; (1-2)
07) c/i

where the summation ranges over all pairs of nearest neighbors in A, and φ-φ' is
the usual scalar product of 0 with φ'. For reasons of technical simplicity we shall
choose yl to be a rectangle and impose periodic boundary conditions, but (in
contrast to the methods used in [1]) we can accommodate arbitrary boundary
conditions. The Gibbs state of the N- vector model (= Euclidean vacuum functional
of the O(N) non-linear σ-model on the lattice) on the sublattice A is given by

dμfXφ) = (Zfyie-'W Π %\Φj\2 - N)dNφp (1.3)

where β is the inverse temperature (= inverse square coupling constant), and Zf]

is the usual partition function.

The correlation functions, (φa

x\... φ*™ > ^ , z = 1/Λ/ΪV, are obtained from the
characteristic functional

(1.4)

by functional differentiation in g.
Following [7,1,6] we now introduce the dual representation of the N-vector

model which displays IV, or 1/N, as a parameter. Let A be the usual finite difference
Laplacian defined by

with some boundary conditions (b.c.) (e.g. periodic) imposed at dA. We define

C = C = (— βA -f m 2 )" 1 , (1.5)

where m s m ^ O i s some mass parameter which may, a priori, depend on the site
jeA and will be specified below. We set

z ^ l / y ϊ V and y = 2/N = 2z2. (1.6)

The first step in the derivation of the dual representation is to notice that in
the definition of dμf\ Eq. (1.3), we may multiply each factor δ(\φj\2-N) by
exp [ - {βd + m2/2) |φj | 2 ], which can be absorbed in a redefinition of Zf\ Second,
we Fourier-decompose δ(\φj\2 — N),

δ(\φj\2-N) =
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for each je A, and subsequently interchange integration over α and φ. The resulting
φ-integral is Gaussian, and we obtain

•det(- βΔ+m2 - 2ioc)'N/2 [ ] e~ia>Nda.}, (1.7)
JeΛ

where Zγ = const ^Λ^Z{

β

Λ\ and \A\ is the number of sites in A. Identity (1.7) is very
convenient for analyzing the behaviour of S(g) near N = 0; (one can prove joint
analyticity in β and N inside some discs centered at N = 0 and β = 0. See [9]). In
order to determine the behaviour of S(g) near N = oo, one changes variables,

OLj = zap for all jeA,

and applies the identity

det (A) = exp tr log (A).

This yields

l β β β J a l (1.8)

where

d/^z(α) = Z2~
x exp {- (l/y)tr log (1 - 2ίzCβa)} [ ] exp ( - iα/z) Jα;, (1.9)

and

Z 2 = const '^Zi.

We now choose m2 = mj such that the terms linear in a in the exponents on the
right side of (1.9) cancel. This is the case iff

CβJj=l, for all jeA, (1.10)

where

This condition ensures that the complex measure dμβz is, in zeroth order in z,
given by the positive Gaussian measure of the spherical model, the deviation from
the Gaussian being of the form expθ(z). Condition (1.10) plays a crucial role in
our subsequent analysis. It is a system of transcendental equations for the mass
parameters rrij = mj(β,A). The simplifying feature of periodic b.c. is that condition
(1.10) reduces to a single equation (because of translation invariance) which has
a constant solution m; = m{β, A) > 0, for all β, when \A\ is finite. This is the only
instance in this paper where periodic b.c. are more convenient than other b.c. In
[1], m = m(β) is chosen so that (1.10) is only satisfied in the thermodynamic limit,
A -> Zd. It then reduces to

ί WΊ?\WΣ (l-cosP / ί) + m2l ' = 1. (1.11)
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The inverse critical temperature βs of the spherical model is the maximal value of
β for which (1.11) has a solution, m = m(βs) = 0. For d ̂  3,0 < βs < GO, while
for d = 2, βs = oo. For β < βs, (1.11) has a solution m~m(β), and the solution,
mOM), of (1.10) (for periodic b.c.) converges to m(β), as Λ-+Zd, for all j8<j3 s.
Moreover

lim m(β, A) = sup m(/?, yl) = 1.

Note that on the right side of (1.8) and (1.9) z = 1/^/N appears as a parameter.
It is not hard to see that S{g) is a function of y = 2z2 and that it is, in fact, analytic
in y in a complex neighborhood of the open positive half axis when \Λ\ is finite.
Moreover when j ; = 2/JV and N is an integer it agrees with the functional defined
in (1.4). Our task is now to continue S(g) = S{^y(g) analytically in y (and β) to
as large a domain as possible and to derive estimates on \S{^y{g)\ in that domain
which are uniform in A. Our main results can be summarized as follows.

Theorem A. For 0 < β < βε9 for some positive constant βε < βs, the thermodynamic
limits of the free energy and the correlation functions exist and are analytic functions
of y = 2/N on the domain {y: |argj/| < π — ε, or | j / | > l + ε } . In that range of
parameters connected correlation functions have exponential clustering. For β < βπ/2,
the 1/JV expansions of the free energy and the correlation functions are Borel
summable.

