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Abstract. We construct projective unitary representations of (a) Map^ G),
the group of smooth maps from the circle into a compact Lie group G, and
(b) the group of diffeomorphisms of the circle. We show that a class of repre-
sentations of MapίS1 T), where T is a maximal torus of G, can be extended to
representations of MapCS^G),

Introduction

One object of this paper is to describe a series of projective unitary representations
of the group of (orientation preserving) diffeomorphisms of the circle. They are
characterized, and distinguished from other known representations ([8], [13]),
by the property of having "positive energy", which means that the rotation of the
circle through an angle α is represented by e~ίαK where K is a positive operator.

In their infinitesimal form, i.e. as representations of Vect^1), the Lie algebra
of smooth vector fields on the circle, the representations have been known for
some time to physicists ([5], [3]) in connection with the quantization of strings
moving relativistically. (VectίS1) is called by physicists the Virasoro algebra.) I
have tried to explain briefly in an appendix to this paper how the representations
are relevant to the theory of strings but as a crude oversimplification one can say
that one wants to describe unparametrized strings but finds it more convenient to
describe parametrized strings: the group of diffeomorphisms acts on the Hubert
space of states of a parametrized string by changing parametrization.

The infinitesimal version of the representations has also been described by
Kaδ([7][7a]).

My approach to the construction of the representations involves constructing
irreducible representations of another family of groups. For any Lie group G the
group DiffCS1) of orientation preserving diffeomorphisms of the circle S1 is a group
of automorphisms of the group Map(S'1 G) of smooth maps from S1 to G (under
pointwise composition). Taking first G = T, the circle group, I shall construct an
irreducible projective unitary representation of Map^1 T) on a Hubert space H.
Then I shall show, what seems to me rather surprising, that any representation
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of Map(Sl T) belonging to a certain class extends canonically to a representation
of Map(Sl ;SL/2) on the same Hubert space H, when T is identified with the dia-
gonal matrices in SU2. The next step is to show that Diff^1) acts projectively
on H, intertwining with the action of Map^1 ',SU2), so that we have a projective
action of the semidirect product DiffίS1) x Map^1 lSU2). This last group contains
the product Diff^1) x SU2, where SU2 is identified with the constant maps
S1 -> SU2. We shall see that under the action of Diff^S1) x SU2 the space H can
be decomposed

H= 0 Pq2®Dq,
4 = 0,1,2,. -

where the Pq2 are distinct irreducible representations of Diff(S'1), and Dq is the
(2q + l)-dimensional irreducible representation

Defining the action of Diff(S1) on H involves constructing the metaplectic re-
presentation of a certain infinite dimensional symplectic group. This construction
is due in essence to Shale [10], but has been developed more explicitly by Vergne
[12]. My method is superficially, but not fundamentally, different from hers.

The theorem that a suitable projective representation of Map^ T) can be
extended to one of Maρ(S'1 ;St/2) can be generalized in the following way. If G is
a simply connected and simply laced (cf. Sect. 4) compact Lie group with a maximal
torus T then a class of projective representations of Ma,p(Sl T) can be extended
to Map(Sx G). Among other things this gives one a new and interesting explicit
construction of the fundamental irreducible projective representations of
Map(S* G). On these representations too the group DiffίS1) acts, and again they
can be decomposed under Diff^S1) x G.

Since writing the present work I have learnt that the extension theorem has
been proved independently by Frenkel and Kac [0], who have also observed
that the essential ingredient is the "Veneziano vertex" of the theory of strings [5].

All the representations we shall be concerned with are projective, i.e. they are
really representations of central extensions of the groups in question by the circle
T. The extensions are of some interest in their own right : they are described from
various points of view in Sect. 7.

To get some idea of the position of the representations constructed here among
the totality of representations of Map^ G) and Diff^1) one can consider the
"orbits" in the coadjoint representation in the manner of Kirillov and Kostant.
That is done in Sect. 8. In the case of Map(S* G) the results are very satisfactory,
in that for projective representations with the cocycle we are considering the orbit
method suggests that the unitary representations constructed in this paper are
the only ones which exist. These representations are precisely the ones found by
Kac, whose method, like mine, constructs only representations of positive energy
(i.e. "with a lowest weight"). I should perhaps mention at this point that GeΓfand
and others have constructed non-projective representations of Map(S1;G) of a
completely different type, not of positive energy (cf. [14].)

In the case of DiffΐS1) the predictions of the orbit method are not so clear. The

1 To avoid misunderstanding I should emphasize that in this paper the irreducibility of Pq2 is proved
only when q = 0 (cf. Sect. 6). The irreducibility has been proved in general by Kac
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coadjoint representation of Diff^S1) has a natural interpretation in terms of second-
order differential equations on the circle — so-called "Hill's equations" — and the
orbits are classified by their monodromy. There seems to be at least a rough cor-
respondence between the orbits and the unitary representations.

My interest in the subject of this paper was aroused by Goldstone, and all the
results about the decomposition of the irreducible representations of Map(Sl;Ύ)
under the action of Diff^1) were told to me by him. I am most grateful for the sti-
mulus and instruction he has given me.

The decomposition of the representation of Map^1 G) in the general case was
explained to me by Macdonald. I have also been greatly helped in connection with
the metaplectic representation by Kazhdan and Vergne, and in understanding the
action of Diff^1) on Hill's equations by Hitchin.

It will be obvious that the results of this paper have mostly already been obtain-
ed, at least on the infinitesimal level, by Kac. I hope nevertheless that my methods
and point of view are sufficiently different to justify their publication. My methods,
on the other hand, are in some sense familiar among physicists : in connection with
Sect. 5 I should mention the work of Goddard and Horsley [3], and for the con-
struction of Sect. 4 the volume [5], passim.

2. The Central Extension of Map (S1 Γ)

The group M = Map(Sl T) is disconnected, with its connected components
indexed by the winding number. There is an exact sequence

x 2π w
0 -> Z - > MapCS1 R) -> MapCS1 T) — > Z -> 0,

where the middle map is / 1— > eίf, and w is the winding number. Our first task is to
define a central extension M of M by T.

Let F denote the vector space of smooth functions / : R -> R such that

is constant. The subgroup of F consisting of /such that Λ y eZ will be denoted by
F%. Any element of M can be written elf, with/eFz, when S1 is thought of as
R/2πZ.

