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Abstract. We consider a Euclidean model of interacting scalar and vector fields
in two and three dimensions, and prove a lower bound for vacuum energy in a
lattice approximation. The bound is independent of a lattice spacing; it is
proved with the help of renormalization transformations in Wilson-Kadanoff
form. It extends in principal also to generating functional for Schwinger
functions.

1. Formulations of Results, Remarks on the Method, and Notations

The aim of this paper is to give some estimates on the partition function of a lattice
approximation of two and three dimensional Euclidean models of interacting
scalar and vector fields. These estimates are independent of the lattice spacing. The
model is the so-called Proca model, and its (continuous) action is given by

+ Σ \\F»M2Ati ΣK.MI2, α i)
μ,v = 1 ^ ^ μ = 1

where φ is a scalar field with values in RN, q is an antisymmetric Nx N matrix, Aμ

are components of a vector field and Fμv(x) = δμ>lv(x) — 3vAμ(x). This model was
constructed in the two dimensional case by Brydges et al. [5-7] without any
ultraviolet or space cutoffs, including the case μl = 0. Here we only prove the
ultraviolet stability, however we consider both d = 2 and 3, and we use a different
method, based on a renormalization transformation. We take a lattice approxima-
tion for the model as our ultraviolet cutoff. Lattice approximations for gauge field
models were introduced by Wilson in [29] and were studied by many authors [5,
6, 11, 16, 17, 22, 27, 28, 30]. The results of Brydges et al. [5, 6] are basic for our
paper. They introduced several versions of lattice approximations and they
verified their most important properties: physical positivity, diamagnetic in-
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equalities, gauge fixing properties, correlation inequalities etc. We make extensive
use of some of the results of [5].

For the vector field action in (1.1) we approximate the action replacing
derivatives with finite differences, yielding a quadratic form. Thus, from the
technical point of view, the paper actually deals with scalar fields. In the future, we
plan to consider the lattice approximation for the gauge field in the Wilson form,
which is technically more difficult, but which serves as an introduction to gauge
field models with non-abelian gauge groups. In this way we divide the technical
problems of the full model into two parts this is convenient and furthermore
clarifies essential differences between the scalar field and the gauge field.

This and the next papers contain the main ideas of our proof, while many
technical results are postponed for later papers.

We will consider the model on the d-dimensional torus Tε identified with the
subset of εZd:

Tε={xeεZd:-LμSxμ<Lμ, μ = l , . . . , d } , (1.2)

where Lμ are such nonnegative numbers that ε~γLμ are integers.
More exactly we will assume that ε~1Lμ = LκMΣΪμ, where K, L, M, Lμ are some

positive integers, K = O(logε~1) and L,M will be described later.
We introduce a distance on Tε by

\x-y\ = mjκmin{\xμ-yμ\,2Lμ-\xμ-yμ\}. (1.3)

We consider two spaces of field configurations on Tε: scalar fields and vector
fields. The configurations of scalar field are functions φ:Tε-+RN. Vector field
configurations will be sometimes understood as the functions A:Tε-+Rd,
and sometimes as A:T*-+R9 where Tε* is the set of all bonds from Tε:T*
= {<.x, xfy :x,x'eTε, x,xf are the nearest neighbours}. We will identify these two
meanings by A<x x+εeμy = Aμ{x\ μ = l , ...,d. Bonds will be denoted by letters b9 c
also. Thus b = (b_,b + ) where b_ is the initial point, b+ is the final point. The
points £>_,& + are of course the nearest neighbors. The bond b with the opposite
orientation will be denoted by —b = (b + ,b_}. For a function g defined on bonds
we assume g_b= —gb. The difference derivative is defined by the formula

(dJ)(b) = ε-1(f(b + )-f(b_)). (1.4)

It is an operator on functions defined on a lattice into functions defined on bonds
of this lattice. The difference derivative in a given direction μ can be defined in an
obvious way also. The adjoint operators with respect to the scalar product

= Σ *f(x).g(x) (1.5)

can be easily written up. We define also the derivative for a function on bonds:

e" 1 Σ Ab = (dlAv)(x)-(dlAμ)(x), (1.6)
bCdP

where P is a plaquette, i.e. an elementary square of the lattice,

P = <x, x + εeμ, x -f εeμ + εev, x + εev} for xeΓ ε ,μ<v.
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To describe the interaction of scalar and vector fields we introduce a
representation of the additive group of real numbers R in unitary operators on
RN: U{A) = exp(qεeA), AeR, where e is a coupling constant and q is an anti-
symmetric NxN matrix. We will assume only that | | g | |^ l . Antisymmetry of q
implies U{A)* = U{ — A)= U{ — A)'1. A covariant derivative for scalar fields is
defined by the formula

-φ(b_)), & = <fe_,fe + >. (1.7)

Now we can define the fundamental action for the lattice approximation of our
model

S'\A9φ)=\ Σ εd\(Dε

Aφ)(b)\2+ X εd(\m2\φ{x)\2 + λ\φ{x)A

+ \ Σ zdWA){P)\2+\ Σ eVolΛl2. (1.8)
z Pcτε * bcτc

and the corresponding partition function

Z'ε=$dA$dφQxp(-S'ε{A9φ)). (1.9)

In the above integral the natural Lebesgue measure is used on the spaces of
configurations of scalar and vector fields. We will now use some results of the
paper [5]. In Sect. 5.1 the authors have shown how to introduce the gauge fixing
terms in the integral (1.9), using the properties of (1.8) under the gauge transfor-
mations. The same gauge fixing procedure can be applied also to gauge-invariant
Schwinger functions. We introduce here the Feynman gauge and we will consider
the integral

Zε=$dA$dφexp(-Sε(A9φ)) (1.10)

instead of (1.9), where the action Sε is now defined by the formula

xeTε

(1.11)

Here — Δε

A = Dε

A*Dε

A is the covariant Laplace operator and — Δε = dε*dε is the
Laplace operator on the torus Tε. We will assume that μl>0 and λ>0, and these
assumptions are basic for this paper. The coefficient ml is more complicated. There
are (linearly) divergent self-energy diagrams for scalar field in the theory, so a
mass-renormalization counterterm is needed. As usual, we will take ml = m2 -f- δm2,
where m2 > 0 and δm2 is the counterterm given by a perturbation expansion in e
and λ. This expansion, as all the other expansions in the paper, will be taken up to
some order w, and n ̂  6 is necessary for renormalization of the theory. It can be
written down explicitly but we will not do it because we will not use it in this paper.
Let us only notice that δm2 is a function of ε, e, λ, m2, μ2,, q. Without any further
assumptions on q, δm2 is a NxiV-matrix depending on q2. For simplicity of
notations we will treat it as a number. It is a number if q2 is a number and it is so in
the simplest and most important case when N = 2 and q2 = — 1. The constant E in
(1.12) is a sum E = E0 + El9 and Eo is a normalization constant obtained from
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(1.10) by taking there e = λ = 0, E = 0 and ml=m2; therefore we have

(1.12)

The constant E 1 is given again by a perturbation expansion which can be written

as

*i= Σ (1.13)

Now the fundamental result of this paper can be formulated.

