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Pure States as a Dual Object for C*-Algebras
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Abstract. We consider the set of pure states of a C*-algebra as a uniform space
equipped with transition probabilities and orientation, and show that the
pure states with this structure determine the C*-algebra up to ^-isomorphism.

Introduction

For commutative unital C*-algebras, it is well known that the set of pure states
(as a topological space) determines the algebra. In fact, any two such algebras are
isomorphic to C(X) and C(7) for compact Hausdorff spaces X and Y. The pure
states of C(X) are just evaluation at each x in X, and every homeomorphism of
7 onto X is induced by a ^-isomorphism of C(X) onto C(Y).The Stone-Weierstrass
theorem is a special case of this.

For general C*-algebras it is clear that this result fails, e.g. not every homeo-
morphism of the pure states P(B) onto P(A) is induced by a ^-isomorphism; P(A)
(as a topological space) does not determine A. The purpose of this paper is to show
that P(A) does determine A if given a suitable structure.

The roots of our investigation go back to the work of Kadison [12-14] and
Wigner [19]. Kadison studied the representation of a C*-algebra as continuous
functions on P(A) (or P(A)~). He showed [13] that a homeomorphism of P(B)~ onto
P(A)~ which carries A onto B is induced by a Jordan isomorphism. Wigner focused
on transition probabilities between pure states. He showed that a bijection of the
pure normal states of B(H2] onto those of £(7^) which preserves transition pro-
babilities is induced by a Jordan isomorphism (in this case, a ^-isomorphism or *-
anti-isomorphism) of B(H^ onto B(H2). There have also been investigations of
Stone-Weierstrass theorems for C*~algebras, e.g. Kaplansky [16], Glimm [11],
Sakai [17]; Akemann [1,2], Giles and Kummer [9], and Effros [8].

The recent work from which this paper springs is joint work with Alfsen and
Hanche-Olsen [5], in which the notion of orientation of a state space was intro-
duced. It was shown there that an affine homeomorphism of state spaces is induced
by a *-isomorphism iff the map preserves orientation.

Our work combines the structures of topology (or uniformity), transition
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probability and orientation. We show that a bijective map from P(£)u{0} onto
P(A}^> {0} taking 0 to 0 is induced by a *-isomorphism of A onto B iff the map
(and its inverse) are uniformly continuous, preserve transition probabilities,
and preserve orientation. We give an example to show that uniform continuity
cannot be replaced by continuity.

Along the way we characterize (for separable C*-algebras) those algebras for
which the w*-closure of the primary states contains only multiples of primary
states. This corresponds to a result of Glimm [10] on pure states.

We remark finally that the results described above can be interpreted in terms
of a Riemannian structure on the pure states. Recall that each unitary equivalence
class of pure states can be identified in a natural way with complex projective
space, at least if the dimension of the corresponding GNS representation is finite.
Thus each such class can be made into a complex Riemannian manifold via the
structure carried over from projective space. The condition that a bijective map
of P(B) onto P(A) preserve transition probabilities and orientation (as used herein)
is equivalent to the requirement that the map preserves equivalence and is a
Riemannian isomorphism (i.e., biholomorphic isometry) on each equivalence
class.

The Main Theorem

Throughout this paper A will be a C*-algebra with state space K, P(A) will denote
the set of pure states, and P(A)~ will denote the w*-closure of P(A) in the dual
space A*. We recall that the bidual ,4** can be identified with the enveloping von
Neumann algebra of A, and K can be identified with the normal state space of
A**.

Let A and B be C*-algebras, and let X c p(A) and Y c p(β) be arbitrary subsets.
A map Ψ: Y-> X is said to be induced by a continuous linear map Φ:A ->> B if the
dual map Φ* restricted to Y agrees with Ψ. Our goal in this paper is to characterize
the maps from P(B) to P(A) which are induced by *-isomorphisms from A onto B.

A key requirement will be that Ψ must preserve transition probabilities.
Recall that if x and y are unit vectors in a Hubert space, the transition probability
between the vector states ωχ and ωy on B(H) is defined to be (cox\coy) = | (x,y)\ 2 .
More generally, if n:A -> B(H) is an irreducible representation, then the transition
probability between the pure states ωλ.° π and ωy° π is again defined to be | (x, y) |2.
If σ and τ are arbitrary pure states on A, let uσ and uτ be their support projections
in A**; we then define (σ τ) = <wσ, τ> = <w τ, σ>. Note that this agrees with the
definition above if σ and τ are (unitarily) equivalent, and gives (σ \ τ) = 0 otherwise.