There is a skew bilinear form S : F x F -» IR defined by

s(f> ») = 7- ί"(/Wβ) - f(θ)θ'(θ))dθ + ^-(f(2π)g(0) - /(0)0(2π)).
4π Q 4π

(Observe that S(/, 1) = Δf.) We define the group M as the space T x M with the
composition law

(A, eif) (μ, eid) =

It is fundamental for our purposes that the group Diff^S1) acts on M as a group
of automorphisms. That is true because the cocycle c:M x M->T given by
c(eif, ei9) = e~

ίs(f'9) which defines M is invariant under Dif^1).
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It is not hard to determine all the central extensions of M by T which are
invariant under Diffiβ1). Indeed any such extension M can be identified with
T x M as a space. Let C denote the circle of constant function in M, and let ε denote
any element of M of winding number 1. Then c J-> εcε~ 1c ~ 1, where the multiplica-
tion is in M, is a map C -> T.

Proposition (2.1) The central extensions T -> M -> M w/zic/z are invariant under
Diff(Sv) are completely classified by the winding number of the map C -> J just
described. Any integral winding number can occur.

I shall omit the proof. The extension we are denoting by M has winding number
2. To obtain an extension with winding number 1 one can replace the skew form
S used to define M with the (non-skew) bilinear form s :F x F -> R defined by

(Notice that s(f, g) - s(g,f) = S(f, g) ) The form s is not invariant under Diffβ1),
but nevertheless a double covering of Diff^S1) acts on the associated extension
Mby

φ*(λ, y) =

3. The Projective Representation of Map (S1 T)

We shall construct a unitary representation of M on a Hubert space H. It is more
convenient notationally, however, to describe it as a projective representation of
M, i.e. to associate to each y in M an operator T(y) : H -» H such that

where c : M x M -> T is the cocycle described in the previous section.
We begin with the identity component M0 of M. If C c M0 is the constants, then

M0/C can be identified with the vector space 7=Map(S1 R)/(constants). We
shall construct a projective unitary representation of F on a Hubert space HQ

then, regarding H 0 as a representation of M0 , we shall define H as the representa-
tion of M induced from HQ .

The skew form S induces a skew form S:Vx V-* R. To represent the Lie
algebra of the desired central extension of Fis to associate linearly to each /E Fan
operator A ( f ) so that

(Then the group element eif in M0 will be represented by eίA(f\) That is, we must
represent the "canonical commutation relations" associated to Fand S. We do
this using the standard representation on Fock space.

A complex polarization of Ffor the form S means a decomposition Fc = W® W9

where Fc is the complexification of V9 such that S is identically zero on W. (W
denotes the complex conjugate of W.) Then

(w 1 ,w 2 )ι-^<w 1 ,w 2 > = 2iS(w1,w2)
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is a hermitian form on W. If this is positive definite, making Wa pre-Hilbert-space,
we shall call Wa positive polarization.

In our case, where V= Map(Sΐ ;R)/(constants), there is a canonical positive
polarization, in which Wis the space of smooth maps / S1 -» C which extend to
holomorphic functions on the disk D = { z e C : | z | : g l } (modulo constants).
The spaces Wand Ware isotropic for S by Cauchy's theorem, and the form < , > is
positive-definite. In fact if /(z) = £ anz

n and g(z) = Σ bnz
n then

where μ is Lebesgue measure on D.
Let us consider the symmetric algebra S(W) of W. The elements of W act on

this by multiplication: we write A(w) :Sk(W) -» Sk+ l(W) for multiplication by w.
For each w in W there is a unique derivation ^4(w) :Sk(W) -> Sk~ l(W) of the algebra
S( W} whose action on S^(W) = Wis given by

A(w)'U = <w, u>.

For any/in Fwe define A(f):S(W) -> S(W) by

where /=/+ +/_ with/+ e W and/_ e W. The relation

follows at once from the fact that A(f_) and A(g _) are derivations.
The inner product < , > on Wextends to S( W) by

where the sum is over all permutations (̂  , . . . , ik) of (1, . . . , k). With respect to this
inner product the operators ^(w) and A(w) are adjoint for any w in W, and so A(f)
is self-adjoint for real /in K

We define #0 as the Hubert space completion S(W) of S(W). The A(f) for/
in V can be thought of as unbounded operators in H0 we have to show that they
are self-adjoint in the appropriate sense so that they define unitary operators
eiA(f}mHQ.

It is easy to check that the following estimates hold:

when we W and ξ<=Sk(W}. From these we deduce

\\A(f) ξ\\^2^kT~L\\f\\\\ξ\
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when/e Fand ξ eS°(W) ® . . . Θ Sk(W), and || / 1| is defined as || /+ || . It follows that
the series

converges in ίf0 for each ξeS(W\ and defines

eίA(

But iϊξ,ηeS(W) then

m -n

because £ ( — l)k/fc !m ! = 0 when n > 0.
k + m = n

So eIv4(/) extends to a unitary operator H0 -> H0 . In view of the identity ΛQ =
£dλ2)[p,<2]eP+Q? which holds whenever [P, Q] commutes with P and Q, we find

eiA(f)eiA(g) = e-iS(f,g)eiA(f + g)

which shows that T(ef/) = eίA(f} defines the desired projective unitary representa-
tion of the group V = M0/C on H 0 .

Let us regard M0 as V x C by identifying Fwith the subspace {/:j/= 0} of
MapfjS1 (R). Then for each integer k there is a representation Hfc of M0 which coin-
cides with HQ as a representation of F, but in which λeC acts as λk. The projective
representation of M induced from HQ can be best be described as the Hubert space
direct sum H = @H2k, on which the canonical element einθ of M of winding

feeZ

number n acts as the "identity" map H2k -» H2(k+n}. The "vacuum vector" in
H2k will be denoted by Ω2k, and #2k will be thought of as S(W).Ω2k.

To conclude this section I shall show that the representation of M we have
constructed is irreducible, and is essentially the only representation of its kind.

We shall see in Sect. 5 that Diff^1) acts (project! vely) on H intertwining with
the representation of M. But it is meanwhile easy to see that the subgroup .R of
rigid rotations of the circle does so. For R acts naturally on W, and hence on
S(W) = H 0 . To fix its action on the other H2k it is enough to see how it acts on
the vacuum vectors Ω2k . We have no choice in prescribing this, for if rα is the rota-
tion through α, and εk is the function eίkθ in M, then we must have

On the other hand there is no difficulty in seeing that this action on the Ω2k does
define an action of Ron H which intertwines with M.