Theorem. For the dimensions d = 2,3 there exist the constants E_,E+ independent
of ε, Tε and such that

(1.14)

Let us make some comments on this Theorem.
First, we would like to stress that the assumption λ > 0 is essential for our

method.
The second remark concerns the estimates of a generating functional. Using

the same method of proof we can extend the Theorem in several ways. One of the
simplest extensions is

(1.15)

where the "sources" J, / are arbitrary, || || is some norm, e.g. we can take the norm
of Π°, and the functions E + ( , •) are continuous and independent of ε, Tε. Using the
techniques developed in [11, 16, 25] it is possible to prove more refined estimates.

The fundamental aim of the paper is a presentation of some method. This
method is a modification of the method of Gallavotti et al. [2-4, 13]. As is well
known, every proof of ultraviolet stability is based on some "slicing" of momen-
tum range and successive analysis of the effective actions in the slices, i.e. on the so-
called phase-space cell analysis. This slicing can be done in several ways, see the
papers [2,8, 10, 15, 21-23, 29, 30]. Here we will obtain it applying the
renormalization group transformations in the form proposed by Wilson and
Kadanoff in the papers [17-19, 32, 34]. These transformations, together with the
method of Gallavotti et al. are the basic ingredients of the method applied here.

Let us mention that a method similar to the one described in this paper was
applied by Gawedzki and Kupiainen in [14] to another problem.

Now let us gather together the definitions and notations used in the paper. For
a lattice of an arbitrary scale η, and also for its arbitrary subset ΛCηZd, we define
the "prime" operation

Λ' = ΛnLηZd. (1.16)

A block B(y) of the lattice ηZd, yeLηZd, is defined by

B(y)={xeηZd:y<xβ<yιι + Lη9 μ = l , . . , d } . (1.17)
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Together with the operation ', we introduce also a dual operation B:

for ACηZd, B(Λ)= (J B{x)CL~1ηZd. (1.18)
xeΛ

The operations' and B can be iterated and we define

T^tll = (TΪi)', /c-0,l ?2,...,7^0 ) = Tε. (1.19)

From the definition of TE, and more exactly, the definition of the numbers Lμ, it
follows that all the above sets are the sums of the corresponding blocks, i.e.

ty9 fc = 0,l, . . . , thus Γe = B*(7#>). (1.20)

Further we will use the partitions into large blocks besides the partitions into
blocks described above. They are defined in the same way, only L is replaced by
ML, where M is a sufficiently large natural number. This number will be
determined later. The sets T^ε are the sums of large blocks also. For the subsets A
of the lattice ηZd a measure is defined by the formula

\A\= £ ηd = ηd (a number of points in A). (1.21)
xeΛ

For the functions defined on the points of the lattice ηZd or on the bonds of this
lattice, a scalar product is defined as usual by the formula (1.5) with η instead of ε.
Generally, we will denote a scale of a lattice by a sub- or super-script at an operator
or a set, except the unit scale.

An important role is played in the paper by the operations of rescaling done on
the fields and operators. Let us consider the rescalings of the fields, because they
determine the others. We use only the canonical rescalings, so we have

d-2
2

xeηZd, or Φ[j*] = [j] ~ Φ'W, xeδZd, (1.22)

and the same formulas for vector fields. They imply the formulas for the rescalings
of the functions of fields, e.g. we have for a derivative

~dl2 fδ ,
for xeηZd. (1.23)

Finally, it is very important to know how the constants in the action (1.11) are
changed after a rescaling. If we rescale (1.11) from the ε-lattice to an sε-lattice, then
from (1.22), (1.23) it follows that we get the action again of the form (1.11), but with
ε replaced by sε, Tε by Tsε, the constants ml, μl are replaced by mis"2, μls"2, and

the coupling constants e, λ are replaced by λs = λs~{4~d\ es = es ~T~. We can use
this to remove one of the coupling constants, for dimensions d = 2,3. It is

i_

convenient to rescale in such a way that λs — 1, so s — λ4~d and then es — eλ~112. We
will assume that this rescaling is done, but we will leave λ in all the formulas
because it is convenient in the perturbation expansions, only in the estimations λ
will be replaced by 1.
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We will identify a set A with the characteristic function defined by the set, thus
we will write Af and it means the product of the characteristic function A and the
function /. Other notations will be introduced in the places where the correspond-
ing objects appear for the first time.

2. Renormalization Transformations, Their Properties
and Action on the Gaussian Densities

Now we will introduce a renormalization transformation for scalar fields. Its form
will be imposed by Gaussian densities defined by a covariant Laplace operator in
an external vector field. The renormalization transformations for vector fields will
be obtained by taking N = d and an external vector field A = 0, so we will not
consider them separately.