We can also define this notion in purely geometric terms. If σ and τ are equiva-
lent, then the face of K they generate is a 3-dimensional ball, cf. [5]. (If they are
inequivalent, the ball degenerates to the line segment [σ, τ].) Now uσ restricted
to this ball is the unique positive affine function with value 1 and σ and zero at
the antipodal pure state; (σ τ) is the value of this functional at τ. Note that every
^-isomorphism (or *-anti-isomorphism) of C*-algebras induces an affine isomor-
phism of their state spaces, which then preserves transition probabilities for pure
states. The following result of Wigner [19] is a partial converse.
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Theorem 1 (Wigner). A bijective map from the vector states on B(H2) onto those
ofBffl^ which preserves transition probabilities extends to a unique affine isomor-
phism of the normal state spaces and is induced by a unique * -isomorphism or * -anti-
isomorphism from B(H^) onto B(H2).

Proof. Let Ψ be such a map of vector states. Extend Ψ to all normal states on
B(H2) by defining Ψ(Σλ.σ.)= Σλ.Ψ(σ.) for σ. vector states and Q^λ.,Σλ.= L
(Recall that every normal state on B(H2) is such a σ-convex combination.) To see
that Ψ is well defined, suppose two σ-convex combinations of vector states on
B(H2) agree, say Σλ.σ. — Σy^τ.. Then for each vector state σ on B(H2), using the
fact that Ψ preserves transition probabilities gives

<uΨ(σΓΣλiΨ(σi)-ΣγjΨ(τj»

As σ varies over the vector stages on B(H2\ uψ(σ) varies through all minimal
projections in B(H2\ and thus Σλ.Ψ(σ.) = Σy.Ψ(τ!)9 i.e. Ψ is well defined. It is
then evident that Ψ is an affine isomorphism. We now identify B(H.) for i — 1, 2
with the space of bounded affine functions on its normal state space. We then
define Φ: B(HJ-^ B(H2) by <Φ(α),σ> = <α, <F(σ)> for aeBtfJ and σ a normal
state on B(H2\ Note that Φ preserve self-adjointness, and Φ is a unital order
isomorphism of the self adjoint (s.a.) part of £(// J onto B(H2)S a By [13, Corollary
5] Φ is a Jordan isomorphism, and by [15, Cor. 1 1] Φ is either a ^-isomorphism or a
*-anti-isomorphism and Φ induces Ψ. Q

To distinguish * -isomorphisms from *-anti-isomorphisms, we will introduce
a notion of orientation (based on that in [5]). Let S2 denote the boundary of the
unit ball E3 in IR3, equipped with transition probabilities (i.e. for σ, τeS2, (σ|τ) is
the value at τ of the unique positive affine functional uσ on E3 such that uσ is 1
at σ and zero at the antipodal point ofE3). Let A be a C*-algebra, and σ, τ equiva-
lent pure states. Recall that face (σ, τ) is affϊnely isomorphic to E3 we will denote
the set of pure states (i.e. the boundary) of face (σ, τ) by S2 (σ, τ). Let Ψ. : S2 -» S2(σ, τ)
be a bijective map which preserves transition probabilities for i=l ,2 . Then
Ψ2

 1 ° Ψ^. S2 -» S2 preserves transition probabilities. As we will see below, S2 can
be identified with the set of pure states of M2(C), and so by Theorem 1, Ψ~ 1 ° Ψl can
be extended to an affine automorphism of £3, and then to an orthogonal trans-
formation of [R3. We say Ψl and Ψ2 are equivalent if this orthogonal transformation
has determinant + 1, and we refer to an equivalence class of such maps as an
orientation of S2(σ, τ).

We now single out a canonical orientation for S2(σ, τ), still following [5].
Let qeA** be the projection such that face (σ, τ)= q~l (1); thus S2(σ, τ) can be
identified with the pure states of qA**q. Let Φ: qA** A-* M2(C)beany ^isomor-
phism, and let Ψ be the affine isomorphism from E3 onto the state space of M2(C)
given by
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where we've identified the state space of M2(C) with the positive matrices of unit
trace. Now Φ* ° Ψ is an affine isomorphism of E3 onto face (<τ, τ), and we define
the canonical orientation of S2(σ, τ) to be that given by the restriction of Φ*°ψ to
S2. (The equivalence class of Φ*°ψ does not depend on the choice of Φ.) We will
refer to this collection of orientations of all 2-spheres S2(σ, τ) as the canonical
orientation of P(A).

For X c p(A) we write X1 for {σeP(A)\(σ τ) = 0 for all τeX}. Note that for
any σ, τεP(A), the set of pure states in the face generated by σ and τ is just {σ, τ}11,
and σ and τ are equivalent iff {σ, τ}11 properly contains {σ, τ}. Now let A1 and ^42

be C*-algebras, and Ψ: P(A2)-^P(A1) a bijection which preserves transition
probabilities. Then Ψ will preserve equivalence of pure states, and will map
S2(σ, τ) onto S2(Ψ(σ\ !P(τ)).We say Ψ preserves orientation if Ψ carries the canonical
orientation of S2(σ, τ) onto that of S2(Ψ(σ), Ψ(τ)) for all pairs σ, τ of equivalent
pure states. In [5] it is shown that an affine homeomorphism between state spaces
of (unital) C*-algebras is induced by a ^-isomorphism iff it preserves orientation.
If we ignore topology and consider maps defined only on the pure states, we have
following result.