Let H(q) denote the part of H where rα acts as e~iq*. H(q) is finite dimensional



Infinite Dimensional Groups 307

and vanishes when q < 0. I Its dimension is the coefficient of xq in

n>0 weZ

I shall call a representation of M symmetric if its isomorphism class does not
change when twisted by a rotation of the circle. If the intertwining operator
corresponding to the rotation rα is e~iΰίK where K is a positive operator I shall say
the representation has positive energy. (K is determined only up to the addition of
an integral of 2π, so it would be better to require the spectrum of K to be bounded
below. But the ambiguity is removed when one extends the action of jR to Diff^1)).

Proposition (3.1) The projective representation ofM on H is irreducible, symmetric,
and of positive energy. It is one of precisely two such representations of M with the
given cocycle c.

Proof. First consider the action of M0 on H0 = S(W). Clearly the vacuum vector
Ω0 is cyclic. Any possible decomposition H0 = H'Q φ H"Q must respect the grading
by the eigenspaces H0(q) = HQ n H(q\ so ΩQ must belong to either fΓ0 or Hff

Q. Thus
HQ is irreducible under M0. It follows that all Hk are irreducible under M0, and
hence that H is irreducible under M.

But the Hk are the only irreducible representations of M0 of positive energy.
To see that, it is enough (since M0 = C x V) to show that S(W) is the only irreduci-
ble representation of Voί positive energy. But any such representation would have
to contain a vector Ω0 annihilated by A(w) for we W, for A(w) lowers energy. On
the other hand S(W) is freely generated by the action of the A(f\ for/e V, subject
to this constraint; so it is the only possible representation.

Finally, the group M is a semidirect product Z x M0, and the representations
Hk and Hm of M0 are conjugate under M if and only if k = m (mod 2). So by
Mackey's theorem there are two irreducible positive-energy representations of

M which are faithful on the centre, restricting respectively to 0 H2k and 0 H2k+1

as representations of M0.

4. The action of Map^S1 SU2)

The group M = Map(S1 T) can be thought of as a subgroup of G = Map(Sx ;SC72)
by identifying T with the diagonal matrices in SU2. In this section I shall prove

Proposition (4.1) , Let H be a projective unitary representation ofM with the multi-
plier c. Suppose that H is symmetric with positive energy, and that each eigenspace
H(q) of the rotations of the circle is finite-demensional. Then the action of M on H
extends canonically to a projective unitary representation ofG.

To begin with we shall define the representation on the Lie algebra of G. In
fact we shall consider first the smaller Lie algebra Mapalg(S1 ;su2) of all algebraic
maps f:S1-+su2, i.e. those of the form

/(0)= Σ V™
k=-N

where the Lk are complex 2 x 2 matrices.
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As we shall be considering unbounded operators it is useful to introduce a
"rigging" (cf. [1] (Chap. 1, Sect. 4)) of the Hubert space H. Let H denote the direct
sum and H the direct product of the H(q). Then H a H c H, and H and H are dual
to each other.

For any αeS1 and 0 ̂  λ < 1 let us consider the element γα λ :S
l -> T of M

defined by

This should be thought of as a "blip" situated at the point α of the circle, becoming
sharper as λ -> 1. It has winding number 1, and if λ is close to 1 then γα λ(θ) is close
to 1 except in a small neighbourhood of θ = α, of length roughly 1 — /I,
where it winds once around T. In fact yα λ(θ) = eif*>λ(θ\ where /α A(0) is the angle
APA in the diagram, where P = έ\ A = λeί&, and A' = λ~ Vα.

Fig. 1

To yα AeM corresponds a unitary operator T(γα A) on H. I shall prove that as
λ -> 1 the operator (1 — ̂ 2)"1^(?α λ) tends in a certain sense to a definite but
highly singular operator BΆ.

2

We can write /β>λ = qΛ +/α+ +/α- , where

-

n>0

f~λ(θ) = - i log(l - Ae-«'-e)), and

Then/α

+

λe PF and/α^e 1̂ . Furthermore

so that

where Afιλ = A(f*λ).

2 In the language of quantum field theory Bx is, as a function of α, an "operator-valued distribution"
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The operators eu">λ and eu" λ can be expanded

«,".-.* = Σtfe^D^

Here Cn and Dn are operators independent of λ and α which map H(q) into #(g 4- n)
and H(g — n) respectively.

As H(q - n) is zero when n > q it follows that

Z-( m n

tends to a well-defined operator H -> H as A -> 1. Now T(eiq<x) maps #2k into
H2k+2, and takes Jtf2k(ήf) into H2k+2(q + 2/c + 1). On #2fc we have T(gίββ) =
β-(2k+1)/αT0, where T0 = T(̂ °). So

onH2 f c.

If φ : 51 -> C is a trigonometric polynomial, i.e. ψ(θ) = £ 0re
ίrβ, let

2π r=-N

B(φ} = ~lφ(a)B^
2π0

Then B(0) = Σφm_n+2k+ 1 T0CmDn on #2fc, and so it maps H into itself.
The adjoint operator B* of Ba is given by

βα* = lim (1 - λ*ΓlT(y-l) = Σe~i(n~m- 2k+ "T~ >CmDn
A->1

on H2k, where Cm = D* and Dn = C*. We define

so that B(φ)* = .
For a trigonometric polynomial φ the operator A(φ) can be written

Σφkak, where αfc = A(elkθ) maps Jtf(g) into //(^f + /c) and hence H into itself. Further-
more for any distribution φonS1 one has an operator A(φ) : β -> Jff.

We shall now show that the operators 4(φ), B(φ\ B*(φ) define a projective
representation of the complex Lie algebra of algebraic maps S1 -> s/2(C) on the
vector space H. More precisely, we have

Proposition (4.2) (i) \_A(φ\ B(\j/)'] = 2B(φψ)9

(ii)

(iii) \_B(φ\

(iv) [B(0), BW] = [B*(0), B*W] = 0.

These are the commutation relations for a projective representation
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of Mapalg(S'1 s/2(C)) under the correspondence

The cocycle giving the projective multiplier is

(/, ff) -*ω(/, g) = -L7 < f(θ\
2π 0

where/, g-.S1 -» s/2(C), and < , > is the invariant form (4,B)ι-> - trace (AB) on
s/2(C).

It is easy to check that in the representation the elements of Mapal(Slm,su2)
act on H by skew operators.

Proof of Proposition (4.2). (i) It suffices to show that [A(φ\Bj = 2φ(u)Ba. Now
BΛ = lim J3α

λ, where B* = (1 - λ2)~ l

 e

iA^λ\ As the commutator oϊ A(φ) and°k(/α J
is scalar we have

[A(φ\ B$ = i\A(φ), A(fatλ)-]Bλ

a = - 2S(φ, /βιχ.

