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Abstract. The algebra of observables has two distinct local structures. The first,
derived from the localization of measurements, gives rise to an additive net
structure. The second, derived from the support properties of infinitesimal
operations, gives rise to a sheaf structure. It is also shown how an additive net
of field algebras acted on by a compact gauge group of the first kind generates
an additive net of observable algebras.

0. Introduction

An elementary particle physicist might be defined as a man who, in face of all the
evidence, believes in elementary particles. His more theoretically inclined col-
league, the quantum field theorist, is forced to comprehend tracks in bubble
chambers and irreducible representations of the Poincaré group as compatible
aspects of the concept “elementary particle.” He will reconcile these aspects using
concepts of field theory, which, again in the face of all the evidence, he stubbornly
clings to. The ability of “elementary particle” and “field” to survive in the minds of
physicists is, in part, their ability to evolve as concepts.

However useful specific quantum fields may prove in analysing specific models,
it is unlikely that fields in the sense, say, of unbounded operator-valued distri-
butions, are the basic objects of field theory. Not only are they ill-behaved
mathematically but they do not provide an intrinsic description of a physical
theory: different fields can describe the same physical theory. It took a man of
Rudolf Haag’s vision to make a radical break with tradition and provide an
alternative view of field theory, algebraic field theory, free of these defects [1]. The
basic object is the observable net 2 assigning to a region @ in space-time the
algebras (0) generated by the observables which can be measured within @. The
connection with fields is that the elements of () can be regarded as bounded
local functions of the fields, local in the sense that they depend only on the
restriction of the fields to @. If fields are introduced at all at this stage, they serve as
auxiliary quantities in the construction of the net 2 and one readily understands
how different fields can define the same theory. More important is the assertion
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that A(0O) is generated by observables measurable within ¢@. For all the ideal-
izations involved here, it reestablishes the simple conceptual basis lost in the
sophistications of unobservable fields such as the electron field. The implicit claim
is that any unobservable fields are already latent in the structure of the observable
net. An immediate benefit of the conceptual basis was that local commutativity,
A A,=A,A,, if A,eW(0,), i=1,2, whenever ¢, and 0, are spacelike separated,
can be linked to Einstein causality since measurements in spacelike separated
regions cannot interfere with one another.

In algebraic field theory, the hallmark of a field theory is therefore not a field
depending on points in space-time but algebras depending on regions of space-
time. This localization structure is the theme of this paper.

Certain types of operator appear to have two natural localization regions.
Here are the standard examples.

a) If there are local charge-carrying fields y in the theory, then w(x)w(y)* is
localized around the points x and y although if one wants to express it in terms of
observables, the best one can do is to localize it around some path joining x and y.

b) If a charge is associated with a conserved current j* then Q,= | 7°(0,x)dx
[x|=r
is localized around the ball [x|<r. Judged by its commutation relations with the
observable net, Q, appears to be localized around the sphere |x|=r.

¢) The flux &(S) of the magnetic field through a surface S is obviously localized
around S but, since it depends only on the boundary S of S, it might be
considered as being localized around 48 instead.

These examples have certain common features. The smaller localization region
has a non-trivial homotopy invariant: in a) it is disconnected, in ¢) it is not simply
connected and in b) it is not 2-connected. These non-trivial homotopy invariants
are closely linked with non-trivial homological invariants and the specific
operators which appear suggest very strongly that some form of homology and
cohomology is involved. In ¢) it is a 2-cohomology, in a) a 1-cohomology and in b)
a 1-homology. The relation of these examples with gauge groups is also significant.
a) and b) relate to a gauge group of the first kind. Indeed in the case of an electric
charge, where one has a gauge group of the second kind, w(x)y(y)* should be
replaced by y(x)exp(ief A*(x')db,(x")w(y)* which depends explicitly on a path b,
and j*=0,F" so that the ambiguity in localization is again resolved, this time in
favour of the smaller region. c) on the other hand is typical of gauge theories.

I learned a large part of these arguments from Rudolf Haag more than ten
years ago and they have motivated most of my research during the past five years.