Proposition 2. Let Aί and A2 be C*-algebras. A bijective map Ψ :P(A2) -> P(Al)
is induced by a * -isomorphism of the atomic part of A^** onto the atomic part of
A-i** iff Ψ preserves transition probabilities and orientation.

Proof. The atomic part of A^** is a direct sum of type I factors c.^41** = B(H.).
For each ί, the pure states in c7 *(!) are a maximal set of mutually equivalent pure
states, and all such maximal sets occur in this way. It follows that Ψ carries the
pure normal states of c.^41** onto those of some type I factor d.A2**, a direct
summand of A2**. By Theorem 1, there is a ^-isomorphism or *-anti-isomorphism
Φi:ciAί**-+d.A2** which induces Ψ\d7\Y)^c7\l\ By [5, Proposition 6.2]
Φ. is a *-isomorphism since Ψ preserves orientation. Now the direct sum Φ = 0 Φ.
will map the atomic part oϊA^* *-isomorphically onto that of ^42**, and induces
Ψ. The converse is clear. D

If we combine this with results of Akemann [1] and Giles and Kummer [9],
we obtain one kind of structure on P(A) which determines A up to isomorphism.
If A is unital, define X ^ P(A) to be ^-closed if X consists of all pure states of some
w*-closed face of K.

Corollary 3. Let A1 and A2 be unital C* -algebras. A bijective map
P(A1) is induced by a ^-isomorphism of A1 onto A2 iffΨ preserves transition pro-
babilities and orientation, and Ψ and Ψ~ 1 preserve q-closed sets. Π

The rest of this paper will be devoted to showing that the last condition of
Corollary 3 can be replaced by the requirement that Ψ and Ψ'1 be uniformly
continuous. We begin with a lemma relating convergence in P(A) to pointwise
convergence of representations. The lemma is a modification of a result of Fell's
[7] relating convergence in A to convergence of representations.

Lemma 4. Let Abe a unital C*-algebra, and let H be a Hilbert space whose dimen-
sion is greater than the cardinality of A. Let π be a cyclic representation of A on a
closed subspace HQ of H, with cyclic vector x, and define σ = ωχ° π. Let {σ*Jίe/ be a net



Pure States as a Dual Object for C*-Algebras 501

of pure states on A which converges (weak*) to σ. Then there exists a subnet {σ.} .Ej

and representations n. on closed subspaces Hj ofH containing x, such that for each
je J, n. is unίtarίly equivalent to the GNS representation associated with σj9 and such
that

(i) || ωx-nj-σj ||-»0,

(ii) for each yεH and for all sufficiently large jeJ, H. contains y and || π •(£>)); —
n(b)y\\^OforallbinA.

Proof. (Modelled after the proof in [6, Lemma 3.5.7].) Fix ε> 0, and elements
α1 , . . . an in A of norm at most one, with α1 = 1, and vectors y1 , . . . ym in HQ with
y1 = x. Choose b1,...bmm A with bί = 1 and || n(bk)x — yk\\ < ε/4 for 1 £Ξ k ̂  m.

Now observe that with minor changes the proofs of [6, Lemma 3.5.7 and Pro-
position 3.5.9] show that for each integer n ̂  dim H0 there exists z'0e/ such that
ί ^ f 0 implies the dimension of the GNS representation for σ. is at least n. In
particular, we can choose z0 so that i ̂  z0 implies the dimension of the GNS
representation for σ. is at least as much as the dimension of the linear span of
[n(ajbk)x, 1 ̂ j ^ n,l ^ fe g m}. We may also arrange that for i ̂  ί0

| < b * α * α z f e r , σ . > - < 6 * α * f l / & r , σ > | < ε 1 (1)

for all j, k, /, r with ε1 as specified below. Now for any fixed i ̂  i0 let πj be a repre-
sentation of ,4 on a closed subspace H. of H containing {π(ajbk)x, 1 ^j ^n, 1 ^ fe^
m, such that x is a cyclic vector for π( and ω^ ° π'. = σ.. (Note that π'. is unitarily
equivalent to the GNS representation for σ. [6, Prop. 2.4.1].) Now by (1), for
allj,/c

|(π;(^k)x, πfajbjx) - (π(ajbh)x, π(abk)x)\ < er

If δj is suitably chosen, then by [6, Lemma 3.5.6] there is a unitary operator U
on H. such that

bjx - n(ajbk}x || ^ e/4(l + M) (2)

for all 7, /c. In particular, since xeH. then

|| Ux - x || ^ c/4(l + M). (3)