But, regarded as a distribution, /α λ -+ 2πHΛ as λ -» 1, where Hα is the Heaviside
function defined by JFία(θ) = l' if θ ̂  α, and Hα(θ) = 0 if θ < α. So
S(φJΛtλ) -> 2πS(0,Hα) - - φ(α), as desired.
(ii) This is simply the adjoint of (i).
(iii) We first calculate

— (similar expression)

_ |e[^«,λ,V,λ] + i(α-^)_g[^~λ,^«,λ]-»Xα-/»)\gM«,λ-^A,λ)ei(^^^

The expression in braces is

i d , l-λ4

- 2λ2 cos (α - )

This tends to — 2πύ5'(α— jS) as A -» 1.
Furthermore as λ -> 1 we have

and the expression

ei(A:-A^ei(A--A^= X

p,q,r,s

is a well-defined operator H -+ H.
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Thus we find

lim [J3α

A, (B*)*] = - πiδ'(u - β)ei(A« ~A^e

i(A« -V>τ(ίΓ '<«-«)
λ-»l

= - 2πiδ'(α - β) = 2πδ(a - β)-^(A+ + A' - αα0),

where we have used the relation

- <5'(x)F(0) - <5(x)F'(0),

and also that τ(e-*«-0) = <,-«<«- fl«o.

But < + < - αα0 = A(2πHa - θ - θ\ so^« + A~ - αα0) = -

where δα is the delta-function at α. Hence

[Bβ, B*] - - 2πiδ'(α - /ϊ) + 4π2<5(α -

and accordingly

as we want.
(iv) The proof of this is precisely similar to that of (iii), but easier, because when we
calculate [B*, BjJ] the analogue of the expression in braces above is

which tends to zero as λ -> 1.
That completes the proof of (4.2).
Let us now write P(φ) = B(φ) + B*(φ) and Q(φ) = ί(B(φ) - B*(φ)\ so that

{iA(φ\ iP(φ\ iQ(φ)} correspond respectively to the standard generators

iφ 0\ / 0 iφ\ /O - φ
0 - iφ} [iφ O/ [φ 0

of MapίS1 ;su2). The operators { i A ( l ) 9 i P ( ΐ ) 9 i Q ( l ) } define an action of the algebra
su2 on H which preserves each finite dimensional subspace H(q). This action can
be exponentiated to give a continuous action of the group SU2 on H. We shall
derive a number of consequences of this.

Let H denote the subspace of H consisting of sums ££ , with ξ eH(q), such
that {ξq} is rapidly decreasing, i.e. such that (1 + q)n \\ ξq \\ is bounded
as q -> oo for each n. H is precisely the space of vectors ξeH such that θ\-+rθξ
is a smooth function Sl -+ H. The dual of H is the subspace H of H = Π^(^)
consisting of series J]ξ such that {ξg} has polynomial growth, i.e. such that
(1 + q)~n || ξq || is bounded as q -> oc for some n. In other words ζeH if θ^>rθξ is a
distribution on S1.

When φ = Σφke
ikθ is a smooth function on S1 the operator A(φ) = Σφkak

maps H into H, and when φ is a distribution we find A(φ) \ti -+ H. But the group
SU2 acts on H, and by conjugating with appropriate elements of it, one can trans-
form the operators P(φ) and Q(φ\ which are defined when φ is a trigonometric
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polynomial, into A(φ). It follows not only that P(φ) and Q(φ) map tί into itself but
also that they can be defined for any smooth function φonS1. That proves

Proposition (4.3) The Lie algebra of smooth maps S1 -> su2 acts projectίvely on H.
We can now complete the proof of (4.1). We have seen that the operators A(φ)

can be exponentiated to give unitary transformations of H . The same must there-
fore hold for P(φ) and Q(φ). This gives us projective unitary representations of
three subgroups of Map(Si ;SL72). The three subgroups clearly generate the whole
group. To see that they fit together to give a projective unitary representation of
Map(Sl',SU2) one need only observe that if/eMap(51;5(72) is expressed in two
different ways in terms of elements of the three subgroups, leading to two operators
Uf and U'f representing it, then U 7 1 U'f commutes with the action of the Lie
algebra Map(Sl ;sw2). As this action is irreducible Uf and U'f can differ only by a
scalar.

Generalization to other groups

Suppose that G is a compact Lie group with a maximal torus T. The discussion in
this section can be generalized to prove that in certain circumstances a projective
representation of Map(Sl T) can be extended canonically to one of Maρ(51;G).

The method seems to apply only to groups G which are simply laced. Let us
recall that G is simply laced if there is an invariant inner product on its Lie algebra
g in terms of which all the roots have the same length. (Equivalently one can say:
if the Weyl group of G acts transitively on the roots.) This happens if and only if G
is a product of circles and simple groups of types A, D and £, i.e. if it has no factors
of type, B, C, F or G. I shall also assume that G is simply connected, although
that is not essential.

Proposition (4.4) Suppose that G is simply laced and simply connected with
maximal torus T. Let H be a projective unitary representation of M = Map^1 T)
with the cocycle c described below. Suppose that H is symmetric with positive energy,
and that each eigenspace H(q) of the rotations of the circle is finite dimensional
Then the action ofM on H extends canonically to an action of Map(Sl G).

To define the cocycle c I need to recall some facts about simply laced groups.
We write T = t/2πL, where t is the Lie algebra of T, and L is a lattice in t. There

is an exact sequence

0 -» L^ MapίS1 it) -> MapGS1 T) -> L -» 0.

Let F denote the smooth function f:R->t such that

is constant; and let FL = {feF:AfeL}. Then MapfS1 T) - FL/2πL.
The roots of G are certain linear maps α :ί -> R. For each α we define /zαeί so

that u(ξ) = <λα, ξ y for all ξet. For a simply laced group the inner product <,> on
g can be normalized so that <λα, /zα> = 2 for each root α. (In the case of SUn this
amounts to defining < ξ, η > = — trace (ξη\ and in the case of S02n it corresponds
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to <ξ, ηy = — |trace(ξ?7).) It is well known that each /zα belongs to the lattice L,
and for a simply connected group the ha even generate L and are precisely the set of
all λ eL such that < λ, λ > = 2. In that case, At— >f < λ, λ > is an integer -valued quadrat-
ic form on L. Let us choose a bilinear form

σ :L x L -* Z/2 such that σ(A, A) = f < A, /I > (mod 2).