Another interesting feature of these examples becomes apparent on examining
the role of the operators involved. Although one talks about the net A of
observables, the role that the elements of U play in practice is frequently not that
of an observable. Instead it is their action on state vectors, hence on states, that is
important, in which case it is usual to speak of an operation rather than an
observable. In particular, whenever we deal with a unitary V of %, its physical role
is likely to be that of an operation w—woadV. However, even a self-adjoint
operator A of A may play the role of an infinitesimal operation: it generates the
1-parameter group of operations w—w-ade*4. Of course not all interesting
operations can be described by the action of elements of 2L.
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Turning to our examples again, in a) w(x)y(y)* plays the role of an operation:
charge is transferred from y to x. In b) Q, is an observable, the charge confined
within |x| <r at x°=0. &(S) in ¢) is particularly instructive. On the face of it, it is an
observable, the flux of the magnetic field through S. This refers, however, to our
way of describing the operator. In practice, it may be the operation ¢/®® which is
involved. The physical interpretation is quite different: ¢’®® creates an electric
field localized on S at t=0. Thus we must distinguish carefully between these two
aspects and the two different localization structures which emerge are described in
this paper. The other interesting facets of these examples can merely be com-
mended to the reader’s attention.

The localization of observables is treated conventionally with the emphasis in
Sect. 1 being placed on additivity as the basic property of the associated net
structure. Additivity in space is shown to be related to additivity in space-time
through the causal propagation character of the theory. The main result, however,
is that additivity survives the transition from fields to observables in the presence
of a compact gauge group of the first kind. Thus additivity can be regarded as well
established for the current range of models.

The localization of infinitesimal operations is treated unconventionally, with
attention in Sect. 2 being focussed not on the localization regions but on the
regions where they act trivially. Thus S=S*e U corresponds to an infinitesimal
operation A—i[S, A] which acts trivially on O if [S, A]=0, AeA(0O). In this way,
we are led to the C*-algebras #(0) where

L(0)=U(0), (0.1)
the relative commutant of (). As a consequence of additivity we have

%UQ=Qﬂ@. 0.2)

This means that % can be made into a sheaf of C*-algebras by modifying the
definition on the empty set and on disconnected sets. The technical details can be
found in [2, Sect. 5] but play no role here. The presence of an underlying sheaf
promises to be of importance to the future development of the theory. Minkowski
space is now equipped with a sheaf of C*-algebras and can be regarded as defining
a quantum geometry. This intuition is supported by the preliminary results in
[2,3] since it leads naturally to the structures relating to unobservable fields and
superselection sectors.

Under these circumstances, one naturally asks whether the sheaf structure
determines the net structure. This will, in particular, be the case if

A(O)= L(0) (0.3)

for some base for the topology of Minkowski space. The equality in (0.3) is termed
internal duality and is a consequence of duality for the region in question but can
also hold when duality fails.

The paper concludes with an appendix giving useful results of a more technical
nature relating to the action of a compact gauge group commuting with space—
time translations on an additive field net.
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1. Additivity

The property of additivity, that the observable algebra of an open set is generated
by the observable algebras of any open covering of that set, deserves attention in
any study of localization. Exalted to a principle, it provides a means of avoiding
ambiguities in localization of the type discussed in the introduction, since the
topology of Minkowski space has a base consisting of contractible sets. Viewed in
terms of measurement, such a principle is at best inaccessible, at worst implausible.
Perhaps it can best be interpreted as a claim that the basic dynamical variables can
be arbitrarily well localized.

To formulate additivity precisely we must specify the topology involved. The
question of whether additivity holds in the norm topology is premature since the
local C*-algebras remain elusive in models. The CCR algebras, for example, have
the grave defect, albeit not shared by the CAR algebras, that they depend
sensitively on the relatively arbitrary choice of test functions and would certainly
not yield nets which are additive as C*-algebras. Another natural topology would
be the weak topology determined by the states of physical interest (to elementary
particle physics). This runs into a similar problem in that the states of physical
interest can also be elusive in models, although Buchholz and Fredenhagen [4]
have come at least close to providing a definitive answer for theories with a mass
gap. Fortunately, the restriction of this weak topology to the algebras of bounded
open sets or, more precisely, the net R of local von Neumann algebras over the set
% of bounded open sets seems to be readily accessible in models. In fact, it usually
suffices to pick any candidate for the net 2 of C*-algebras over 4 and take the
weak closure of 2(¢) in the vacuum representation.