Now define π.:A-+ B(Ht) by π.(&) - ί/
Then for foe^l with & g 1

Thus || ω;c°πί. - σj ^ ε/2(l 4- M) ̂  ε. Also, from (2) and (3) we have

|| n.(af)^ - π(aJbk)x || = \\ Uπ^ajb^U' ^ - π(a^x \\

^ || Uπ'(ajbh)x - π(ajbk)x \\ + || ife || ε/4(l + M)

^ ε/4(l + M) + || fefc || ε/4(l + M) ̂  ε/4. (4)

For j = 1 we get || n.(bk)x — n(bk)x \\ g ε/4. Now bk was chosen to satisfy || π(bk)x —
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yk || ^ ε/4, and so || n.(bk)χ — yk\\ ^ ε/2. Combining this with (4) gives

ε ε ε
< -- 1 -- -1 ___ c

= 2 4 + 4

Now if we choose a subnet {π .̂} indexed by members of/, finite subsets of A and
H, and by ε, we can satisfy (i) and (ii). Q

Lemma 5. Let A be a C*-algebra. Then the set B of elements be A** such that
b, b*b, and bb* are continuous on P(A)~ forms a C*-subalgebra of A**.

Proof. We may assume A is unital. Let {σ.}ίe/ be a net in P(^) converging to
σeP(A)~. Choose representations {π.}, π in accordance with Lemma 4; we will
use the notation of that Lemma. We will also denote by {fty}, π the σ-weakly
continuous extensions to ^4**.

Note that by Lemma 4, for αe.4** < a, σ. > -> <α, σ> iff (π.(ά)x, x) -» (π(ά)x, x).
Let C consist of those elements ce,4** such that

(π/φ, y) -> (π(φ, y) and (π.(c*φ, y) -» (π(c*φ, y) for all ye/f 0. (5)

Polarization of (5) gives

(πj(φ1 , y2) -> (π(φ: , y2) and (πj.(c*φ1 , y2) -» (π(c*φ1 , y2) for aUy19 y2eH0.

(6)
Now since

- π(φ ||2 - (π.(c*φ, y) - (̂ .(φ, π(c)y) - (π(φ, ̂ .(φ) + (π(c*φ, y),

by (6) we conclude that for ceC

|| π.(φ-π(φ || -*0 foral lyeH 0 . (7)

Conversely, for ce^** (7) implies (5). Now if a and b are in J5, then (5) holds with
c = a or b, and so (7) holds for each. But then ab satisfies (7), so ab satisfies (5).
It follows that <αfe, σ^-^αfc, σ>. This argument applies to show that every
subnet of (σj has a subnet on which ab converges to <αέ>, σ); it follows that
< αfe, σ f > -> < ab, σ > . Thus αfo is continuous on P(/4) " , showing that B is a subalgebra
of ,4**. It is clear that B is norm closed and closed under the ^-operation, and so
the proof is complete. D

In the rest of this paper, z will denote the central projection in A** such that
Zy4** is the atomic part of ./I**. (By definition Zτ4** is the direct sum of those
direct summands of ,4** which are type / factors.) The atomic part of the state
space K of A is z~ 1 (1), and can be identified with the normal state space of zA**.
It is the σ-convex hull of the pure states of A, cf. e.g. [4].

Proposition 6. Let Abe a C*-algebra, and define B as in Lemma 5. Then zA = zB.

Proof. We identify each state on A with its normal extension to A**. Since the
σ-convex hull of P(A) can be identified with the normal state space of z,4** => zB,
then the set of states {σ zB, σeP(/l)} determines the ordering on (zB)s a Therefore
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the w*-closure of this set of states of zB contains P(zB)~, cf. [6, Lemma 3.4.1]. Now
let σ and τ be functionals in P(zB}~ which agree on zA^zE\ we will show σ = τ.
Choose nets {σ.}fe/ and {τf}ί6/ in P(A) such that er. -> σ on zJ5 and τ. -» τ on z#.
Let πz(a) = za for aeA. Then {σ.oπj and {τ f

o πj converge on A to σ°πz = τ°π z.
Since each pure state of A annihilates (1 — z),4**, then σί°πz = σt and τ.°π z = τ.,
and so {σ.} and {τ.} converge on A to the same state σ ° πz = τ ° πz. By the definition
of B, for each fee 5 the nets { < ft, σ. >} and { < 6, τ. >} have the same limit, and thus so
do {<zb, σ.)} and {<zb, τ.>}. By our choice of {σ.} and {τ.}, we conclude σ = τ,
and thus zA separates P(zB)~. By Glimm's version of the Stone-Weierstrass
theorem [ll\,zA = zB. Π

If A is any C*-algebra, we denote by Au the set of elements aezA** such that
α, α*α, and αα* are uniformly continuous on P(A) u {0}. We say ^4 is weakly perfect
if zA — v4u. For future use, we observe that if A does not have an identity, A is
weakly perfect iff A with an identity adjoined is weakly perfect.