Then

σ (λ, μ) + σ(μ, λ) = (λ,λy (mod 2)

for all A, μeL.
The complexified Lie algebra gc can be decomposed

αej?

where 1? is the set of roots. The relations are

x for ξetc

(Here σ(α, β) means σ(/zα, hβ). These are not quite the usual form of the generators
and relations for 9, but are easily checked to be equivalent to them. Notice that
the choice of σ is immaterial, for if σ' is another choice then σ'(λ, μ) — σ(λ, μ) =
ζ(λ + μ) - ζ(λ) - ζ(μ) for some ζ :L -> Z/2.)

We define a blinear from s :F x F -» R by

If # is constant then s(/,0) = </4 / ? 0>, and if /is constant then s(/,0) = 0, so
s((2πL x FL) + (FL x 2πL)) c 2πZ, and we can define a cocycle c on M =

if
c(ei

Suppose now that elfι-> T(eίf) is a project! ve unitary representation of M on a
Hubert space H, associated to the cocycle c. Passing to the Lie algebra of M gives
us unbounded operators A(f) on H for each/ S1 -> ί, and we have

As before, we assume that the group of rotations of the circle acts on H with positive
energy, compatibly with the action of M .

Let us identify the roots of G with the vectors ξ of length 2 in the lattice L. To
each ξ, and θeS1, we associate a "blip" y| A = exp(ξ -/M)eM, where 0 ̂  A < 1 and
/ M :R->R is as on page 8. We find just as before 'that ( - λ2)~lT(γ% >λ) tends
to an operator E\ \H -» Jϊ as λ -> 1, where
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For a trigonometrical polynomial φ S1 -> C we define

Proposition (4.2) generalizes to

Proposition (4.5) (i) [A(f\ Bξ(φ)] = B<«/, Sφ»,
(ii)

(iii)

(iv) [B«(φ), B W] - ( - ir«''>B<+ W) if < ξ, ? > = - 1.
These are the commutation relations for a projective representation of the Lie

algebra Mapalg(5'1 ;gc) corresponding to the cocycle

(/, 0)t->ω(/, g) = ±- f < f'(θ\ g(θ)ydθ.
2π0

The only comment worth making about the proof of (4.5) is that in proving (iv)
one proceeds exactly as in the proof of (4.2) (iii), and obtains a formula for
[B0'ξ, Bφ'η~] where the expression in braces in the earlier proof in replaced by

(ί/2)i(θ-φ)
. .
*

l-2λ2cos(θ-φ) + λ4'

This tends to ( - \)σ(ξ'η}2πδ(θ - φ) as λ -> 1, which gives the formula we want.
Extending the representation of the Lie algebra Mapalg(<S1 ;gc) to one of the

group Map^1 G) is done just as when G = SU2, and presents nothing new.
It is worth considering how many representations of Γ = Map(Sl G) — or,

more precisely, of its central extension f—we obtain by this method. They cor-
respond to representations of M which are symmetric and of positive energy.
These are constructed and classified exactly as in Sect. 3. M is a semidirect product
L x M0, where M0 is the identity component. As before M0 = T x V, where
7=Map(S1;ί)/(constants) has a nondegenerate skew form induced by s. The
arguments of Sect. 3. show that M0 has a unique irreducible representation H of
the appropriate kind for each character χ of T, in which T, which is in the centre
of M0, acts scalarly by χ. The character group of T is L* = Hom(L Z). Conjugation
by λeL transforms Hχ to Hχ + λ, where L is embedded in L* by the inner product
< , >. Thus we obtain an irreducible representation φ Hχ+λ of M for each coset

λeL

χ -f L of L in L*. Now L*/L is precisely the centre Z of G. The common centre of
M and Γ is Z x T, and the representations we have obtained are classified by the
action of Z. (By using the inner product we have identified Z = L*/L with its
character group.)

These conclusions agree with Kac's theory of the representation of Maρ(Sx G),
because L*/L is precisely the set of orbits of the lattice of weights L* under the
affine Weyl group of G.
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5. The Metaplectic Representation

We have seen that the group Diff^S1) is a group of automorphisms of M. Our next
task is to show that it acts projectively by unitary transformations on H, intertwin-
ing with the action of M. As the representation of M on H is irreducible this would
follow from Schur's Lemma if one knew that the isomorphism class of the repre-
sentation of M on H did not change when twisted by a diffeomorphism: but un-
fortunately that is not clear, as it is not obvious that the property of having positive
energy is preserved.

The action of Diff^1) on M leaves fixed the constants C a M, so Diff^S1)
ought to act independently in each eigenspace H2k of C. We shall show that it
acts on H0 = S(W). It is then automatic that it acts on all of H because H is the
representation of M induced from the representation H0 of M0, and M/M0^
(Diffβ1) x MMDiffCS1) x M0.)

DiffίS1) acts on V= Map^1;^)/^ preserving the skew form S, so it can be
thought of as a subgroup of the symplectic group Sp(V). If Fwere finite-dimensional
then a double converging of Sp(V) would act, by the metaplectic representation,
on S(W). In the infinite-dimensional case one must replace Sp(V) by a subgroup
Sp0(V) consisting of maps which are not too far from preserving the polarization
j/c - W® W. The definition, which is due to Shale [10], is as follows.

Let us suppose that we have a real vector space Fwith a skew form S : V x F-> R
and a positive polarization Fc = W® W. As usual we regard VFas a pre-Hilbert-
space with < w t , w2 > = 2ϊ'5'(vv1, w2). With respect to the decomposition
Fc = W® Wan endomorphism A of F can be expressed as a matrix

We find that A belongs to Sp(V) if and only if
(i) άFa-btb=l,and
(ii) ά*b is symmetric.

(These equations should be thought of as shorthand: they do not really presuppose
the existence of the transposed operators.)

Definition (5.1) SpQ(V) is the subset of Sp(V) consisting of elements A as above
such that b:W-^ Wis a Hubert-Schmidt operator.

^Ήilbert-Schmidt" means that Σ| | frέ f e | |
2 converges for any orthonormal

family {εfe} in W.)
If A<=Sp0(V) it follows from (i) above that a :W^» Wis a bounded operator,

and hence that Sp0(V) is a subgroup of Sp(V\ for the Hubert-Schmidt operators
are closed under composition with bounded operators.

Proposition (5.2) (Shale) Sp0(V) acts projectively by unitary transformations
on S(W).

Before proving this I shall show that Sp0(V) does contain DiffίS1), using a
simple argument pointed out to me by Kazhdan.

Proposition (5.3) Diffβ1) c Sp0(V).