Hence, in this section, we shall work exclusively with nets of von Neumann
algebras, R for the observable net and & for the field net. All states and
representations of these nets considered will be supposed locally normal. For any
net R, C*(R) denotes the C*-inductive limit over the net. A net R of von Neumann
algebras over some set of open sets will be said to be additive if

RO)=\/R() whenever O=|)0,

i.e. if the R(O;) generate R(0O) as a von Neumann algebra. Note that an additive net
over the set /" of open double cones has a unique extension to an additive net
over 4.

We first discuss the relation between additivity in space-time and additivity in
space. As is probably clear, we can pass from one to the other by invoking the
causal propagation character of the theory. In the one direction, we can express
this by requiring of a net & over 4 that

8(2)=8(2") (L.1)

for each bounded open cylinder Z with timelike axis. This property was
introduced in [5] and discussed more recently in the context of generalized free
fields in [6]. The spacelike part of the extension involved in (1.1) is actually a
theorem [7].



Localization in Algebraic Field Theory 91

1.1. Proposition. Let § be an additive net over # satisfying (1.1). Let H be a
spacelike hyperplane, then the net &y defined by Fy(B)=F(C(B)), where B is a
bounded open set of H and C(B) is the double cone based on B, is additive.

Proof. We must show that B= U B; implies §(C(B))= \/ §(C(B,)). Without loss of

generality, we may suppose the B; to be open balls and H to be the hyperplane
x°=0. Let Z denote the set of bounded open cylinders Z with Z C { ) C(B;). One

checks easily that U{Z":ZeZ}=C(B), so that FC(B))= v{FZ):ZeZ} com-
pleting the proof.

Note that we should still have such nets & even when the sharp-time Wightman
fields do not exist. The converse step just relies on the finite propagation speed
as used by Glimm and Jaffe [8] when constructing algebras in space-time from
algebras at time zero.

1.2. Proposition. Let §, be an additive net over open balls in space and o a
L-parameter group of locally normal automorphisms of | ) &o(B) of propagation
B

speed c=1, then there is a unique additive net § over B with
&(C(B)+ 1) =(&o(B))
for each open ball B and te R

Proof. Open sets of the form C(B)+t are a base for the topology of Minkowski
space and o, is locally normal so it suffices to show that C(B)= U(C(B,-)—!—ti)

implies F,(B)=\/ o, (&,(B;). However there are open balls B; with B= U B;and

B ;+ {x: x| <|t;]} CB; for some i=i(j). Now finite propagation speedj implies
&o(B)) Ca (Fo(By)) for i=i(j) so the result follows from the additivity of .

In the above setting, there is a standard route for proving (1.1). If Z has axis in
the time direction, it follows from the spectrum condition and [7], so Lorentz
covariance would complete the proof.

We now relate additivity for observable nets to additivity for field nets using
the following hypotheses:

a) § is an additive field net of von Neumann algebras over 4 given in a faithful
factorial representation on a separable Hilbert space #.

b) There is a continuous unitary representation of space-time translations on
A satisfying the spectrum condition and inducing an action « on &

2 (FO)=FO+x),0e 5.

¢) o commutes with a compact group ¥ C Aut ¥
9(F0)=F(0), g%, O % .

d) & has Bose-Fermi commutation relations and ¢ contains the involution k
which changes the sign of Fermi fields leaving Bose fields invariant. k is auto-
matically in the centre of 4.

Under these circumstances we have
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1.3. Theorem. The net R of von Neumann algebras defined by
R(O)={AeF0):gA=A4,9e %}
for Oe B connected and

=\/iR((0)

if the O, are the connected components of O is additive.

To prove the result, we need detailed information on the action of the gauge
group given as Theorem A.2 of the appendix whose proof involves additivity in
one essential way: if ¢ is non-empty and

gF=F,Fe{0),

a) and b) imply that g is the identity automorphism of .
The remaining steps in the proof of Theorem 1.3 are contained in

1.4. Lemma. Let 0, 0,€ B be non-empty and connected, ic I with 0= | ] 0,. Given i,

iel

i'e I and a separable Y-invariant Hilbert space H in FO,) [9], let M = \/ R(O,) then
iel

a) there exist iy, i,,...,i,=i'€l with 0, N0, =HZ) j=12,.
b) there is a unitary VeM with VH C%((O o
¢) the endomorphism ¢ of & defined umquely by

pF=0o(F)yp,peH,Fe§
satisfies o(M)C M.