Lemma 7. Lβί Abe a C*-algebra. Let {σ.} be a net of pure states converging to σ,
a multiple of an atomic state. Then for each aeAu, <α, σ.>-><α, σ>.

Proof. We may assume ,4 is unital and so || σ || = 1. Let {π.}, π be as in Lemma 4.
We claim there exists a sequence {xfc} in H0 such that x = Σxk and such that ωλ.k°π
is a multiple of a pure state for each fe. For suppose σ = £/lfcτfc with 0 ^ λ fc, ΣJLfc =
1, τfceP(^4), and (τ7.|τfc) = δjk. Let (πk,Hkίyk) be the GNS representation associated
with τk for each fe, and let Ψ = ® πfc :A -̂  J3(φ Hfc). Note that for all be,4

Thus (Ψ, lF(^)(Σv//l/c3;/c) , Σ^/λkyk) is unitarily equivalent to the GNS representa-
tion of A associated with σ, [6,2.4.1]. Now let {xj c /ί0 be the sequence of

vectors corresponding to { v y j - (To see each y. is in ^(^(Σ^yJ", given
OO

ε > 0 choose n so that ]Γ ^ < ε/2, and choose fee/1 so that || b || ^2 and π.(b)j;. =
n + l , — , _

(5ι7y7. for i g n . Then || *P(b}(Σ^/ λkyk)- ^J λ.y^ < ε). Now for each k and each
αe^ίu, π(a)xk lies in ίΓ0, and so for all be A, all λeC, asy-> oc :

(π/fe) (xfc + λπ(α)xfc), xfc + λπ(a)xk) -> (π(fc) (xfc + λπ(α)xfc), xfc + Aπ(α)xfc). (8)

Each representation π. is irreducible, so the map sending b to the left side of (8)
is a multiple of a pure state. Since ωχ ° π is a multiple of a pure state for each fc,
that π(v4) is irreducible on (π(A)xfc)~, which includes xk + λπ(fl)xfc , so the map
sending b to the right side of (8) is also a multiple of a pure state. Since A is unital,
these functionals when normalized also converge (evaluate at the identity).
Thus by the definition of Au, (8) holds with aeAu replacing b. If the resulting equa-
tion for suitable values of λ is polarized, the result is

(π.(α)xfc , xfc) -> (π(α)xfc , xfc), (9)

and

(π.(a)xk, π(a)xk) -> (π(α)xk, π(α)xk). (10)



504 F. W. Shultz

Applying (9) and (10), and (9) with a*a replacing a gives

|| (π/α) - π(α))xfc ||
2 - (π.(α*α)xfc, xk) - (π.(a)xk, n(a)xk)

- (π(a)xk, π.(α)xfc) + (π(a*a)xk, xk)

which approaches zero as j -» GO.
n

Now given ε > 0 choose n so that || x ~ ΣX/JI < ε/^ Now given aeA choose
i

n n

j0 so that j ^70 implies || πj(α)Σ x/c ~ ̂ ^Σ^k II < ε/^ Then for || a \\ ̂ 1

+ ε/2 ^ ε.

(Note we cannot use π^.(α)Σ^fc = Σπ/α)x/c because for fixed j not all xk may lie
i i

in Hj.) Now (πj(a)x, x) -> (π(α)x, x) = < α, σ > and || ωχ ° π. - σJ -> 0, so < α, ̂  > ->
<α, σ>. Thus every subnet of {σ.} has a subnet on which a converges to <α, σ>;
it follows that < α, σ. > -»< α, σ >. Π

Lemma 8. Let Abe a C*-algebra. If every element ofP(A)~ is a multiple of an ato-
mic state, then A is weakly perfect.