Proof. Let us write {εj for the standard basis {einθ}n^ of Fc - MapίS1 ;C)/C.
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If φeDiff^1) we write {λnm} for its matrix elements with respect to this basis,
i.e. φ*(εw) = Σλnm

εm We have to show that the matrix {λn _m}M m> 0 defines a Hubert
-Schmidt operator. Clearly it is enough to show that {λn _m} is rapidly decreasing,
in the sense that for each integer k we have |/ln _ w | ^ C(n + m}~k for some constant
C (depending on k).

Now

λn m = ±-2\einφ(θ}+imθdθ.w '~m 2 π j

(Here φ is regarded as a map φ : R -> 1R such that φ(θ 4- 2π) = φ(&) + 2π.) For any
ί e [0, 1] the function φt defined by φt(θ) = tφ(θ) + (1 - t)θ is also a diffeomorphism,
and when t = n/(n -f m) we have

ι 2π

λ =— f e

ί(n+m}φt(θ)dθΠ'~m

where ι/^ is the inverse function to φr So

λnf_m = !-.(„ + mΓfc j
2π 0

on integrating by parts fc times, and

as we want.
To construct the metaplectic representation of Sp0(V) I shall introduce an

infinite-dimensional analogue of the Siegel bounded complex domain Sp2n(R)/Un.
Let us recall that Sp2n(R)/Un can be realized as the space of complex symmetric
n x n matrices Z such that ZZ < 1.

Let X denote the space of symmetric Hubert -Schmidt operators Z : W ̂  W
such that ZZ < 1, i.e. those such that

(i) S(w! LZw2) = S(w2 , Zwj ), and
(ii) 1 — ZZ is positive-definite.

The group Sp0(V) acts transitively on X by the formula

the proof is the same as in the finite-dimensional case. The stabiliser of OeX is
the unitary group V(W\ so X ^ Sp0(V)/U(W).

In the finite-dimensional case Sp2n(R)/Un can be identified with the set of all
positive polarizations of V. In our case X is to the thought of as the set of positive
polarizations of V which are not too far away from W. (One gets a polarization
Vc = U 0 U from Z : W-* Wby taking U to be the graph of Z.)

The symmetric Hubert -Schmidt operators Z:W-^> W can be regarded as
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elements of S2(W) by identifying Z with £X'Zek, where {εk} is an orthonormal
basis for W. For each ZeX we consider the element e(1/2)z of S(W)

Lemma (5.4) <e(1/2)Zl, e

(1/2)Z2> - det(l - ZtZ2)-1/2

(Here one chooses the branch of the square root which is + 1 when Z^Z2 = 0.
Notice also that the determinant is defined, because ^Z^ being the product of
two Hubert -Schmidt operators, is of trace class.)

It is enough, by continuity, to prove (5.4) when Z1 and Z2 have finite rank, in
which case I shall leave it as an exercise for the reader.

In view of (5.4) the map Zπ->εz = det(l - ZZ)1/4e(1/2)Z is an embedding of the
domain X into the space of unit vectors in S(W\ and

<εZ ι,εZ 2> = det(l - ^ZJ^detU -Z2Z2)
1/4det(l - Z^Γ1'2. ... (*)

Now let Fx denote the free vector space generated by the symbols { εz }ZeX , and
let H x be the Hubert space obtained by completing Fx using the inner product
defined by the formula (*). (This inner product on Fx is positive because it is
induced from that of S(W).) Clearly Hx is a closed subspace of S(W).

Proposition (5.5) Hx = Seven(W)
I shall postpone the proof of this for the moment.
For each AeSp0(V) one can define a unitary operator TA :HX -> Hx by

where μ : C x -> T is radial projection. To see that TA is well-defined one must check
that

which, however, is a simple calculation. It is also straightforward to check that

where c(A±, A2) = det(at ̂ ^ x)~1/2. Here

A 'a<
Ai =

for i=l ,2,3, and A3 = AiA2. The determinant is well-defined because
a~^a^a~l = 1 + α~1ί?152α2 Ms of the form 1 + (trace class), and \a~lbji2a~ *|| < 1.

The cocycle c evidently measures the extent by which A f—>α fails to be a homo-
morphism, i.e. by which A fails to preserve the polarization V^=W ®W.l shall
return to this point in Sect. 7.

To understand what is going on in the preceding formulae one should adopt
the following point of view. There is a natural holomorphic line bundle L on X =
(polarizations of V] whose fibre at U (where Fc = U 0 £7) is det((7)~1/2. We have

chosen a trivialization of L by identifying U with W by U c Fc — >̂ W. In the
finite dimensional case the action of Sp2π(lR) on X is covered by an action of a
double covering Sp2n(U) on L, which in terms of our trivialization is given by

A '(Z, λ) = (A Z9μ det(5Z + ά)1/2 - A).
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An element of Sp2n(U) is an element of Sp2n(R) together with a choice of a square
root of det (a). But in our case we cannot define det (a\ let alone its square root;
so we are forced to make an extension SpQ(V) oϊSp0(V) by T act on L by

A (Z9λ) = (A Z,μdet(l+ά-lEZ)ll2-λ).

Instead of embedding X in S(W) above it would have been more natural to embed
the line bundle L linearly in S(W\ The action of SpQ(V) is then extended by linearity
to Seven(PF).

We have now made Sp0(V) act projectively on Seven(W). We can extended the
action to Sodd(W) by the following device. Consider SpQ(V® R2), where 1R2 has
the obvious skew form. This contains Sp0(V) x T, where T = S02 c 5p([R2).
There is a polarization (V 0 (R2)c = (W ® C) © (W ® C) where T acts in the natural
way on C. Then Sp0(V) x T acts on

Seven(C) 0 Sodd(»0&Sodd(C),

and SpQ(V) acts in each isotypical component of the action of T. The action on
Soάd(W) ®Sk(C) ̂  Sodd(Wl for any odd k, gives us what we want.

It remains to give the proof of (5.5).
Clearly Hx contains etw™ for each we FT and ίeR. By differentiating this re-

peatedly with respect to ί at ί = 0 we find, because Hx is a closed subspace, that
it contains w2/c for each L Then from the identity

where σ runs through the subsets of (1,2,..., m}, and |σ| denotes the number of
elements in σ, we find that Hx contains Sm(W) whenever m is even.

A possible disadvantage of the method adopted here for constructing the meta-
plectic representation is that it does not make manifest that the action of SpQ(V)
intertwines correctly with the unbounded operators A(v) for vε V, and hence with
the group M of Sect. 2. The rest of this section is devoted to establishing that it
does so.