At first let us define a family of contours on the ε-lattice Tε. For yeT^tl],
xeB(y\ we define a contour Γy x:

vφ19 .. ,yd-vχdl(yί9 •• ,yd-2,xd-1,xd)>

...u((yvx2, ...,χd),x>, (2.1)

w h e r e ( ( y ί 9 . . . 9 y i 9 x i + ί 9 . 9 x d ) 9 ( y 1 9 . . . 9 y i - ί 9 x i 9 x i + ί 9 .- 9 x d ) y i s a s e g m e n t o n Tε

connecting the corresponding points. We consider Γy x as an oriented contour,
with y as an initial point and x as a final point. Let us notice that this contour
depends on the lattice T$ε to which both points y, x belong. Each such contour is
composed of the bonds of ε-lattice, so the number of these bonds in Γy x grows
with k. Next we will define the contours Γy

ik)

x for ye T££}

ε, xeBk(y). Let its denote by
Xj a point of torus 7^, such that xeBj(Xj). Of course xk = y and XjeB(xj+1). We

d e f i n e Γ^Γ Γ u Γ

T$ε9 xeB\y). (2.2)

The contour Γy

{k)

x is considered as an oriented contour. We will denote the rescaled
contours by the same symbol. For an arbitrary oriented contour Γ, let us put

A(Γ)= Σ Λ, (2-3)
bcΓ

where the bonds b are taken with the orientations according to the orientation
ofΓ.

Now we can define the renormalization transformations for scalar fields on a
subset Ω of the Lkε-lattice 7 ^ satisfying the condition B(Ωf) = Ω.

ρ'(A, ψ) = 7fL%[β, ρ] = j dφtflJΩ ψ, φ)ρ(A, φ), (2.4)

yeΩ'

[ 2π ) ^(-HLk+1s)d-2\ψ(y)-(Q(A)φ)(y)\2), (2.6)

(Q(A)φ)(y) = Γd Σ U(A(ΓyJ)φ(x). (2.7)
xeB(y)
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We have the normalization properties

ίdψe'(A,ψ)=idφρ{A,φ). (2.9)

Although formally the same for all fc, the above definitions are in fact different
because the contours Γy x depend on the scale ύε, as it was noted above. Here the
external vector field A defined on Tε is arbitrary.

Next let us define a renormalization transformation of kth order T^Lk>A by the
formulas (2.4), (2.5), but instead of (2.6) we take

' ,τk\d-2\N/2
kK *l -j εM-ίak(Lhy-2\ψ(y)-(Qk(A)Φ)(y)\2), yel®,, (2.10)

where Qk(A) is an operator transforming functions on the ε-lattice Tε into functions
on the LVlattice T$ε and given by the formula

(Qk(A)f)(y) = L~M Σ U(A(φ)f(x\ yeTΪίε. (2.11)
xeBh(y)

An easy Gaussian integration gives the formula

ί Π dθ(yKί,Mz),θt Bω) Π tε

ak,L«
yeB(z) yeB(z)

where a, ak, α f r + 1 satisfy the relation
aau

From this formula we obtain

A sequence of numbers ak satisfying the above recurrent equation and an initial
condition a1 = a is uniquely determined and it is equal to

1 Γ - 2

ak = aγ_L_2k, ak^ a^ = a{l-L~2) as k-^oo. (2.15)

Thus we get the following formula for the composition of k successive re-
normalization transformations

Now we will define sequences of operators and covariances which are
fundamental for the rest of the paper. They are obtained by application of
renormalization transformations to the basic Gaussian density
exp( — ~{φ,(— Δε^N

Ω + rn2)φ}\ where — ΔεχN

Ω is a covariant Laplace operator on the
set Ω with Neumann boundary conditions. A set Ω is a subset of Tε and we assume
that it satisfies the condition (1.22), i.e. Ω = Bk(Ω{k)) for the suitable indices k. In this
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paper we will use the case Ω = Tε only, but in the second part the necessity of the
considerations of more general Ω will arise. We define inductively

Z(k),L

= '

From (2.16) we have

Δw>e(Ω,A)=-Δχ
kc{Ω,A)exp(-±(ψ,Alk+1

7^%[Ω(ft),exp(-^<(M(

« + m2,

ϊ Lk+h(Ω,A)ψ})
k)'Lkll(Ω,A)φ))~].

(2.17)

(2.18)

(2 19)
Defining the propagator

GftΩ, Λ) = ( - z l ^ + m2 + % ( i A ) " 2 P , ( , 4 ) Γ 1 , Pk(A) = Q*(A)Qk(A), (2.20)

and calculating the integral in (2.19), we obtain

<ψ, A<*>• L*ε(β, A)V> = fljk(L*εΓ 2<φ, φ> - a2{Lhy\ψ, Qk(A)GB

k(Ω, A)Q*(A)ψ} .

(2.21)

In the sequel the properties of the propagator Gε

k(Ω9 A) rescaled to the ^-lattice,
r\ — L'k, will be very important. Let us notice that the rescaled propagator is given
by

Gk(Ω9 A) = (- A\% + m\Lh)2 + akPk(A))~l (2-22)

The following proposition gathers the most basic properties of Gk(Ω, A):

Proposition 2.1. Let a set Ω satisfies Ω = Bk{Ω{k)) and let Ω{k)CT[k) be a sum of big
blocks with M sufficiently large. Further, let a configuration A be regular on Ω in the
sense that

k)β-\ xeΩ, μ=l , . . . ,d , (2.23)

4-rf

where e{Lkε) = e(Lkε) 2 , η = L~k, β>0 and c is some universal constant. For an
arbitrary pair of points x, xfεTη let us denote yb Γx x, a shortest contour connecting
these points. Then for e(Lkε) sufficiently small and α< 1 there exist positive constants
<50, c0, Ro independent of A, /c, Ω and depending on d, α, M only, c0 on a also, such
that for an arbitrary function f:Ω-+RN we have

- i — I U(A{ΓxJ)(DlμGk(Ω,A)f)(x')-(D%μGk(Ω,A)f)(x)\
\x x i

g c0 exp( - δ0 dist({x, x'}, supp/))||/|| „ (2.24)

for x, x'eΩ and satisfying the condition dist({x,x},Ω c)^R0. Similarly we have

\Φ\μGk{Ω,A)f)(x)\,\(Gk(Ω,A)f)(x)\^c0exP(-δ0dist(x,supp/))||/||a (2.25)

for xeΩ, άist{x,Ωc)^R0. IfΩcΩ0, then for δGk(Ω,Ω0,A) defined by the equality

δGk(Ω, Ωo, A) = Gk(Ω, A) - Gk(Ω0, A), (2.26)

we have the inequalities (2.24), (2.25) with the additional factor

exp(- δ0 dist(supp/, Ωc) - δ0 dist({x, x'}, Ωc))
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on the right sides. For some simple sets Ω, e.g. for rectangular parallelepipeds, the
inequalities hold without any restrictions on the points x,x', i.e. for all x,x'eΩ.