Proof. We may assume A is unital. Then under the hypotheses P(A)~ consists
entirely of atomic states. Now by lemma 7, for each aeAu the elements a, a*a, aa*
are continuous on P(A)~, and so by Proposition 6, Au^zA. Clearly zA^Au,
so zA = Au. Π

We now digress momentarily to discuss the geometry of primary states.
Recall that a split face of a convex set K is a direct summand, i.e., one of a pair
F, F' of faces of K such that every element σ of K can be written uniquely as a
convex combination σ = Λσ χ + (1 — λ)σ2 with σί eF and σ2 eF. If σ is a state on
the C*-algebra A, and if πσ is the corresponding GNS representation, then the
σ-weakly continuous extension of πσ to A** maps cσ,4** *-isomorphically onto
πσ(A}'\ where cσ is the central support of σ in ,4**. For any von Neumann algebra
the map c-+c~l(\) gives a 1-1 correspondence of central projections and split
faces of the normal state space. Thus F(σ) = c~ *(1) is a split face of K which can
be identified with the normal state space cσA**, and F(σ] will be the smallest split
face containing σ. Clearly πσ(A)" = cσA** is a factor iff F(σ) contains no proper
split faces. Thus σ is primary iff the split face F(σ) generated by σ is a minimal split
face ofK.

The following result gives a criterion for the closure of primary states to
consist of multiples of primary states. (A corresponding result for pure states was
gives by Glimm [10]).

Proposition 9. Let Abe a C*-algebra which is either separable or type I. Then these
are equivalent:

(i) every limit point of primary states is a multiple of a primary state,
(ii) A is hausdorff.
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Proof. Assume (i) holds. Let~ be the relation of unitary equivalence on P(A);
to show A is Hausdorff it suffices to show ~ is closed. Suppose σ. -> σ and τ. -> τ
in P(A\ with σi ~ τ. for all i. Then (1/2) (σ. -f τ.) is a net of primary states converging
to (1/2) (σ + τ), so the latter must be primary. Therefore σ ~ τ, which establishes (ii).

Now assume (ii). Note that by [6,9.5.3] A is CCR. Let {σ.} be a net of primary
states on A converging to σ, and let F(σ) denote the smallest split face of K con-
taining σ.. Similarly let F(σ) be the smallest split face of K0 = co(Ku {0}) con-
taining σ. Let F = F(σ)~ ^ K0. To establish (i) we will show FπK = F(τ] for
some τeP(A).

Fix τ and τ' in P(A)r\F\ we claim τ and τ' are equivalent. To verify this, note
that F = F(σ)~ ^ co u {F(σ.), i ̂  i0} for each index z'0, since the closed convex
hull of split faces of K is again a split face, e.g., cf. [3]. Since A is of type I, each
F(σί) is affinely isomorphic to the normal state space of a type I factor, and so is the
σ-convex hull of its extreme points. It follows from Milman's theorem that τ
and τ' are limits of nets {τ^} and {Y.} with τ . and τ'j in F(σ.)np(A) for each j and
( σ j } j e j a subnet of {σ.}. Since A is Hausdorff then the relation ~ is closed, and so
τ. ~ τ'j for all7 implies τ ~ τ'. Thus all pure states in F are equivalent.

We can identify F n K with the state space of A\J9 where J is the annihilator of
F in A, (Note F is w*-compact, so F is the annihilator of J in K0.) Since all pure
states of A\J have been shown to be equivalent, then all irreducible representations
of AIJ are equivalent, and so A \ J is simple. Since A is CCR, so is A \ J, so A \ J =
compact operators on some Hilbert space H. Now F n K can be identified with
the state space of A \ J, and thus with the normal state space of B(H). It follows that
F n K has no proper split faces, which shows that every member of F is a multiple
of a primary state. Π

Corollary 10. Let Abe a C*-algebra. If A is CCR and A is Hausdorff, then A is
weakly perfect.

Proof. By Proposition 9, every element in P(A)~ is a multiple of a primary state.
Since A is CCR, every primary state is atomic. The corollary now follows from
Lemma 8. Π

For the next lemma, we say that X c p(A) is saturated if any pure state equiva-
lent to a member of X is in X.

Lemma 11. Let A be a C*-algebra, and X a saturated subset of P(A). If σeX',
then the w*-closed face of K0 = co(Ku{0}) generated by σ is contained in X~.

Proof. We may assume A is unital. Let {σjfe/ be a net in X converging to σ,
and let τe face(σ). Choose a subnet {^.}jej and representations {π;.}, π as in Lemma
4. Since τeface(σ), then τ is dominated by a multiple of σ. By [6,2.5.1] there
exists ceπ(A)' such that τ = ωcχ°π, where σ = ωχ°π. By Lemma 4, ωcx°π. con-
verges to τ = o)cχ°π. Evaluating at the identity, the states τ. = || o^cx

Όπ. H"1^0^.
converge to τ. Furthermore, each τ . is a pure state equivalent to σ., and so is in
X. Thus face (σ)^X~.

Now let 7 be a subset of X~ maximal among the convex subsets of X~ con-
taining σ. Since face (7) = u{face ω\ωe7}, face (7) is contained in X~ by the
first paragraph. By maxίmality Y = face (7) is a closed face of K containing σ
and contained in X '. Π
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Lemma 12. Let A be a C* -algebra, and let F be a closed face ofK0 = co(K u {0} )
contained in P(A)~ . Then for each aeAu the unique continuous function a' on P(A}~
which agrees with a on P(A) is affine on F.