We begin by considering the action of the Lie algebra sp0(F) of Sp0(V) on
S(W). An element of sp0(V] is a matrix

where α is bounded and skew-Hermitian and β is symmetric and Hubert-Schmidt.
The complexification sp^(V) consists of operators

\ ' /

where α is an arbitrary bounded operator and β and y are symmetric Hubert-
Schmidt operators.

Proposition (5.6) The element

α β
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of $PQ(V) acts on S(W) as Dα + ^Mβ + |M*, where Da is the derivation of S(W)
induced by α : W-+ W, Mβ is multiplication by βeS2(W\ and M* is the adjoint ofMy.

Proof. One can consider separately elements of the forms

0 \ /O β\ /O

,0 -α</ ^0 0/and (y

For the first kind, which preserve the polarization Vc = W 0 W, the result is clear.
By direct calculation one finds that the effect of

on e(l/2}ZeS(W) is multiplication by ±(β - ZβZ - tr(βZ)). It follows that the action
of

0 β

0 0

on e(1/2)Z, and hence on all of S(W\ is multiplication by |β. Finally, in any unitary
representation

/O 0s

\y
has to be represented by the adjoint of the representative of

'0

V0 Oy

Returning now to the intertwining of sp0(V) with the operators A(v) for VE V,
what we want to show is that

for XESPQ(V) and t e Vc. Because A(v) = A(υ)* it is enough to consider [X, ^4(w)]
for we W. When X is of the form

α 0

N0 -of

the result is obvious. When

0 β

0 0

then Xw = 0; but on the left we have two multiplication operators, so the com-
mutator vanishes too. When

then Xw = ywe W, and we have to show that [X, A(w)~\ = A(yw)*. By adjunction
this is equivalent to [^4(w)*, X* ] = A(γw). Now X* is multiplication by |y and
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yl(w)* is a derivation. So the commutator is multiplication by ^A(w)*y, which
is precisely vv. That completes the proof.

Finally we come to the group Sp0(V). It is of course not true that the elements
of this group can be obtained by exponentiating bounded operators in the Lie
algebra sp0(V). On the other hand Sp0(V) has a normal subgroup Spcpt(V) consist-
ing of elements which differ from the identity by a compact operator. The expo-
nentials of bounded operators clearly generate Sp t(V), so for this group the desired
intertwining with the A(v) follows from what we have proved. Sp0(V) also contains
the unitary group U(W) of W, the transformations which preserve the polarization
VC=W ®W. For these the intertwining relation is obvious. But that is all we need,
in view of

Proposition (5.7) SpQ(V) = Spcpt(V) U(W).

Proof. We have already remarked that SpQ(V)/lJ(W) is the space of symmetric
Hubert -Schmidt operators W-+W9 so it is enough to see that Spcpt(V) acts
transitively on X. But that is obvious.

6. The Action of Diff (S1) on H

In the last section we showed that Diff^1) acts projectively on H, intertwining
with the action of MaptS1 ;S172). It follows that the product DiffltS1) x SU2

acts on H. In this section I shall discuss the decomposition of H under this action.
I shall write A, B, B* for the operators A(\\ B(\\ £(!)* of Sect. 4. They form a

basis for the complexification of the Lie algebra of SU2 , and satisfy

Recall that H = φ H2k, where H2k is the 2/c-eigenspace of A Thus B(H2k) c H

From the elementary representation theory of SU2 we know that we can write

H= 0 P

where Dg is the irreducible representation of SU2 of dimension 2g + 1, and
Pg2 ={ξeί/2g :Bξ = 0} is a representation of DiffίS1). Furthermore the operator
β* '.H2k+2 -* H2k is injective when fe ̂  0, and

It follows that H2k ^ © Pg2 as a representation of DiffίS1).

Each space H2k is graded by the action of the group R of rotations of
51 :H2k = ® ̂ ikώ Let π2fcW = Σdim//2k(<3)'ίg be the Poincare series of H2k.

q^Q
We know that π2k(ί) = tk2πQ(t\ and that π0 = π is the partition function:
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From (*) we find

Proposition (6.1) The Poincare series ofPq2 is tq\\ - t2q+ l)π(t).

Kac has proved the conjecture of Goldstone that the representations Pq2 of Diff^1)
are irreducible. Here I shall prove the irreducibility only for P0 . (But cf. Prop. (6.7).)
Before doing so it seems appropriate to make some elementary general remarks
about the representation theory of the Lie algebra of DiffίS1), i.e. the Lie algebra
i^ = VectOS1) of smooth vector fields on the circle.

The complexification τΓc has an obvious basis {^fc}fceZ, where vk =
 ie~lkθ-jή'^

and the relations are

Suppose that we have a projective representation of if. If Vk is the operator
representing vk then

where c '.if ^ x if ^ -» C is a cocycle of the Lie algebra. It is easy to calculate c for
our representation of if on H, but it is worth noticing that there are few possi-
bilities, in view of the following well-known proposition [2].

Proposition (6.2) H2(i^;C) = C, with generator c, where

c(ξ, η) = ̂ ?£ W'(0) + nWW*

so that

CK> »») = T2™(™2 ~ 1) tf k + m = °
- 0 if k + m £ 0.

Proof. If c \if x if -> C represents an element of #2(f C) we can assume it is
invariant under the group R of rotations of the circle, for averaging c over a compact
group of inner automorphisms of if does not change its cohomology class. But if c
is j^-in variant then c(v k, vm) — 0 when k + m ̂  0, and we have only to determine
ck = c(v_k, v k). From the cocycle condition

we find (taking ξ = vk,η = vm,ζ = v_k_m, and noticing that c_n = - cn)

(k - m)ck+m = (k + 2m)ck - (2k + m)cm.

The most general solution of this is ck — λk3 + μk, with A, μeC. But c can be altered
by adding to it a coboundary, i.e. a cocycle of the form (ξ, f?) !->/([£, η]\ where
f\if -> C is an JR-in variant linear map. The only possible / is f(vk} = vδko, for
some veC and this changes ck by 2vk. The value of μ is therefore irrelevant. If we
normalize c by requiring it to vanish on the Lie algebra of PSL2(R), which is
spanned by {v-l , ι>0 , ̂ _ 1 } then ck = λk(k2 — 1), and we have the result of (6.2).

The cocycle which arises in the representation of Diff^1) on H will be discussed
further in Sect 7. It is precisely the cocycle c given in Proposition (6.2), correspond-
ing to λ = ~.