2. A New Random Walk Representation and the Polymer Method

We combine Eqs. (1.8) and (1.9) into the following formula for S(g):

S(g) = Z 2 " 1 jexp {(l/2)fo, [1 - 2izCβά] ~ιCβg)}

•exp{-(l/y)tτ\og(l-2izCβa)} [] exp(-iaj/z)daj9 (2.1)

where Z 2 is chosen such that

% = 0 ) = l . (2.2)

The basic idea of this section is to split Cβ into a diagonal part CD

β and an
off-diagonal part C°β and to expand perturbatively in CQ

β. By (1.10)

In order to understand the crucial significance of condition (2.3) in our scheme
we first consider the case where

(2.4)

for some parameter γ > 0 which will subsequently be set = 1.
We now insert the identity

- 2izCβa = 1 - 2izya - 2izC°βa

^ l ) ] (2.5,



92 J. Frohlich, A. Mardin, and V. Rivasseau

into (2.1) and expand in powers of y~xCo

β. We make use of the identities

log(l - 2fcC,«) =log(l - 2iZya){ - |

(2.6)

and

(2.7)

Before we present the result of these expansions we introduce some notations and
conventions:

An oriented random loop, denoted by ω, is a closed, directed random walk
built of an arbitrary number, p = p(ω), of steps of arbitrary, but strictly positive
length. Thus, an oriented random loop is a class of ordered sequences of jumps,
from a site iί to a site i2f from i2 to z3, and so on, the last jump being from ip to
ip+ί= i*!, but two sequences of jumps which only differ in the choice of the starting
site correspond to the same random loop.

An open random walk, ω, from xeΛ to ueΛ consists of a sequence of p = p(ω)
jumps, from i1 = x to ί2, from i2 to i3, and so on, and finally from ip to ip + 1 =u;
ik φik+1, f° r a ^ fc If χ Φ u w e have p(ω) ^ 1. The circumstance that ω starts at x
and ends at u is expressed, symbolically, as ω: x -> u.

With every random walk, closed or open, we associate a weight, J ω ,

Furthermore, we let nfω) denote the number of visits of a random walk ω at site
j . If ω: x -• M is open, we define n/x) and rij(u) to be the total number of visits of
ω at x, u, respectively, not counting the first visit of ω at x, the last visit of ω at
u, respectively.

The length, l(ω), of a random walk ω is defined by

k=ί

where |i —j\ is the minimal number of nearest neighbor jumps necessary to get from i
to j . Clearly

/(ω)^p(ω). (2.10)

Inserting (2.5), (2.6) into the equation defining Z 2 (see (2.2)) and making use of
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definition (2.8) we obtain

oo -j m

m — O ω \ , . . . , ( X ) r n y ' k — 1 j e Λ

l Y1 . ,
— 1 e-^'da,, (2.11)

where ω 1 ? . . . , ω m are m not necessarily distinct oriented random loops and

m

n,= Σ nj(oh) (2-12)
fc=l

If we insert identities (2.6) and (2.7) into the right side of Eq. (2.1) defining S(g\
differentiate twice with respect to g and make use of (2.8), we obtain the following
expression for the two-point correlation, or Schwinger function

co m

< Φ l Φ l h ^ ^ Σ Σ J U JΣ Σ
= 0 ω,ωi,...,ωm S m

J Π (1 ~ 2izyaj)-™-''J->« ί j ^ — - - 1 ) '-*>"dap (2.13)

where ]Γ ranges over all open random walks ω\x-^u and over m not
ω,o)\ , . . . ,co m

necessarily distinct, oriented random loops ω 1 ? . . . ,ω m , and

m

n ; = n/ω)+ ^ n/ωfc). (2.14)
k= 1

If in (2.13) x = u,ω may be an empty random walk, in which case the exponent
— (1/y) — δxj — δuj on the right side of (2.13) must be replaced by — (1/y) — δxj.
Formulae analogous to (2.13) can be derived for an arbitrary 2n point correlation
function, < φx\... φa

x\
n

n > βfZ, (with even numbers of α/s equal to some a = 1,..., N).
See also [6] for derivations of formulae quite similar to (2.11) and (2.13). For
reasons of simplicity of our exposition we only study the two-point function,
(ΦlΦl}βtZ9 with xφu, henceforth, but our methods cover general correlations,
as well. Now, note that the integrals over the parameters cijJeΛ, in (2.11) and
(2.13) factorize. They can be evaluated by using the simple identity

GO 1 CO 00

j dae-iφ(l-2izγa)-r=-—$dtf-1e-t j eia{2z*~z~l)da
- a. Γ(r) o - oo

^ l / 2 Z

2 y ] . (2.15)

Let Ω={ωi,...,ωm} be an arbitrary, ordered m-tuple of oriented random loops,
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| = m,m= 1,2,3,..., and

(2.16)
fc=l

We now insert the right side of (2.15) and (2.16) into the right side of (2.11) and
of (2.13) and use repeatedly the identity

This yields

o

(2.17)

and

z2<ΦiΦi>,,z= Σ

• Σ 1
l = 0\ l

Π 1

J (2.18)

The factor [Γ(l/y)~12πze~ί/y(l/y)1/y^Λl can be absorbed in a redefinition of the

partition function

q-M. (2.19)

We notice that that factor is the total volume of the spheres over which the classical
spins of the system may range, normalized so that the limit, as y -> 0, is finite.