Proof. Let I' denote the subset of elements of I which can be joined by a finite chain
to iy asina). Then () 0, U 0, =0. Since 0 is connected and each 0, is non-empty

iel’

and open, I'=1 proving a) If 0,,n0; 0, there is a Y-invariant Hilbert space in
(0,,n0;) equivalent to H as a g—module by Theorem A.2. Hence there is a
unitary VeR(0,) with VHCE,). b) now follows from a). Obviously,
o(R(0;)) CR(O;). But by b), o(R(¢,))) CV*R(O, )V CM proving c).

Proof of Theorem 1.3. It suffices to show that if O= )0, as in Lemma 1.4,
iel

R(O)= \/ R(O,). By Theorem A.2 and standard harmonic analysis on a compact

group, flmte sums Z Ajp; with 4;eR(0) and y; in some finite-dimensional

Y;
%-invariant Hilbert space in §(0) form a weakly dense *- subalgebra of F(0). Smce
FO)= \/ &(0,), Lemma 1.4 shows that we may, in addition, require 4;e \/ R(O

and p;e %(@ .). Averaging these sums over ¥, a weakly continuous operatlon now
gives the required result.

Thus with a compact gauge group of the first kind, additivity survives the
passage from fields to observables provided we take care to define the observable
algebras of disconnected regions correctly. If we take & to be the net generated by
the free scalar field ¢ of mass zero with the spontaneously broken gauge symmetry
@(x)— P(x)+ a, then R is the net generated by 0*¢ and we have a simple example of
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the above phenomenon where 4 =R is no longer compact. The question of what
happens in gauge theories is obviously premature although example c) of the
introduction indicates that care is needed when regions are not simply connected.

We conclude this section by remarking that of course proving additivity for
field nets presents no particular problems in practice. After all, additivity had its
origins in Wightman field theory. If 0= | ] @, and f is a test function with support

in ¢, then using a partition of the identity, we can write f= ) f;, where f; has its
support in 0. Hence if ¢ is a Wightman field ¢(f)= ) #(f;) and additivity for the

net generated by the fields follows modulo problems of essential self-adjointness.
In particular, for free Bose fields, where we could also argue in terms of Weyl
operators, or free Fermi fields additivity is satisfied. For P(¢), theories, additivity
would follow from local normality and Proposition 1.2. More generally, we could,
for example, invoke Corollary 2.5 of [10] and the remarks following it to deal with
a class of theories derived from Euclidean Green’s functions.

2. Sheaf Structures

The local C*-algebras, although still elusive in models, may well turn out to carry
information which gets lost at the level of the local von Neumann algebras. For
this reason, we shall work here with a net 2 of C*-algebras of observables over %
but take care to link it to the more accessible additive net R of local von Neumann
algebras over # by supposing that A(0)=C*A)NR(O) and is weakly dense in
R(0O). For example, A(O) might be the C*-subalgebra of R(0) whose elements have
norm continuous orbits under the Poincaré group or the translation group (cf. [11,
Satz 9.2]).

As discussed in the introduction, self-adjoint elements of C*(A) play a dual role
as observables and as infinitesimal operations. We investigate here a local
structure on C*() determined by the support properties of these infinitesimal
operations. If Se C*(A) and U is an open, but not necessarily bounded, set we
write

Se AU)>SA=AS, AcA|U. 2.1)

Here AeU|U means AeW(O) for some OeH with OCU. In other words,
FL(U)=(U|UY., the relative commutant of AU in C*(A). #(U) is a C*-algebra and,
as an expression of locality,

AU cA(U). (2.2)

If VCU, we obviously have #(U)C AV). However, as explained in the in-
troduction, what is interesting is the following simple result which shows that
& is essentially a sheaf.

2.1. Theorem. y(u Ui) = O L (U).

Proof. Pick a faithful locally normal representation of C*(R). The existence of such
a representation, in practice evident, is guaranteed by [12, Sect. 3]. Since A(0) is
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weakly dense in R(0), AU)=(R|U)nC*QA), where C*) is identified with a
subalgebra of C*(R). We may now suppose without loss of generality that A= R.
If OC U U, O= U (ONU)), so given Se ﬂ L(U,) and Ae R(0), additivity for R

implies SA=AS.
This result shows that . like 2 is determined by its values on small open sets.
We remark that if R satisfies (1.1) then evidently

AZ)=L(Z") (2.3)

for each bounded open cylinder with timelike axis. Hence the corresponding sheaf
resembles the sheaves of holomorphic functions in that there is an analogue of
domains of holomorphy. Proposition 1.2 obviously gives information on the
restriction of the sheaf to spacelike hyperplanes but we refrain from giving details.