Let us notice that Ωc means a complement in Tφ so in the case Ω=Tη the
condition άist({x,x'},Ωc)^R0 is meaningless and is omitted.

Let us formulate now some consequences of the above theorem. The first
concerns the operator A(k)fLkε(Ω, A) rescaled to the unit lattice.

Proposition 2.2. If a configuration A is regular in the same sense as in Proposition 2.1
then there exist constants <50>0 and c0, depending on the same quantities as in
Proposition 2.1, such that

\A^k\Ω,A;x,xf)\Scoexp(-δo\x-xf\), x,x'eΩik\ (2.27)

Putting for ΩcΩ0

δΔ{k\Ω, β 0 , A) = A™(Ω, A) - A(k\Ω0, A), (2.28)

the following inequality holds

\δA{k\Ω, Ωo, A x9 x')\ ύ c0 exp( - δΌ(\x - xf\ + dist(x, Ωik)c) + dist(x\ Ω(k)c))). (2.29)

Another important class of covariances is the one connected with the effective
integration in (2.18). We define a convariance C(k)i Lhε(Ω, A) by means of the
quadratic form in φ in this integral:

Cik), L*ε(ί2? Aj = (a(Lk+1εy2P(A) + A{k)> Lk%Ω, A))'1. (2.30)

In the sequel we will use the covariance rescaled to the unit lattice and it is of the
form

C{k\Ω, A) - {aL~ 2P(A) + A{k\Ω, A))'1. (2.31)

It is not clear from the formulas (2.30), (2.31) that the co variances are well defined.
It is so, and it is one of the assertions of Proposition 2.3. Beside the co variances
(2.31), we will need the covariances which are obtained by conditioning with
respect to some set AcΩ(k\ For an operator A defined on configurations
φ:Ωik)-^RN we define At Λ as an operator on configurations φ:A-^RN by the
formula At Λφ = AAAφ. We will use the following covariances also

, A) = ((aL~2P(A) + A<k\Ω9 A)) t ΛY
ι. (2.32)

Here we will assume that the set A is a union of big blocks of T[k\

Proposition 2.3. // a configuration A is regular on Ω in the sense defined in
Proposition 2.1, then there exist positive constants δ0, c0, y0, yv dependent on d and
a, and independent of A, k, Ω and A, such that

, (2.33)

x,x'eA. (2.34)

In particular the above inequality holds for C{k)(Ω, A). Putting

δ(%\Ω, A) = C<«(Ω, A) - Uk\Ω, A), (2.35)
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we have

\δC«\Ω,A;x,x')\

^c o exp(-^ o ( |x-x' | + dist(x,ylc)+dist(x',/lc))), x,x'eΛ. (2.36)

Finally, for ΩCΩ0 and

δC%\Ω, Ωo, A) = C(k\Ω, A) - Cf(Ω0, A), (2.37)
we have similarly

\δC«XΩ,Ω0,A;x,x')\

^ c 0 exp(- δo(\x - x'\ + dist(x, Ω(k)c) + dist(x', Ω(k)c))), x,x'eΛ. (2.38)

Now we will find recursive relations between the propagators (2.20), (2.30).
Using the relations (2.18), (2.19), (2.21), we get after easy calculations

Zt + ,(Ω, A) = Z;(Ω, A)Z™ L\Ω, A), (2.39)

' 1 Ω , A ) , (2.40)

Qk+ M)GU i(Ω, A) = ^(LkεΓ2Q(A)C«>'Lk%Ω, A)Qk(A)G°k{Ω, A), (2.41)
ak + i

Gl+ ,(Ω, A) = a2

k(LkεΓ^Gl(Ω, A)Q*{A)Ok)'L\Ω, A)Qk(A)Gt(Ω, A)+GE

k(Ω, A).

(2.42)

We can treat these identities as recursive equations of the renormalization group.
The last two are the most important. The formula (2.41) allows us to compose the
covariances appearing after the successive applications of renormalization trans-
formations. The formula (2.42) is used for similar purposes and it has a
fundamental meaning for the analysis of the perturbation expansions, especially
for the proof of its renormalizability. More exactly, an equality obtained by
solving (2.42), i.e. applying (2.42) k times, has such a meaning. Using the identity
G\(Ω9A) = C{OU{Ω9A\ we get

k-l

G*k(Ω9 A)=Σ aj(Ljε)~4G%Q, A)Q*(A)Cij)> Lh(Ω, A)QJtA)G%Ω, A) + C ( 0 ) ' %Ω,A)
; = 1 (2.43)

3. Formal Properties of the Renormalization Procedure

The Lower Bound

In this chapter we begin a proof of the theorem. According to the now well-
developed procedure in the papers [13, 2, 3,14] we will first prove the lower bound
in the inequality (1.14). Its proof is essentially simpler than the proof of the upper
bound and allows a separation of some aspects of the whole procedure. The proof
is based on successive applications of the renormalization transformations. We
will describe the operations to be done after each renormalization transformation
in a form suitable for the lower bound, but the same operations in a slightly
modified form will be done in the next paper in the proof of the upper bound.

A very essential feature of the method is an introduction of the restrictions on
the magnitudes of the fields. The restrictions we will use differ from those used in
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the papers [2, 3, 14]. In the first step we introduce the characteristic functions

ά-2 W l[ d+2

I^e 2 P(ε)ί)X\\\(ΛεA)(x)\^ε 2p(ε)\j,

1r, (3.1)
ά-2 \\ ({ d+2

Xo(Φ)= U X\\\Φ(x)\£e 2 p(ε)ί)χ[\\(A°Aφ)(x)\Sε 2 p{ε)\). (3.2)
xeTε

The restrictions on the fields B, ψ are made by the means of the fields B{1)'ε, ψiί)>ε:

( ( x p . (3.3)

Of course they are defined on the ε-lattice Tε. We introduce the characteristic
functions

a — 2

xeTε

d+2

ά-2
2 p(Lε)

p(Lε)i), (3.5)

and the following inequality holds

Sεm^ (3.6)

We have to calculate Tε

 L[Ta L A[χo(A)χo(φ)exp( — Sε)J] under the restrictions on
the fields B, ψ introduced by the characteristic functions χί(B)χί(ψ).