If we define free energy densities

(2.20)

then βf'Λ - βfΛ, expanded in powers of z, is given by Stirling's series which is
Borel summable in the z variable [14] but not in y; (see also Sect. 4).

We now introduce the notation

(2.21)

and

Clearly Ql(y;y) is a polynomial in y, and ^ ( y y) is a rational function of y which
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is analytic in y in the entire complex plane, except in the interval [— 1,0]. In
general Q%y y = 0) =/= 0. The point is that for y = 1 we have the following result.

Lemma 2.1. For y = 1

lim \y-EWQ%l;y)\ = lim \y'E(n)Qn(y)\

is finite, where

w + 1
E(n) = integer part of . D

The proof of Lemma 2.1 is given in the appendix.

From (2.17)-(2.19) and (2.21), (2.22) we obtain the representations

and

with R%y) as in (2.21), (2.22), and

nj(Ω)= X nj(ω% see (2.12),
ω'eΩ

CO'GΩ

see (2.14).
It is easy to see that

ΣE(nj)>\Ω\.

Therefore the singular factor y | Ω | on the right side of (2.23) and (2.24) is cancelled
by

provided y = 1, i.e. CβJj ~ 1 (see (2.4)), as follows from Lemma 2.1. Thus, we now
understand the crucial role of condition (1.10).

The proof of analyticity of βf(β,y) and of (ΦxΦu)β>z in y in the domain

< π - ε or | y | > l + ε }

for β sufficiently small (depending on ε), and of Borel summability in y at y = 0
is now reduced to proving convergence of the expansions (2.23) and (2.24) and of
their Taylor remainders (at y = 0) in the above domains of y and /?, uniformly in
\Λ\.

We shall establish convergence by applying the polymer method [10-12] to
the right side of (2.23) and (2.24). We first notice that a term on the right side of
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(2.23) or (2.24) indexed by a family Ω = {ω l 5...,ωm} of oriented random loops
does not depend on the ordering of {ωl9...,ωm}. We may thus resum over all
families of oriented random loops which only differ in their ordering. This yields
expansions of Z 3 and (ΦlΦl)β>z with terms labelled by what are called
multi-indices in [10], i.e. by functions from the set Γ of all random walks to ίU
In the following, these labels, the multi-indices are called g-sets (for "generalized
sets") of random walks. A g-set may contain an arbitrary number of copies of the
same random walk. We shall use set-theoretical language (whenever it is unambig-
uous), speaking of unions of g-sets = addition of multi-indices, of elements of
g-sets = particular copies of particular random walks in a g-set, etc. Let Ω be some
0-set. Given some random walk ωeΓ, let v(Ω,ω) be the number of copies of ω
appearing in Ω. We define

[Ω]!= Π N M ! (2.25)
ωeΓ

with the usual convention that 0! = 1.
We may now rewrite expansions (2.23) and (2.24) by summing over all distinct

gr-sets Ω of oriented random loops (rather than over arbitrary, ordered collections
of random loops) and replacing |Ω|! by [Ω]!.

Next, we observe that each term in these modified expansions labelled by a
disconnected g-set can be factorized in a product of terms labelled by connected
gr-sets, also called polymers, and denoted by Ωc. (A g-set Ω is called connected, i.e.
a polymer, if it is given by oriented random loops, or walks ω l 9 . . . , ω m , not
necessarily distinct, with the property that ωknωk+1^=0ik=l,...,m — 1.) Two
polymers are said to be compatible if their union is not a polymer. (Otherwise
they are said to be incompatible.) If Ω is a gr-set of oriented random loops with
the property that Ωu{ω} is a polymer, where ω:x->M is an open random walk,
then Ωc = Ωu{ω} is called anx->κ polymer.

Given some polymer, Ω\ we let |ΩC| denote the total number of oriented random
loops in Ωc, counting multiplicities,

p(ω), (2.26)
ωeΩc

(we recall that p(ω) is the number of steps made by the random walk ω),

nj(Ωc)= X n/ω), jeΛ, (2.27)
ωeΩc

/(ί/)= Σ Kω). (2.28)

ωeΩc

Clearly

| S P(ΩC) = Σ n λ Ω C ) ^ KΩC). (2.29)

We also define an activity, z, of each polymer,

1 π
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where q} = δxj + δuj if Ωc is an x -» w polymer, and q} = 0, otherwise. (Note that |ΏC|
is the total number of random loops in Ώc, not counting open random walks.)

The expansions (2.23) and (2.24) can now be written as sums of products of
activities associated with compatible polymers. The constraint of compatibility is
equivalent to a hard core exclusion between polymers. Let

(2.31)g(Ω\Ωc) =

Then the expansions (2.23) and

00

z 3 =Σ Σ

<•;•!>„

\

(2.24)

π*
k = l

if Ωc and Ωc are
compatible polymers

, otherwise.

take the form

[Ωc

k) [ ] [l+g{&k9

o o r

r = 0 { Ω c

1 , . . . , Ω f } k = l

Π ίί+g(ΩLΩl,)l

( 2 3 2 )

Π (2-33)

where in (2.32) summation extends over all sets of polymers made of oriented
random loops while in (2.33) exactly one polymer is an x-»w polymer. The factor

is the Boltzmann factor of the hard core interaction between polymers. The activities
z(Ωc) = z(Ωc;y) are functions of y = 2/iV.