Proof. We may assume A is unital. By Lemma 7, d agrees with α on the atomic
states in P(A)~, and thus in particular on the convex hull of the pure states in F;
thus a' is affine on co(deF). By the Krein-Milman theorem, this set is dense in
F, and so by continuity a' is affine on F. Π

Lemma 13. Let Abe a C*-algebra, and J a norm closed ideal of A such that J is
weakly perfect. If aεAu annihilates every pure state that annihilates J, then αezJ.

Proof. Let F be the split face of K0 , which is the annihilator of J in K0 . Note that
the state space of J can be identified with the split face F' = {σeK\ \\ σ\ J\\ =
|| σ || =1}. Let a' denote the continuous extension to P(A)~ of a\P(A\ and extend
a' to [0, 1] x P(A)~ by < d, λσ > = A< 0', σ >. We will show a is uniformly continuous
on P(J)u{0} by showing that a' is continuous on P(J}~ (for the uniformity and
topology induced by J).

Let {σ.}ίel be a net in P(J) which converges on J to λτ, where τ is a state on J
and 0^/1^1. By compactness of K0 there is a subnet {^j}jej which converges
on A to σeK 0, where σ = λτ -f (1 — I)ω, with ωeF. By construction, σe(P(X)n
F')~ , and so by Lemma 1 1, τ and ω are in (P(A)n>F')~ .

Let G be the closed face of KQ generated by ω. Then G ̂  F, and so deG ^ δeF.
Now by Lemmas 11 and 12, a' is continuous and affine on G. By assumption 0' =
α = 0 on F n P(,4), and so by Krein-Milman a' = 0 on G.

Now by continuity of α' on P(A)~

where we've used Lemma 12 to know that α' is affine on face (σ) ̂  {τ, ω}. Thus
as σ. converges on J to λτXα^σ.) converges to <α',/lτ>. Thus every subnet of
{σj has a subnet on which α' converges to <α;, /lτ>; it follows that <α', σ. } con-
verges to < 0', /Lτ >. Thus α; is continuous on P(J) ~, and so α is uniformly continuous
on P(J)u {0}. Since J is weakly perfect, there exists jeJ such that a andj agree on
P(J). Both a and j are zero on the remaining pure states, and so a=j on P(^).
Since #ez,4**, then a = zj. Π

Lemma 14. Let Abe a C*-algebra and J a norm closed ideal of A. If J and A/J
are perfect, then A is weakly perfect.

Proof. We may assume A is unital. Let aeAu; we'll show αezA By Lemma 13,
it suffices to reduce to the case where a is zero on the annihilator F of J in K.
We can identify P(A \ J) with P(4) n F. Since P(A \ J) is closed (in the relative topo-
logy) in P(A\ then a is uniformly continuous on P(A \ J\ as are a* a and 00*. Since
A I J is weakly perfect, 0 agrees on P(A \ J) with an element of A J. Thus there exists
b E A such that 0 and b agree on P(^) n F. Now 0 — zb is in Au , is zero on P(A) n F,
and so by Lemma 13 is in zA. Thus ^4u ̂  zA. Π
Corollary 15. 7/"0 C* -algebra A is GCR, ί/zen A is weakly perfect.

Proof. Let {/.} be a composition series for A such that the quotients Ji+1/Jt are
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CCR with Housdorff spectrum, cf. [6, Theorem 4.5.5]. We proceed by transfinite
induction. Assume J. is weakly perfect. By Corollary 10, Ji + ί/Jι is weakly perfect,
and so by Lemma 14, Ji + ίis weakly perfect.

Now let β be a limit ordinal such that Jt is weakly perfect for i < β. For simplicity
of notation we assume A = Jβ. Note that each algebra zJi for i < β is an ideal in
Au. (If a e z J. and b e Au, then ab e Au and ab is zero on those pure states annihilating
J.. By Lemma 13, ab agrees on P(A) with an element of J., and thus abezJ.).

Thus zA = (u z J.)~ is an ideal in Au. If zA were properly contained in Au, then
there would exist a pure state σ of ̂ u which annihilates zA. Since P(A) determines
the order on Au SΞ zA**, there would exist a net {σ.} <Ξ P(/4) converging on Au to σ.
By hypothesis σ annihilates A, so {σ.} converges to zero on A. By the definition
of Au, this implies that each element of Au converges to zero on {σ.}, and thus
σ = 0 on Au, a contradiction. Thus z/1 = Au. D

Lemma 16. Let Abe a C*-algebra with state space K. Let {F.}iel be a collection
of split faces of K, and assume for each iel there is given an affine function ai on Ft

such that || 0. || ^ 1 andat = a.onF^F.. T hen there exists a E A** such that \\a\\ ^ 1
and a = at on Ftfor all iel.