Now we will describe briefly the operations to be done in order to calculate this
integral and to get an expression which is a starting point for an inductive
hypothesis. This integral is rescaled from the ε-lattice to the unit lattice, i.e. we
make the transformations (1.23), (1.24) with η = ε, (5 = 1. After the rescaling the
integral gets the following form

constldA$dφχo{A)χ0(φ)exι>\-$aLd-2 £ \B(y)-(QA)(y)\2

[ yeTΊ

Σ My)-(Q(A)Φ)(y)\2

2 Σ IΦWI2

-λε4'* Σ \Φ(xT-El (3-7)

where the characteristic functions χo(Λ)χo(φ) correspond now to the restrictions

p(ε), \(ΔA)(x)\Sp(ε), (3.8)

\(ΔAφ){x)\^p{ε), xeT,, (3.9)
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and the scalar product and the operators are defined on the unit lattice. The next
step is the translation in the fields A

(3.10)

separating the quadratic form in the fields A, B in (3.7) into a sum of two forms

A{1)>LB) + {{A\ (C(0))~ M'> . (3.11)

We estimate the integral (3.7) from below by the same integral with additional
characteristic functions

M')= Π χ({\A\x)\ύpMl Pl(ε) = b1(l + \ogε-1)»>. (3.12)

Now we will demand that the restrictions on A' introduced by the above
characteristic functions and the restrictions on B(1) introduced by the functions
χ^B) imply the restrictions (3.8). To meet the demand it is sufficient to require
Adp1{ε)-\-p{Lε)^p(ε). For example it is easy to see that this condition is satisfied if
p — 1 ̂ pv b0p\ogL^4db1(l + logL)Pl. The demand can be written in a form of the
equality

Xi(BMA')χo(A' + 5 ( 1 )) = Xl(B)x{A'), (3.13)

so we can remove the functions χo(A' + B{1)) from the integral (3.7). We expand the
action into a power series in A'. We will write the expansions below for arbitrary
fields A, B instead of A\B{1\ and for a general case, i.e. for the operators obtained
after k transformations. They are considered on the /^-lattice, η = L~k. Thus we
have the basic expansion for the function U{A) rescaled to ^-lattice

U(A) = exp(ηqe(Lkε)A) = 1 + £ ^
π = i n\

{ηqe(Lkε)Af+1

+ R

(n+ί)\ Rn

h{A), (3.14)

4-d
hε) = e(Lkεwhere e{Lhε) = e(Lkε) 2 and Rn+1(z) is an analytic function of z defined by the

1

formula l ^ + 1 ( z ) = ( n + l ) f ( l — t)netzdt. This implies an expansion of the operator

xeBk{y)

= (Qk(B)φ)(y) + L
xeBHy)

(3.15)



(Higgs)2ί3 615

The above two formulas imply an expansion of the covariant Laplace operator
with the Neumann boundary conditions on arbitrary Ω

+ akF2ik(A, B)*Qk(B) + akQ*(B)F 2Λ(A, B)

+ akF2JA,B)*F2Λ(A,B). (3.16)

We apply these formulas, for k = 1 and rescaled to the unit lattice, to the expression
in the exponential function under the integral (3.7). Further we can estimate the
terms containing the matrix JR^+1( ) using the inequality \Rn+ί(qA)\^l, which
holds for arbitrary real A, and using the restrictions on the fields. These terms are
estimated by O(εκ)|T.J for some κ>d. Thus we get an expression which is a
polynomial in the fields ψ, φ, A'. The basic quadratic form in the fields φ, φ is equal

2)φ}, (3.17)
yeΓΊ

and the remaining terms are interaction terms with coefficients proportional to

some power of ε 2 .
Now we apply the translation in the fields φ

φ=φ' + aL-2C{0\B{l))Q*{B{1))ψ= :φ' + φ ( 1 ) (3.18)

separating this quadratic form into a sum of two independent forms in the fields
ψ, φ' respectively:

1Φ'> (3.19)

After this we will get some new interaction polynomial. Let us include the constant
Eί to it and let us denote the obtained expression by V{0\B{1\ ψ, Af, φ1). Again we
introduce restrictions on the fields φ' and we estimate the integral from below
inserting the characteristic functions

x(ΦΊ= Π x({\Φ'(χ)\SpM)- (3.20)

We will later in a general case prove that these restrictions on φl together with
the restrictions introduced by χ1(ip) imply restrictions (3.9) if the inequality 4dpί(ε)
+ p{Lε) + O(εα) ̂  p(ε) holds. For example it is easy to see that the above condition is
satisfied if p — 1 g:p1? b0plogL^4db1 (1 +logL)P 1 and ε is sufficiently small. Again
we can write the effect of these conditions in the equality

ΊxoW + ̂ ( 1 ) )=xMήΦΊ (3.21)
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Let us come back to the integral (3.7). It is estimated from below by

const e x p ( - K ^

(3.22)

To calculate the integral in the square bracket [...] we use the cumulant
expansion formula of the form

1 1

(3.23)

where < ) denotes the expectation value with respect to the measure
dμ^o^Λ^dμ^o)^!)^'), V= F ( 0 ) and <F">Γ denotes the truncated expectation of a
product of n polynomials V, thus

and so on. On the right side of (3.23) there is a formal series, so obviously we can
use only some truncated form of this expansion. The coefficients of the polynomial
V are proportional to some positive powers of s. The smallest such power is ε1 / 2

and <F">Γ is the expression corresponding to the sum of connected graphs with
exponentially decaying propagators. Hence < F " ) Γ = O(εκ)|T1| with κ>d for n
sufficiently large, e.g. n>6. The terms of the formal series in (3.23) with n large are
thus uninteresting for us and we would like to have a cumulant expansion formula
in the form taking into account the existence of the characteristic functions also

<χexp(F)> =
2!

κ>d. (3.24)

There is one obvious way of proving this formula, namely by a cluster expansion,
but it is a long and tedious way. Instead we will rely on the results of Benfatto et
al. [2]. The lemma formulated on p. 152 of this paper can be applied in our
situation because all the assumptions are satisfied.

The method used by Gawedzki and Kupiainen in [14] can be adapted here
also.