Criteria for convergence of the expansions (2.32) and (2.33) are well known
[11,12]. See, in particular, the clear presentation in [10]. In the appendix we prove
the following bound on the activity z(Ωc) of a polymer, Ωc:

Lemma 2.2. // y is such that |argj/| < n — ε or \y\ > 1 -f ^ then there exists a finite
constant K& such that

\z{σ) I S l2dβKε(m2(β, Λ)) ~ 1]'<ΩC», (2.34)

where m2(β,Λ) is the solution of Eq.(l.lO).

Remarks. 1) It follows from [10-12] and (2.34) that the expansions (2.32) and
(2.33) can be exponentiated and converge uniformly in \Λ\ if β is sufficiently small,
(β < const K~x). In the next section we recall some of the machinery developed
in [10-12], following [10], which can be used to prove convergence.

2) The main analytical facts needed to prove (2.34) are the following estimates:

a) For k ̂  E(n),

\y-kQly)\ Scomtq«k\n [ ] ' ( i + k\y\\ (2.35)
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where Qq

n has been defined in (2.21), (2.22).

1 " (136)

with m(β,Λ)^l, as β^O; (see (1.10), (1.11)).
Fact a) follows from the definition of Qq

n and Lemma 2.1 which asserts that,
for k^E(n\y~kQ%y) is analytic near y = 0, so that one can use the Cauchy
estimate. Fact b) is standard (see e.g. [6]). Details are provided in the appendix.
Lemma 2.2 follows from facts a) and b) combined with some fairly subtle
combinatorial arguments contained in the appendix.

3. Convergence of the Expansions (2.32) and (2.33), and Proof of Theorem A

The form of expansions (2.32) and (2.33) and estimate (2.34) on the activity of
polymers permit us to use the polymer melhod described in [10-12] in order to
prove convergence. (We follow [10].) We now briefly recall the main features of
that method and some combinatorial estimates which we also need in our proof
of Lemma 2.2, contained in the appendix.

Our aim is to prove existence of the thermodynamic limit, analyticity properties
in y and Borel summability of the 1/JV expansion of

(3.1)

and

<ΦlΦl>β,z=jteglZ3 + tZ3(φlΦl}β^\t = 0. (3.2)

By (2.33), the unnormalized two point function tZ3(φlΦl}βz, has a polymer
expansion in which the activities of the x -• u polymer are multiplied by a factor
t. In order to control the logarithms of polymer expansions we require two basic
properties [A and B, below) of polymers; (see e.g. [10]).

Property A. Let Ωc

0 be a polymer of length Zo. The total number of polymers, Ωc,
of length / which are incompatible with Ω°c is bounded by 1OK[, where K1 is a
constant proportional to dy and d is the dimension of the lattice.

To verify Property A in our case, we first note that we may associate with each
polymer Ωc a walk Ωc, and two subsets S(ΩC) and E(ΩC) made of jumps in Ωc. We
construct Ωc first. We start at some site j1eΩc (jί = x if Ωc is an x->u polymer).
All walks visiting^ form a g-subset Hv We choose one of them and follow its
jumps till we arrive at some site j 2 visited by a non-empty ^-subset H2 of walks
in Ωc ~ Hί. We choose one of the walks in H2 and follow its jumps till we arrive
at a site j 3 visited by some walk in Ωc ~HX ~ H2, etc. Sometimes the walk in
Hk9 k ̂  1, that we were following terminates. This can only happen at the site j k .
We then choose another walk in Hk whose jumps we have not yet followed, or—if
no such walk exists anymore—we follow further the jumps of the walk in Hk_x

along which we arrived at j k the first time. In this way we must finally get back
to j 1 (or land at u if Ωc is an x -> u polymer), having completely followed all the
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paths in Ωc (provided, if Ωc is an x->u polymer, we choose the x-»w path in Hί

as late as possible...). The walk which we have followed in this fashion is Ωc. Our

definition of Ωc depends most of the time on many arbitrary choices, but this need

not concern us. The subsets S(ΩC) and E(ΩC) are defined by the following condition:

a jump j in Ωc belongs to S(ΩC) (respectively: to E(ΩC)) if and only if there exists

a walk ω in Ωc such that the jump j is the first one (respectively: the last one) that

we followed on the walk ω in the process described above.
We claim that given a random walk ω and two subsets S and E of its jumps,

there exists at most one polymer Ωc such that Ωc = ω, S(ΩC) = S and E{ΩC) = E.
Indeed, if such a polymer Ωc exists, by the way Ωc is constructed, there has to be
a subloop ω x of ω, i.e. a closed sequence of consecutive jumps in ω, which start
(respectively: end) by a jump in S (respectively: in E) and is minimal with this
property. If ω 1 = ω ~ ωx is not empty, we can find a subloop ω2 of ω 1 with the
same property, replacing S and E by St = S n ω 1 and E1 = Enω1. Finally we end
up with ωk + 1 empty, and Ωc must be {ω l J ω 2 ϊ . . . ,ω k } . There is no arbitrariness in
fact in this construction of Ωc and this proves the claim. Since there are no more
than 4p ( ω ) possible subsets S and E for a given ω, and since there are no more
than lo(2df random walks ω of length / incompatible with Ωc

0, the number of
polymers, Ώc, of length / incompatible with Ωc

0 is bounded by

β ) (3.3)

which proves Property A.