One of the interesting questions now arising is whether the sheaf structure on
C*(2) also determines the net structure. The following concept is both relevant
and beguilingly simple: we say that internal duality holds for some Oe % if

A(0O)=L(0). (2.4)

Note that, unlike duality, internal duality is representation independent.
Obviously, if internal duality holds for some base for the topology of Minkowski
space, e.g. for double cones, then the sheaf structure on C*(2) determines the net
structure.

2.2. Proposition. Suppose duality holds for O in some faithful locally normal
representation T of R, then internal duality holds for O.

Proof. Since W|O' C F(0), n(R(0)) =n(R(O")) na(R) D n(F(O)). But = is faithful so
F(O)Y CR(O)NCHA)=WA(O) as required.

Now we can only deduce duality for R from twisted duality for § for gauge
groups that are not spontaneously broken. In the case of internal duality we can
do better: for our purposes, with Bose-Fermi commutation relations d), the
twisted field net & can be defined using [13, (4.7)]. Any covariant representation n
of {&, k} has a canonical extension to the covariance algebra of {§, k} and hence to
&' Twisted duality is said to hold for ¢ in 7 if

U(F|O) "a(F) =n(F(0)).

We now have

2.3. Proposition. Let § be a field net satisfying a)-d) with twisted duality holding in
some (faithful) locally normal covariant representation of {&,k} for some connected
OedB. Let R be the additive net defined in Theorem 1.3. Then W satisfies internal
duality for O if either (' is connected or UW="R.

Proof. Since O is connected, R(O) =m(F(0)), where m denotes the average over the
compact gauge group. Hence, arguing as in Proposition 2.2, it will suffice to show
that n(FA(0)) C(F'|O'Y. Now m(F|0)=m(F|'). If ¢’ is connected this is just R|C".
If R=9, it is contained in F(0). In either case, it commutes with &(0)° and the
proof is completed by applying the following lemma to & rather than .
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2.4. Lemma. Let Oc % and Ae C*(R) such that
Am(F)=m(F)A, Feg|0'
then AF=FA, Feg|o'.

Proof. Given a %-invariant Hilbert space H, in |0, we have an associated
endomorphism g, with
WwF=0,(F)w, peH,, Fe C*(§).

By Theorem A.2, it suffices to show g,(4) = A. However Theorem A.2 also implies
that we can find a sequence of such Hilbert spaces H;C &(,) equivalent to H as
%-modules, where ¢);C¢" and tends spacelike to infinity. Hence there are gauge
invariant unitaries z;; with z;;H,=H, and z,,0(F)=g(F)z; for the associated
endomorphisms. Now for any 4e C*(R), g,(4) is a limit in norm of z,;4z§; as
i— 0. Hence if 4 is as in the statement of the lemma, g,(4) = A.

Of course, internal duality is just a C*-version of a form of duality proposed by
Borchers [14] and termed weak duality in [13]. These results suggest that the
concept might deserve a more careful investigation.

We close by pointing out some further situations in which sheaf structures
appear. We first consider endomorphisms ¢ of C¥*(2) and write g€ 82« #(U) if

ogycsw), vcu. (2.5)
0,0'€End ¥ (U) imply g0’ End ¥ (U) and it is easy to check that
() 6nd F(U) =&m/y<u Ui). (2.6)

We write ge En, S (U) if g is locally normal and
o(A)=4, AcNU . (2.7)

In other words, ¢ considered as an operation acts trivially on U, or g is “localized”
in U’ (cf. [15, (1.6')]). It follows that &rd, F (U) CEnd F(U) and it is again easy to
check that

(\énd, S (U)=6End ,y’(U U,.). (2.8)

Actually it is most useful to turn »d #(U) and Exnd S (U) into categories
defining r:0—¢" if ¢ and ¢’ satisfy (2.5) or (2.7) respectively and te #(U) and
satisfies

to(A)=0'(A)t, Ae C*(). (2.9)

(2.6) and (2.8) still remain valid in this sense.