If we denote the expression under the exponential on the right side of this
formula by ^ / ( 1 ) ' L (B ( 1 ) ,φ), then we can write

(the integral in the square bracket [...] in (3.22))

\T1\). (3.25)

The expression £F ( 1 ) ' L is a polynomial in ψ and its terms can be represented by
suitable connected graphs. This graphical representation will be introduced and
used in a separate paper treating the properties of the perturbation expansions.
Here we can remark only that using the connectedness of the graphs, the
exponential decay of propagators and the restrictions on the field ψ we can
estimate all the terms in ^ / ( 1 ) ' L of the order in coupling constants higher than n by
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O(βκ)\Tx\ with κ>d. This will be proved in the general case in that paper also. Let
us denote by ^ ( 1 ) ' L the sum of the remaining terms of the order ^n.

The last operation is a rescaling of ^ ( 1 ) ' L from the L-lattice to the Lε-lattice.
The results we have obtained and the expressions we have arrived at serve as a
basis of an induction hypothesis. We assume that after k renormalization
transformations we get an action S(fc)' Lk%A, φ) for the fields A, φ on Zίε-lattice T$E.
For this action the following fundamental inequality holds

Z^\dAμφχk(A)χk(φ)exp(-S^Lk%A,φ)+ £ O(l)(Es)κ°\TJl), (3.26)

where

= Π
xeTε

χ({\(Δ εA^' %x)\ S (Lkε) ^p(ύε)}), (3.27)

= Π ( W ~
d+2

2 p(ύε)]j, (3.28)

A(khε = ak(Iίε)" 2 GIQZA, φ(k)-ε = ak(ύε) ~2 Gε

k(Aw ε) Q*(AW'ε) φ. (3.29)

The action has the form:

S(fe) L"ε(A, φ)=- l o g Z k - logZk{A ( k ) ε)

and for the factors Zk,Zk(A(k)'ε) we have the formulas

(3.30)

k,Zk(A(k)'ε) we have the formulas:

) ί^exp(i<^(Gί)-M» (3.31)

(3.32)

The most difficult task is to describe ^ w . ^ ^ w . ^ φ). We will do it giving another
formula for the whole action S{k)'Lkε. At first let us notice that after k successive
renormalization transformations together with the corresponding translations, the
field A with which we have started in the first step is represented as

A = A'{0)>ε + Ά{ί)>ε+... + A'{k-ί)>ε + A{k)>\ (3.33)

where A'U)'ε are given by the formula (3.29) with Ά} instead of A.
The fields Ά} defining the components of (3.33) are independent Gaussian

random variables with the covariances C ( j ) 'L J ε. Also they are independent of the
field A on the Z?ε-lattice, defining the configuration A{k)'ε. We introduce an
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additional convention. It concerns the expressions U(A(Γ^k)

x)) in the operators
Qk(A). We will change the definition of A(Γ^k)

x) if we take the right side of (3.33)
instead of A.

Making use of the definition (2.2) we assume

A{φ = A^ %φ + V Ά^> ε(Γx<;+

+^), (3.34)
7 = 1

where we have denoted xk = y, xo = x.
Now the perturbative formula for the action 5f(/c)'Lkε can be written. This

formula for k = 1 follows from the close inspection of the procedures used and the
formulas obtained in the first step. Let us introduce at first the function

2π

Σ ε?0>{e',λ',φ(x))-E
xeTε

(3.35)

The action S(k)'Lkε can be written in the form

p + β
/"3/l CΛ

From these formulas we can read out a graphical form of the expression above, i.e.
its vertices and propagators. We will not need them here.

Now we will consider a general case, i.e. all the operations to be done after
k+ 1s t application of the renormalization transformation. From (3.26) and (2.9) we
have

•cxP(-S^'Lk%A,φ)mexpfΣ O(l)(lίεΓ\Tε\) (3.37)
\j=o I

and we have to calculate the internal integral above.
The first step in the calculation is a rescaling of all the fields and the

propagators from Lfcε-lattice Tj$ε to 1-lattice Tf\ After the rescaling the integral
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transforms into the integral

const χk+ x(B)xk+ x(ψ) J dA f dφχk(A)χk(φ) exp \-\aLd~2 £ \B(y) - (QA)(y)\2

\ψ(y)-(Q(A(k))φ)(y)\2-^A,Δ^A}
)

k + \ogZk(Am) + ̂ ik\Λik\ φ) - Eo], (3.38)

where now

fW did-2)

ί^exp(KΛG-U» (3.39)

Zπ

*<«-2> - _ i W l Γ l
. (3.40)

The second formula for Zk(A{k)) will be used in the sequel. We can easily deduce a
form of the expression £P{k\ Of course a graphical description is the same as before,
only the coefficients at the vertices are changed. Further we will describe more
exactly some properties of these expressions.

The next operation is a translation in the fields A and an expansion of the
action with respect to a small field produced by the translation. This translation
has the form

(3.41)

and it separates the quadratic form in the fields A, B in the exponential function
under the integral (3.38) into a sum of the forms
{{B, Δ{k+ 1}>LB} + ̂ <,4/,(C(k)Γ 1^ /> In the remaining part of the action the field A
occurs only through the function A{k\ so let us write the effect of the translation on
the field Aik\

= akGkQ*Ά + akaL-2GkQ*C^Q*B = akGkQ*A!
1\ (3.42)

We estimate the integral (3.38) from below introducing the characteristic functions

X(A')= Π z({l^(x)I^Pi(£fi)}), (3.43)

and we expand the action with respect to A'(k\ This expansion was described in the
formulas (3.19), (3.15), and (3.16). Let us write only the resulting expansion of the
propagator Gk(Ω, A + B):

= Gfc(Ω, B) + Gk(Ω, B)[_Flk(- A)*Dη

B

+ DfF1Λ{-A)-Fuk{-ATFuk(-A)-akF2Λ{ABrQk{B)

- akQ*{B)F2tk{A, B) - akF2JA, B)*F2>k(A, B)] Gk(Ω, A + B). (3.44)
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Iterating this equation we get an expansion of the propagator Gk{Ω, A + B) with
respect to A. Of course only the first few terms of the expansion are important, the
remaining ones give an expression proportional to (Lfeε)κ, κ>d. Let us denote the
operator in the square bracket in (3.44) by Vk. Applying the formula (3.44) n times
we get the expansion