Similar arguments show that the total number of polymers Ω\,Ω\,..., with

Ωc

knΩc

k + 1φ0,Ωc

ιuΩc

2κj... contains 0, and /= £ l(Ωc

k) fixed is bounded
k= 1,2,...

by (lόd)1.

Property B. The activity z(Ωc) of each polymer Ωc is bounded by Kι

2

(Ωί\ where
K2 is some geometric constant depending on d.

Obviously, Property B follows from Lemma 2.2: For β < βE< βs,

KJβQdβ + m^Λ))-1 <K2. (3.4)

We now perform the cluster expansion, following closely [10].
In what follows, g-sets of polymers are denoted by X. If a #-set of polymers, X,
contains precisely one x -> u polymer we write X: x -> u. With each g-set of polymers,
X, we associate a graph G(x) whose vertices are the polymers in X. Two vertices
of G(X) are joined by a line iff the corresponding polymers are incompatible. The
total number of lines in a graph, C, is denoted by L(C). Given a g-set X of polymers
and a polymer Ωc, let v(X, Ωc) be the number of copies of Ωc in X, and let

(3.5)

Finally

z(X) = [\z(ΩriX Ωl) (3.6)
Ωc

We now have
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Lemma 3.1. [10,11].

BfΛ(β, y) = \A\~^ γ^φτ{X)z(X\ (3.7)

where

CciG(X)

and the sum ranges over all connected subgraphs C of G(X) containing all the vertices
of G(X).

Note that φτ(X)=0, unless G(X) is connected (i.e. X = {Ω\,...,Ωc

r},r =
1,2,3,..., with Ωc

k and Ωc

k+ι incompatible, for all k = 1,...,r — 1).

Lemma 3.2. [10,12].

\φτ{X)\ύ Π
ΩceX

where IX(ΩC) is the number of polymers in X which are incompatible with Ωc,
[i.e. ΪX(ΩC) is the number of lines of G(X) leaving the vertex corresponding to Ωc~].

The key combinatorial lemma based on Property A is the following D

Lemma 3.3. (Malyshev's theorem [12], [10])

ΩeX

where

l(X)= Σ
ΩceX

and K3 is a geometric constant depending on d.
We do not recall the proofs of Lemmas 3.2, 3.3; see [10,12]. We have stated

them here, because they are basic in our proof of convergence of the expansions
(3.7), (3.8), see Lemma 3.1, and because we also need them to prove the required
estimates on z(Ώc), Lemma 2.2; (for this purpose X is replaced by Ωc and Ωc by
ω, see Lemmas A.I, A.2, Appendix).

Combining (3.6) with Lemmas 3.1 through 3.3 we obtain

Theorem 3.1. Let y be such that |argy| < π - ε or \y\ > 1 + ε. Let β be so small that

1<K2, (3.11)

where K2ccd~ι is the constant introduced in Property B. Then the cluster expansions
(3.7), (3.8) for the free energy and the correlation functions converge uniformly in
\Λ\. The limits, as Λ->Zd, exist and are analytic in y in the domain defined above.
The limiting connected correlation functions have exponential cluster properties.
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Remarks. 1) The last part of Theorem 3.1 is a standard consequence of convergence
of the cluster expansion.

2) Condition (3.11), can be satisfied for sufficiently small β, because m(β)-> 1,
as β -• 0; see Conditions (1.10), (1.11). Moreover, if (3.11) holds then it also holds for
sufficiently large, finite Λ, because

lim m(β, A) = m(β).
Λ-

3) Although we have tacitly assumed that periodic b.c. were imposed at dΛ,
our techniques extend to a general class of b.c. and can be used to establish
independence of the thermodynamic limit on b.c. This requires solving condition
(1.10) [see also (2.3)] for Dirichlet b.c. and introducing random walks terminating
in sites in the boundary of A which arise from contractions with boundary fields.
Although we shall not discuss these generalizations any further we think they show
some nice features of our techniques.

By estimating Taylor remainders in y of the activities z(Ωc) (which are analytic
functions of y outside [—1,0] and applying Lemmas 3.1-3.3 and [13] we obtain

Theorem 3.2. For β small enough, the 1/N expansions for the free energy and the
correlation functions are Borel summable at \/N = 0.

Remarks. 1) The required estimates on the Taylor remainders in y of the activities
z(Ωc) are proven in the Appendix (Lemma A.5).

2) Our main result, Theorem A, is equivalent to Theorems 3.1 and 3.2.
(3) We used Nevanlinna-SokaΓs theorem on Borel summability for simplicity,

but with a little additional work one can modify Lemma A.5 to verify that the
stronger hypotheses of Watson's theorem on Borel summability [15] also hold in
this case, provided the temperature is high enough.