Finally the following sheaf structure is used to study superselection sectors in
[2]. Let Z¢4A(U) denote the W*-category whose objects are the locally normal
representations of A and where T:n—7' in Z¢£W(U) if T: #,— o, is a bounded
linear operator satisfying

T(A)=m'(A)T, A WU . (2.10)
Additivity now implies
N %mmg:%m(u U,.). (2.11)
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Appendix

Our analysis of the action of a compact group ¢ on a field net § under the
assumptions a)-d) of Sect. 1 is motivated by the discussion for an Abelian group
given in the introduction of [9]. It therefore relies on the fundamental analysis of
the spectrum condition given by Borchers. We recall two facts about projections in
any Hilbert space carrying a representation of the group of space-time translations
satisfying the spectrum condition. If E is a projection and @ is an open set then

E=\/o(E) (A1)

xel0
is independent of the choice of ¢ and is hence a-invariant. This is of course the
argument of the Reeh-Schlieder theorem [16, Theorem 1]. If E and F are
projections with [F, e (E)]=0, xe 0 and Fo (E)=0 for some ye (), then Fo (E)=0
for all x and hence

FE=0. (A2)

This follows from [17, Theorem III.1].

If ¢ and 1 are continuous unitary representations of % on Hilbert spaces H,,
and H,, we define an action of 4 on %#(H,, H,)® §(0), where the tensor product is
the analogue of the tensor product of von Neumann algebras, by requiring

g(S®F)=1(g)So(g)*®gF, Se B(H,, H,), FEF ).

The fixed points under this action will be denoted (c® &, T® &) (0) or simply o F(O)
when o=1. Since § is a concrete von Neumann algebra on ., the elements of
(c®F, t®F) are bounded linear maps from H,® # to H,® . In any case, the left
and right supports of elements of (c®@F,TRF)(O) lie in oFO) and FO)
respectively.

To simplify matters we state our first result for double cones.

A.l. Lemma. Let 0,0,€ 4 with O C0O,. Then if o is irreducible and E€ a(0) is a
non-zero projection, E=1 and E~1 in o&(0,).

Proof. Since ¢ is irreducible and k lies in the centre of ¥, only the Bose part of
contributes to o&. As E is a-invariant and §~ is a factor, E€ #(H,)®I. Recalling
the definition of o, we see that E =1 since ¢ is irreducible. Next we note that the
central support of E in o§(0,) is the identity since its complement vanishes by
(A.2). As A is separable, the lemma follows if we can show that E and I are
properly infinite. Since 1, ® R(O) CaF () and O C O, it will be enough to know that
each R(0O) is properly infinite (or even infinite). But this follows from [17,
Theorem II1.37 if we note that the dependence on the additivity assumption is only
apparent since we can begin by arguing in terms of a net Ry (¢) defined to be the
von Neumann algebra generated by o (E), xe ¢, where E=0, I can be chosen
arbitrarily well localized.

We now take 7 to be the identity representation and denote (c® g, t®§) by
&,. A priori, we might have §,(0)=0. If not, taking a polar decomposition, we see
that & () contains a non-zero partial isometry whose left and right supports are
equivalent to I in o&(0,) and R(0,) respectively by Lemma A.1. Implementing
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these equivalences we see that §,(0,) contains a unitary operator. As R(0,) is
properly infinite, ¢ is realized on a %-invariant Hilbert space in &(©,) [9,
Proposition 3.6]. Now the set of unitary representations of 4 realized in this way is
automatically closed under subrepresentations, tensor products, conjugate repre-
sentations and countable direct sums. Since ¥ acts faithfully on F(0), these
representations separate the points of ¢ and, applying a standard argument using
the Stone-Weierstrass theorem (cf. [13, Theorem 3.6]) we have proved:

A.2. Theorem. Let (O be a non-empty open set, then any separable continuous
unitary representation of ¥ can be realized on a 9-invariant Hilbert space in §(0).

A standard application of the Tannaka duality theorem, cf. the remarks
following Theorem 3.7 of [18] or [19, Appendix C] yields

A.3. Corollary. Let fe Aut§(0) satisfy p(A)=A for gauge-invariant A, then
Be%|E(0).

In Sect. IV of [17], Borchers goes on to consider the ideal structure of the
inductive limit of a net of von Neumann algebras. In the same way, we can
conclude from Lemma A.1 that C*(¢) is simple whenever o is irreducible. Hence,
in particular, C*(‘R) is simple. C*(&) is also simple since the Bose part is simple
and, as an application of Theorem A.2, there is a unitary pe § with ky=—y.
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