Gk(Ω,A + B) = t Gfc(Ω,B)[VkGk(Ω,B)]" + Gk(Ω,B)\_VkGk{Ω,B)f VkGk(Ω,A + B).
n = 0

(3.45)
This expansion is inserted in each place in the action S(k) where the propagator
Gk{Ω,A + B) occurs. The formulas (3.14)-(3.16), (3.44), and (3.45) are sufficient to
expand all the expressions in the action S(k\ except the factor Zk(A{k)). Taking into
account the form (3.40) of this factor it is sufficient to find an expansion of

μ/(k> + B ( k + 1 ) ) ) " 1 / 2 Using the formula (3.16) we get

r T 1 / 2 [ d e t U - G ^ (3.46)

Obviously the operators standing in the above determinants are positive and

symmetric. Thus the inequality log(l -f λ) t^λ— -— + — + ... H holding

for n odd and λ real, λ> — l, implies the following inequality for the second
determinant on the right side of (3.46):

[det(/-G,(5 ( k + 1 ) ) 1 / 2 F,G f c (5 ( k + 1 ) ) 1 / 2 ]- 1 / 2 ^exp £ ~Tr(Gk(B(k+1))Vk)
j. (3.47)

We take n odd and n^ή. The expression in the exponent above is obviously
represented by the graphs with exactly one loop of the scalar field propagators.
The expansion of the integrand in (3.38) with respect to A/{k) field is accomplished.

We got some complicated expression and at first we would like to get rid of
undesirable terms, especially the terms which are not polynomials with respect to
A'{k). These are the terms having the additional factors of the form
Rή+i(me(ύs)A/(k)(Γ^x)) or Rn+ί{ηqe(ύε)A'<k)) besides the "normal", polynomial
factors. The existence of such factors implies that there is the factor e(lϊε)n+1 also
and it gives the factor (ύεf for some K > d. Such terms will be called i^-terms. We
have the following theorem concerning the expression we arrived at after the
expansion.

Proposition 3.1. The sum of R-terms of the previously described expansion of the
action S{k) is of the order O(l)(Iϊε)κ\T[k)\ for some κ>d. Also of the same order is the
sum of terms, for which the sum of the powers of the factors ύε occurring at the
vertices is greater than d. In these estimates 0(1) is independent of k, it depends only
on the coupling constants and the number ή.

This theorem will be obtained as a corollary of an analysis of the perturbation
expansions and its renormalization. Using the above theorem we can estimate the
sum of all the terms of an order higher than n by 0(1)0ε)κ\T[k)\ and we are left
with an action which is a polynomial in the fields Ά{k\ φ, ψ.
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Now we will do a translation in the fields φ. The translation has the form

φ = φ' + aU 2C(k)(Bik+ »)Q*(Bik+ υ ) φ , (3.48)

and it separates again the basic quadratic form for scalar fields into a sum of the
corresponding forms in the fields ψ and φ'. The rest of the action changes in an
obvious manner. Let us notice that if (3.48) is done in

then we use (2.66), (3.70) and we get

<*) < * < 1 > . (3.49)

Finally we estimate from below the integral introducing the characteristic
functions

χ(Φ')= Π χ({\Φ'(χ)\SpΛLks)}). (3.50)

Let us denote by V{k) a polynomial in the fields Λ{k\φ\xp appearing when the
translation (3.48) is done. After these operations and estimates we have the
inequality

( - ^

>\ dφ'χk(Ά + aΠ 2C^Q*B)χk(φ' + aU 2C< V + ")

- χ(A')χ(ΦΊ exp [ - $<A'9 (C^Γ'A')

f, (Cik){Bik+1ψxφfy + V{k\B{k+1}, ψ, Άik\ φ')

ύ (3.51)

Now we will analyze in detail the restrictions on the fields implied by the
characteristic functions in the above integral. We will do it for scalar fields only,
the considerations for vector fields are even simpler. At first let us notice that the
restrictions introduced by χk+1(ψ) or χk(φ) imply some restrictions on the fields
ψ, φ, for example we have:

d-2

~~~ (3.52)

for some c independent of fe,ε. The function χk(φf + aΓ2C(k\B{k+1))Q*(B{k+ί))ψ)
gives the restrictions on the field

akGk(A'ik) + B(k+ ^QUA'W + B(k+ 1])φ'

+ akaL~2Gk(Ά{k) + B{k+ ^QRA'™ + B(k+1})C{k)(B{k+ 1 ) ) β * ( β ( k + x ) ) φ . (3.53)

From (3.50) it follows that the first term above and its covariant Laplacian can be
estimated by c^^ϋέ) with c1 independent of k, ε. Now if we expand the second
term in (3.53), and the Laplacian of this term, with respect to the field A'(k) using
(3.15), (3.16), and (3.44), then the first term of this expansion is equal to ιp(k+1] or
Δη

B(k + ί)ψ(k+1) and the sum of the remaining terms can be estimated by c2{Lkεf for
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some α > 0 with a constant c2 independent of fc, ε. Hence the expression (3.53) can
d— 2

be estimated by c1p1{Lkε) + L 2 p(Lk+1ε) + c2(Lkε)a and the Laplacian
Aη

A,(k) + B(k + 1) of this expression can be estimated by
_ d + 2

c1pί{Lkε) + L~ ̂  p(Lk+ h) + c2(Lkεf. Then we have

χk+ άψ)UΦ' + aL~2σk\B^ 1 } )β*(£ ( f e + * V)χfcW>')=χk+1(ψ)χk(ΦΊ

if c1p1{Lkε) + p(Lk+ 1ε) + c2(LkεY^p(Lkε\ and this inequality is satisfied if e.g.

p- 1 ̂ Pl9 boplogL^c^l + logLΓ,

{Lkε)\ (3.54)

where we have assumed Lk+ xε g 1. In the sequel we will assume that the conditions
(3.54) are satisfied. Let us notice that the first two can be satisfied by a proper
choice of b0, bv p, pv but the third demands additionally Lkε^ε0 for sufficiently

small ε0. Hence we have

(the right side of (3.51)) ^ const ZkZk(Bik+1})

exp(F ( / c ) -E 0 + 0 ( 1 X ^ ) ^ 1 ^ 1 ) . (3.55)

The next step is a calculation of the integral

^ (3-56)

Again we will use the lemma from [2]. The following theorem clarifies that the
assumptions of the lemma are satisfied in our case.

Proposition 3.2. The function V{k\B{k+1\ψ,Άik\φf) has the form

F(v+1\^/(fe),Φ'H Σ Σ
n,m = 0 Xί,..., xn, y\,.. .,ymeT^

N d

jι,...,jn= l μι,. .,μm= i

•(&k+1),ψ;x1,...,xn,y1,...,yJΦ'h(x1)...φ'JSxJ
•A'Jyι)...A'μm(ym), (3.57)

and the coefficients in the above representation satisfy the inequalities

SO(l)(Lkεr°cxp(-δod(xv...,xn,yi,...,ym)) (3.58)

for some independent of k positive constants κ0, <50, and 0(1), where
d{xv ...,xn,yv -",ym) denotes a length of the shortest graph connecting the points
x1 ?..., xn, y^ ..., ym.
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In this theorem the representation (3.57) is obvious and the essential content of
it is in the inequalities (3.58). A proof of this theorem will be given together with
the proofs of the other properties of the perturbation expansions. Of course the
restrictions (3.52) are used. The properties (3.57) and (3.58) and the properties
formulated in the Propositions 2.2 and 2.3 and concerning the operators defining
the basic quadratic forms of the action are sufficient for the assumptions made in
the lemma [2]. Let us notice that the assumptions of Propositions 2.2 and 2.3
concerning the regularity of a vector field configuration are satisfied, the con-
figuration B{k+1) is regular on the basis of the restrictions introduced by χk+1(B).
Also let us notice that this lemma was proved in [2] for a Gaussian measure
defined by the operator — A + c, but the proof applies with some obvious
modifications to the more general measures defined by the operators satisfying the
properties formulated in Proposition 2.2 and 2.3. Using the lemma we get

Σ ^<(Vikry + O(l)(Lh)κ\T[k^ κ>d. (3.59)

It is worth mentioning that κ0 in (3.58) can be taken as κo = ̂  — β, where β is an
arbitrarily small positive number, so for the expansion (3.59) to hold it is sufficient
to take n ^ 6 . The terms of this expansion are represented by the graphs which we
get connecting the legs of the graphs representing F ( k ) by the lines corresponding
to the suitable propagators. Further we can estimate all the terms of the expansion
of order higher than n by O(l)(Lkε)κ\T[k)\. Let us denote the expression we get by
0>{k+l)>\B{k+1\ψ\ so we have

(3.56) ̂  exp(^(/c + »'L(Bik+1}, ψ) + O(l)(L*ε)κ| T[k)\). (3.60)

The last operation is a rescaling of the expression we got from the L-lattice for
the fields B, ψ to the Lk+ ^-lattice T^Xl]. Taking into account the expressions and
the inequalities (3.38), (3.51), (3.55), and (3.60), we get the inequalities and the
expressions of the induction hypothesis (3.26)-(3.32) but with fc+1 instead of k.
Finally we have to verify that the action sik+1)tLk + ίε is given by a formula
corresponding to (3.36). At first let us write the action as a perturbative expansion
of some integral expression defined by the action S(k)'Lkε. Let us introduce the
function

E(e',λ',B,ψ)=- l o g C O ^

exp - Σ

de"«dλ"β kK ' ' '
(3.60)
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More exactly the formula is not well defined because the expression in the
exponent is a high order polynomial in the fields φ9 Ak, which is not necessarily
positive. We can give a sense to this formula introducing the corresponding
characteristic functions or adding some positive polynomial in these fields of a
sufficiently high order and with a coefficient which will be put equal to 0 after the
expansions. It is not interesting enough to make these remarks more precise.
Analyzing carefully the successive steps we get the following perturbative formula

. (3.62)

Because we take here an expansion until the order n only, so in (3.61) we can take a
whole function Ek instead of its expansion until the order n. Hence we have

Σ
0 ^ α + β g iϊ a\β\

, (3.63)

where E is an expression given by the formula (3.61) only instead of the Taylor
expansion of the function Ek in the exponent we have the function
Ek(e',λ',eB{k+ί)ε + efAfm,φ) itself. Using the formula (3.35) for it we get

- l o g
7=0

xeTε

(3.64)

Taking into account the law of composition of the renormalization transfor-
mations (2.14) and the convention (3.34) we obtain the following equality

EXe\λ\B,ψ) = \(B,A{k+1)>Lk + lεB} + Ek+1(e\λ\eBik+1)\ψ). (3.65)

If we substitute in the formula (3.63) the above expression for E' and if we change
B,ψ into A,φ, then we get precisely the formula (3.35) for ^ ( f e + 1 ) ' L k + l ε . Thus we
have finished the inductive proof of the formula (3.63) for the kth action.

Now we can finish the proof of the lower bound. We take K such that Lκε S εo>
but Lκ+1ε>ε0, and then we have (3.26)-(3.32) with k = K.

We use the fact that the field A(K)ε is small and we expand the whole action with
respect to this field. We use Proposition 3.1 for this expansion and we get

κ{A)Xκ(ΦVκZκ(O) exp 1~$<
K (3.66)
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Using representation (3.57) in Proposition 3.2 and the restrictions on the fields A, φ
we can estimate the absolute value of the interaction V(K)ε by 0(l)(Lxε)*°|7i(Js:)|.
Further we can estimate

ίx)\^c71(Lκs)~~p(Lκε)

-χ{\\Φ{χ)\Sc1 \LKE) 2 p(L*

]. (3.67)

The quatratic forms in the exponential above are bounded, so the integral can be
estimated from below by exp( —O(l)|Tε|) with a constant 0(1) which in general
depends on Lκε, thus on ε0. We get

Zε ^ZκZκ(0)exp(-E0 + 0(l)| TJ). (3.68)

It is easily seen that ZKZK{0) is almost equal exp(£ 0), more exactly we have

ZKZK(O) exp ( - £ 0 ) = [det (/ + aκ{Lκt)d" 2PKG^ ~112

• [det (/ + aκ(LκεY " 2 P κ G ε (0))] " ι>2 exp (0(l)| ΓJ)

Z exp l-\aκ{Lκέf-2{ΊrPκG
ε + ΎτPκGψ)) + 0(l)| Te|]

= exp (0(l)| ΓJ), (3.69)

and we obtain finally the required lower bound.
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