4. Discussion of Results and Open Problems

1) We wish to add a comment on the difference between the two free energies
f'(β,z) and f(β,y) introduced in (2.19), (2.20): In Theorem 3.2 we have shown that
the expansion of f(β,y) in powers of y is Borel summable. However, β[f'(β,z) —
f(β>yΏ has no expansion in powers of y. This quantity is the normalized volume
of a sphere over which the classical spin may range. It is thus the free energy
for a 0-dimensional model consisting of a single spin (the "toy integral"). Its
expansion in powers of z (not of y) is Stirling's series which is Borel summable.
Its Borel transform is given by

-βlf'(β,z)-f(β,yn=: Σ (-^F^XTrπ^)2'
Z L Z "I" 1JJ I

where z' is the "Borel variable dual to z," and the Br are the Bernoulli numbers.
It has singularities on the imaginary axis, at z' = kπi, k = + 1, +2, ± 3,. . . .
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It is an open problem to locate the singularities of the Borel transform of the
1/JV expansion and to give such singularities a physical interpretation, as expected
of the singularities in the Borel transform of the coupling constant expansion in
field theories like λφ\ [16].

2) The techniques we have used to establish our main results [Theorems 3.1
and 3.2] have the following feature which is both remarkable and annoying: The
cluster expansion of Lemma 3.1 converges for all y with Rey > 0, and our estimates
on the activities z(Ωc) are uniform in y, for Re y > 0. Thus the constant βπ/2 (see
Theorem A, Theorem 3.1) is bounded by

min βcrιt(N)
0<N<oo

which is well below jδs.
In contrast, Kupiainen [1] has established estimates which are valid for 0 g y < y0

and β < βyo, for small values of y0, with lim βyo = βs.

It is conceivable that we could improve our estimates in this direction, i.e. that
we could prove convergence of our cluster expansions in domains 0 < β < βyo,

|argy|<—, |y| < y0, with lim βyo~βs- [The y->0 (spherical model) limit exists
2 yo^O

term by term in our expansion.] The main obstruction preventing us from
establishing such a result is that it is not easy to establish optimal bounds on

where Qq

n(y) is one of the polynomials defined in (2.21), (2.22) and k S E{ή).
We believe that with more work one might be able to improve the estimates

on \y~kQn(y)\ [see Lemmas A.1-A.4, in the appendix] and eventually prove the
above conjecture.

3) it might be worthwhile to try to extend our methods to other models with
a good 1/iV-expansion, like the C P ^ " 1 models. The first step in this program
consists of choosing the right lattice approximation permitting one to use double
[high temperature, 1/ΛΓ] expansions. For the C P ^ " 1 models, it is known that
certain lattice actions lead to first order transitions in β at 1/N = 0 [17,18]. Such
actions must be rejected in our scheme. We have reasons to believe that there are
lattice actions for the CPN~ 1 models which are not plagued with such pathologies.

4) It would be interesting to extend our methods to analyze other expansions in
statistical physics, e.g. the l/d expansion. Random walk representation should be
particularly convenient to analyze the l/d expansion [since random walks on Zd

become mutually avoiding and self-avoiding, as d -• GO , thus identifying this limit
with mean field theory. Systematic corrections in l/d appear to be accessible].

Appendix. Proofs of Lemmas 2.1 and 2.2 and of Theorem 3.2

In this appendix we supply some technical details which we have used in the main
text without proof. The key estimates are Lemmas 2.1 and 2.2 and (2.35). In the proof
of Lemma 2.2, Lemma 3.3 (Malyshev's theorem [12,10]) plays an important role.
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AΛ. Proof of Lemma 2.1. Let

By (2.21) and (2.22),

Qq

n(y)= Σ (n

1 = 0 \ L

We propose to prove

Qqn(y) = aky
k + O(yk+1\ (A.I)

where k ^ £(n) Ξ integer part of — — , and ak < oo. Clearly, (A.I) yields

Lemma 2.1.

Proo/ of (A.I.). Our proof is inductive and makes use of Pascal's triangular formula

To start the induction we note that

QUy) = 1, and Q\(y) = - qy, V q. (A.2)

In order to do the induction step we use the identity

Now, notice that

Inserting this identity into (A.3) we get

(A.4)
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Formulas (A.4) and (A.2) yield (A.I) by induction in n. This completes the proof
of Lemma 2.1.

A.2. Proof of Lemma 2.2. Let Ωc = {ω l 5... ,ωm} be some polymer. (Different
elements of Ωc may correspond to different copies of the same random walk.) Our
purpose is to estimate the activity z(Ωc) of Ωc by proving a bound on |y~kQS5()0|,
k rg E(n), and straightening out the combinatorial properties of polymers. We start
with the latter.

Lemma A.I. Consider some g-set Ω consisting of oriented (not necessarily distinct)
random loops. With each sitejeΛ c Z d one can associate a (possibly empty) g-subset
Ij = Ij(Ω) of Ω, with the properties that

i) each ωeΩ belongs to precisely one Iji
ii) each coelj visits j ;

iii) the total number of walks in Ip |/j|, satisfies

ϊoralljeΛ.