Proof. We may assume all at are positive. For each finite subset X of / let Fχ = co
{F., ieX} and let ax be the unique affine function on K which agrees with α. on
each Ft for zeJf, and is zero on the split face complementary to Fχ. Note that if
X £ Y, then αx rg αy and αy restricted to Fχ agrees with ax. Furthermore, || ax\\ rg 1
for all X. Thus {fl^}^/ *s an increasing net bounded above, and so converges
σ-weakly to its least upper bound. This l.u.b. is the desired element a. Π

Theorem 17. Every C*-algebra A is weakly perfect.

Proof. We may assume A is unital. By [6, Proposition 4.3.3] there is an ideal J of A
such that J is OCR and A\ J is NGCR. By Corollary 15 and Lemma 14, it suffices
to show AIJ is weakly perfect; thus without loss we may assume A is NGCR. By
[6, Lemma 11.2.3], if σ<=P(A)~ and πσ is the associated GNS representation, then
the annihilator (ker πj1 of ker πσ in K is contained in P(A)~. The annihilator of
ker πσ is a split face of K, and so P(A)~ is a union of split faces.

Let aeAu, and let a' be the continuous extension to P(A)~ of a \P(A). By Lemma
12, a' is affine on each split face (ker πj1 for σeP(A)~. Let a" be a bounded affine
extension of a' to all of K; such an extension exists by Lemma 16. Then a" is
continuous on P(A)f, as is (a")* a" and (α") (</)*, so by Proposition 6, zaf'ezA. It
follows that 0 agrees with an element of zA on P(^4), and thus aezA. Π

Theorem 18. Let A and B be C*-algebras and Ψ : P(B) u {0} -> P(4) u {0} 0 ί>//ec-
fz'0w wzί/z Ψ(0) = 0. T/zen ϊ7 is induced by a *-isomorphism of A onto BίffΨ and Ψ'1

are uniformly continuous and Ψ preserves orientation and transition probabilities.

Proof. This follows at once from Proposition 2 and Theorem 17. Π

A Counterexample. It can be shown that uniform continuity in Theorem 18 can
be replaced by ordinary continuity if A and B are CCR with Hausdorff spectrum.
However, this does not hold for all C*-algebras, even those of type /.

To see this, let A be the sum of the algebra of compact operators on H = L2[0,1]



508 F. W. Shultz

with the algebra of multiplication operators for continuous functions on [0,1].
The atomic part of A** can be identified with B(H) ® S™ [0,1]. Let qeB(H) be the
projection on the closed linear span of {sin 2kπx, cos 2kπx, k= 1,2,...}. Then q is
continuous on P(A\ but is not uniformly continuous. The map b->(2q—l)
b(2q - 1) is a *-automorphism of the atomic part of A** (it fixes ^°° [0,1]), and
thus induces a bijective map of P(A) onto P(A) which preserves orientation,
preserves transition probabilities, is a homeomorphism, but is not induced by a
*-automorphism oϊA.

A Final Remark: Connections with the Stone-Weierstrass Conjecture

Let A be a C*-algebra, and let Ac denote the set of elements b in the atomic part
zA** of ,4** such that b,b*b, and bb* are continuous on P(^)u{0}. The proof
of Lemma 5 applies without change to show that Ac is a C*-subalgebra of z,4**.
The map a -> az imbeds A into Ac let us say A is perfect if zA = Ac.

Perfect algebras are of interest because of their connection with the Stone-
Weierstrass conjecture for C*-algebras. Let us say that A has the Stone-Weierstrass
property if whenever A is a C*-subalgebra of B and separates P(£)u{0}, then
A = B. If A is a C*-subalgebra of B and separates P(B){u {0}, then the restriction
map is a homeomorphism of P(5)u {0} onto P(A)v {0}, and so there is a natural
imbedding of B into the set C(P(A) u {0}) of continuous functions on P(A)u {0}.
The image of B will contain that of A (or zA\ and will be contained in the image
of Ac in C(P(A) u {0}). Thus, if A is perfect then A = B will follow, i.e., perfect
C*~algebras have the Stone-Weierstrass property.

The counterexample described previously shows that not all type / C*-algebras
are perfect. However, every C*-algebra A can be imbedded in a perfect C*-algebra
(Ac\ and Ίϊ A is simple, then so is Ac. If A is perfect and q is a projection in A, then
qAq is perfect. In the counterexample described above, it can be seen that qAcq
is isomorphic to B(qH). Thus the C*-algebra of all bounded operators on a Hubert
space is an example of a non-nuclear C*-algebra which is perfect and thus has the
Stone-Weierstrass property.
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