Remark. Formula (2.30) for z(Ω% property (A.I) and Lemma A.I (with Ω = Ωc, or
Ω = Ωc ~ {ω}, where ω:x -> u) show that z(Ωc) is regular at y = 2/N = 0.

Proof. Our proof proceeds by induction in \Ω\. For |Ω| = 1, Lemma A.I is trivial.
We may thus assume it is true for |Ω| rg m. We then show that it holds for |Ω| = m + 1.
Since any closed random loop makes at least two steps, we may choose, for any
ωf in Ω, Z = l , . . . , m + 1 , two distinct sites j \ and jf; we then call ω[ the
closed random loop made of only two steps which visits j \ and jf, and
Ω' = {ωi,...,ω^+ 1}. It is now clear that if Lemma A.I holds for Ω', it holds for Ω;
indeed there is a one to one correspondence between Ω' and Ω which induces a
natural correspondence between the ^-subsets Ij(Ω') and /j(Ω); and obviously
nj(Ωf)SΠj(Ω) implies E(n}(Ω')) <; E(nj(Ω))\fjeΛ. Since it also suffices to prove
Lemma A.I for connected #-sets (otherwise we may apply the induction hypothesis
to each connected component) we are left with the case of a connected g-set Ω =
{ω1;...,ωm + 1} of random loops, each of them made of two steps. Then:

either there exists jeΛ such that n}(Ω) is odd. Then j is visited by a walk ωij)eΩ,
and

We may then assign ωij) to Ij(Ω) and Lemma A.I follows from the induction
hypothesis for Ω ~ {ω(j)},

or

nj(Ω) is even for all jeΛ. (A.5)

Let ωxeΩ. Choose a site j^eω^ and assign ωί to Ij^Ω). Let j 2 be the other site
visited by ωί9 and ω2φω1 a loop of Ω visiting j 2 . We assign ω 2 to /J2(Ω), and
define^ as the other site visited by ω2 (possibly j 3 =j1). If j 3 is visited by a path
ω3 in Ω, not equal to ωx or α>3, we assign ω 3 to /J3(Ω), and so on. This construction
may stop after having chosen jk and ωk, k ^ 2. This can only be the case if the
other site visited by ωk isjk + ί =jx. Indeed from A.5 and the construction we made,
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n/k + 1(Ω~{ω 1,...,ωk}) should be odd, hence not zero, except iϊjk + ί =jv In this
way we therefore obtain partial g-subsets Kj = {ωielpi^k}. We complete the
construction if k < m -f 1, by applying the induction hypothesis to Ωk = Ω ~
{ω l 5 . . . 5 ω k }; this constructs ^-subsets I£Ωk\ and finally we define

It is easy to verify then all items of Lemma A.I, because by our construction:

E(nj(Ω)) = E(nj(Ωk))-\Kj\. D

The next (and last) combinatorial result is an easy consequence of Lemma 3.3.

Lemma A.2. There is a constant K 4 such that for any closed polymer Ωc

f\ (A.9)

where Ij(Ωc) is defined as in Lemma A.I, unless Ωc is an x->u polymer containing
ω:x-+u, in which case I;(ΏC) = Ij(Ωc ~* {ω}).

Proof. We apply Lemma 3.3, with X replaced by Ωc and ΩceX replaced by ωeΩc.
Clearly, Property A holds if we identify Ωc

0 with a random walk ω 0 of length l0

and count the total number of random walks ω of length l(ω) = / incompatible
with ω 0 . This guarantees that the hypotheses of Lemma 3.3, with X-+Ωc, Ωc-»ω,
are fulfilled. Thus, by (3.10),

Π IΩC(ω)SLΩc~]lKιfc\ (A.10)
ωeΩc

Now, for ωeIj(iT), Isy(ω) ^ |/ ; | , with /,. = //Ωc). Thus

^^c^ψ. (A.11)

Since

Π Π
jeΛ coe13

(A.9) follows from (A. 10) and (A. 11).
End of proof.

We now come to the more analytical part of the proof of Lemma 2.2.

Lemma A.3.

OSA.SI l i β

Proof. When i =j, CβΛj = 1, by condition (1.10), so the lemma holds trivially. For
i =fcj, we apply the random walk expansion of Cβ; see [7].

β \nk(ώ)
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where ώ is a nearest neighbor random walk, and ήk(ώ) the number of visits of ώ
at k. There are at most (2d)1 such walks of length /. Thus

c

y
)2 fy = 2dβ + m(β,Λ)2

 ί=fr_jΊ \2dβ + m{β,Λ)2

β V 2dβ λ " ~ j l 2άβ

2dβ + m2{β,Λ))\2dβ + m(β,Λ)2 '

2dβ V'- "

mOM)V '
The bound on J f l c follows from the bound on Cβtij and the definition of JΩ<.

Next, we prove our crucial bounds on the polynomials Q%y); see (2.35).

Lemma A.4. For k ^ E(ή),

n

Proof. If \y\ ^ [2Py
ι then, by (2.21) and (2.22)

\y-kQl(y)\ύ(2pf

<e2pk\2n

n + q - 1

Σ(;j(-i)"-! π
n + q - ί

Π
k = q

If \y\ ^(2p)~1 we may apply Cauchy's estimate: We choose Γ to be the circle of
radius p ~ι centered at the origin. Let

By (A.I), f(y) is analytic in j eC ~ {oo}. For \y\ < (2p)~ί, we may therefore apply
the Cauchy formula

w h i c h y ie lds

Σ
« + q - 1

' Π (
k = l + q

"

L e m m a A.4 n o w fol lows b y c h o o s i n g p = n + q—l.

Corollary A.5. For k ^ E(ή) and y in the domain

D ε = { y : | a r g y | < π - ε , or |y |> (A. 12)

(A. 13)



Borel Summability of the \/N Expansion 107

where R\ is the rational function defined in (2.21) and (2.22), and Cε is a finite
constant, for each ε > 0. // Re y > 0

\y~kRt(y)\ ^ (^22)"e2("+«- l ) k ! . (A.14)

Proof. For yeDε,

n + q- 1

Y\ (1 + / c | y | ) | l + k y \ ~ x S c^ + q~i, (A.15)

for some constant cε which is finite for all ε > 0. If Re y ^ 0, cε ^ λ /2 in (A. 15). Thus
Corollary A.5 follows from the definition of Rq

n and Lemma A.I. •

Proof of Lemma 2.2. By formula (2.30)

jeΛ

f i τ Π > )
l>* J jeΛ

where //Ωc) is as in Lemma A.2, and the last equation follows from Lemma A.I.
By Lemma A.I, iii)

I Z / Ω ^ Eίw/ff)), for all j .

We may therefore apply Corollary A.5 to estimate | j ~ | J j ( β c ) l K ^ ( Ω C ) ( ^ ) | which yields:

for yeDε (defined in (A.12)). If we now use inequality (A.9), Lemma A.2, and the
inequality

Σj qj^im + l, (A.18)
j

we find

which, together with Lemma A.3, completes the proof of Lemma 2.2. [If Re y ^ 0
we may use (A. 14) instead of (A. 13).]

A3. Proof of Theorem 3.2. It suffices to prove uniform estimates on the rth

derivative in y of z(Ωc; y) = z(Ωc\ for Re y ^ 0 and arbitrary polymers Ωc. One then
uses Lemmas 3.1 through 3.3 to transfer such estimates to βf(β,y) and (ΦlΦl}βίZ.
Therefore we only need one further lemma, namely:

Lemma A.5. // Re 1/y > 1

w
for some constants c and K5.

(A.20)
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Proof. According to (A. 16) and Leibniz' rule:

^ l ^ 1 ' (A 21)

where/,, stands for ^~ | / j (

We estimate the derivatives on the right side by using the Cauchy formula,
as in the proof of Lemma A.4. Let Cί be the disk {y Re 1/y > 1} and Γp

the circle surrounding it at distance (2p)~\ namely the set of points y with
} = (2pΓ 1 .

For / analytic inside Γp and y in C1 we have

έ^r« (A-22)

We can apply this Cauchy formula to the derivative of fj in the right side of (A.21),
provided we choose p = nj

Jr qy, indeed by (A.I), / ; is analytic inside ΓHj + q..
We need the following easy generalization of (A. 14):

iϊyeΓn + q. (A.23)
k=q

Using Lemma A.4, it yields for yeΓnj+ :

\fj(y)\ S 8^ + ̂ 2 ( ^ + ̂ % ( Ω c ) | ! . (A.24)

We insert this bound in (A.22) and obtain, for y in C1

^ SjliSeψ^Wnj + qj)T+1\IjiSy)\! (A.25)

We use the estimate

We can now bound the sum in the right side of (A.21), using (A.25), (A.26) and
(A. 18). Since there are at most 2r + l{ΩC) possible choices of sequences (Sj)jeΛ such
that YJSj = r and Sj — 0 if nfΩc) — 0, and since fj s-}! ^ r! we get the bound

J j

(r!)22r + i ( Ω C ) ( 1 6 e 4 ) i ( ί 2 C ) + ' Π I ^ ( Ω c ) I !•
j

Lemma A.5 follows from this bound and Lemma A.2, with K5 = 32e4'K4r. Of course
we do not try to find best possible constants. Theorem 3.2 now follows by appealing
to the result of Nevanlinna and Sokal [13]:

Lemma A.6. Let f be analytic in the circle CR = {y Rel/y > 1/R}. Suppose
f admits an asymptotic expansion such that

f(y) = Έ %/ + RM (A.27)
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with
(A.28)

uniformly in r and yeCR,for some constants σ and c. Then f is Borel summable, which

means that the power series Σakt
k/kl converges for \t\ < 1/σ, that it defines a

k

function B(t) which has an analytic continuation in the strip

and that this function satisfies the bound

\B{t)\^Kexpt/R ϊovteR+.

Finally / is represented by the following absolutely convergent integral:

\ °°
f(y)=- j exp{-t/y)B{t)dt, yeCR.

y o
There is also a reciprocal theorem which we do not use here. We apply this theorem
in our case, with R = l, by simply noticing that (A.27) and (A.28) follow from
Lemma A.5 by Taylor's formula.
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