322 G. Segal

Suppose now that we have a projective unitary representation of Diff^1) on a
Hubert space K, corresponding to the cocycle we have been considering. Then
i^c acts on K by the unbounded operators { Vk }. The group R of rotations has the
generator iK 0, so e2πiv° = 1, and F0 is self-adjoint with integral spectrum. Let
K = ®K(q\ where K(q) is the g-eigenspace of F0. Then Vk K(q) c K(q + fc). Ele-
ments of ̂  which are annihilated by Vk for all k < 0 will be called lowest weight
vectors. If the spectrum of F0 is bounded below by qQ then K(q0) consists of lowest
weight vectors. Using the relations (ί) we see that if ΩeK(q0) then the cyclic sub-
representations KΩ of Dif^S1) generated by Ω is the closed subspace of K spanned
by the vectors of the form Fkι Vk2 ... Vkr Ω, where kl ^ k2 ^ ... ̂  /cr > 0. Because
^ίifao) = C ' β i1; follows that if K is irreducible then K(q0) = C Ω. In fact K is irre-
ducible if and only if it contains no lowest weight vectors other than multiples of Ω.
For on the one hand any other lowest weight vector Ω' would be orthogonal to KΩ,
and on the other, if K were reducible each piece would contain at least one lowest
vector. This means that to decompose H under Diffβ1) we have to find all the
lowest weight vectors in it. This was done, at least conjecturally, by Gold-
stone, and his conclusions have been verified by Kac [7].

The lowest weight vectors we have found so far (and in fact there are no others)
form the SU2-in variant subspace generated by the vacuum vectors {Ω2k}keZ. In
other words, there is a sequence of lowest weight vectors Ω(^ in H2k, where Ω^
has weight (k + m)2. (The weight is the eigenvalue of F0.) Up to a scalar multiple
Ω^ is (B*)mΩ2k + 2m if k ̂ 0, and BmΩ2k_2m if k ^0. Goldstone has found elegant
explicit expressions for the vectors Ω .̂ To explain them let us recall from Sect. 4
the definition of the operators ak = A(eίkθ) on H. The ak for k ^ 1 commute, and
H2k is a completion of the free cyclic module C [al , α2 , . . . ] Ω2k for the polynomial
algebra C[αt , α2 ,...]. We also introduced operators cv , c2 , . . . related to α1 , α2 , . . .
by Newton's formulae

n>0 n>0

i.e. c = α ,

6c3 = a\ + 3αtα2 + 2α3 , etc.

(The signs, however, are not the same as in the usual version.) Then C[al , α2 ,...]
C[cx , c2 , . . . ] and Goldstone's formulae are

Proposition (6.4) // k ̂  0 ίferc ί2(^2k =/2

(Γ)β±2k' WP ίo α -scα/αr multiplier , w/zere±2k

0 - ,*
2k

f (m) _
J2k ~

•'• C 2 f c + 2 m - l .

Proof. We know Ω?2k - BmΩ_2k_ 2m. In the notation of Sect. 4 this is

(2πΓmS...SBΘίB92...BemΩ_2k_2mdθl...dθm.
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Now BΘ = e

ίAθ+eίA° T(eiqθ). Because

323

— Π _ e

and

n pi<l
β

we find that the integrand in the above expression is

where

1,...,0J= Π (*"'-*"')•

Now let us write zk = eiθk, and observe that A = A(θi,..., 0 J is the Vandermonde
determinant

1 z, z2 ... z«-

1 z, z? ... z™~

Accordingly zl2 is obtained by summing

SΪ2Π ί fMz m ~ 1 7 m ~ 2 Z° — 1 Z Z2 Zm~
Sife11 \J ) n Z f ι Z/2 *• / m ~ /I /I '" /I

7'" A 7-'"
Vm Z/m

over all permutations /= (/x ,/2,... ,/J of (1, 2,..., m). So, because the integrand
is symmetric in (θi,..., θm) we have

omQ _ ^10^-^ f f ftv 7 vίΛθ+ι pίAθ+mΩ ήft dQ
D aύ _ ~, _ ~ III .\Z*il) J ... J J\/j < , • • > , ^m)*Z 1 . . . C *>lώώ _ 2k \ ' ' ' m *

where

_2/c + m
^1
^2/c + m+ 1

-2k+2m-

This yield the desired formula, because

L4+

The case of Ω(

2^
} is precisely similar.

The last result to be proved in this section is

Proposition (6.5) The representation P0 is irreducible.
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Proof. It is enough to show that P0 is cyclic with respect to its vacuum vector Ω0 ,
for we have seen that if P0 contains another lowest weight vector Ωf then Ωf is
perpendicular to the cyclic representation generated by Ώ0 .

Recall from Sect. 5 that an element T:V~> V of the complexified Lie algebra
of Sp0(V) can be written

α

with respect to the decomposition Vc = W φ W. Here α is an endomorphism of
W, and β and y are Hubert -Schmidt operators W -> W which can be regarded as
elements of S2(W). The action of T on S(W) is \Mβ + Dα - fM* where M^ is
multiplication by βes2(W\ and Dα is the derivation of S(W) induced by α : W-> W.
If Tis the action of the vector field vk, with fc > 0, then it is easy to check that the

I*"1

corresponding /?eS2(PF) is βk = - £ <%_; in terms of the basis {αm = eimθ} of W.
M = l

Now the Poincare series of P0 is f] (1 - ίfc) ~ 1. So for dimensional reasons it will
k > l

certainly be cyclic if the vectors V k V k 2 ... VkΩQ in #0 = S(W) are all linearly

independent when /q ^ fc2 Ξ> ... ^ /cr > 1. But

FkιF fc2 ... Ffcrί20 = βkβk2 ... )8feri20 + (terms of lower degree).

These vectors will be linearly independent if the elements /? 2,/? 3,/J 4, ... of the
polynomial algebra S(W) are algebraically independent. But that is obvious, for
if βk were algebraic cover C[β2, ..., βk_^ then it would be algebraic over
C[α1? - . . ,<%_ 2 ]> and so a f c _ x would be algebraic over C[α1? ...,α f c_ 2], which is
absurd.

To conclude this section I should remark that it is easy to see that for each
λeU the Lie algebra i^ has a unique irreducible projective representation Pλ

(with the correct cocycle) generated by a lowest weight vector ωλ such that
V0ωλ = λωλ. If this is to come from the extension of Diff^1) we are considering
then λ must be an integer. If the representation is to be unitary then λ must not be
negative, for otherwise

< J>A> t>A> = <^A> V-^ωλy = 2<ωA, VQωλy = 2λ<ωA, ωA>

would be negative. (But of course if λ Ξ> 0 then P^ is a representation of negative
energy with a highest weight - λ.) If λ is not a square Kac has shown that the
Poincare series of Pλ is χλ(t) = tλn(t). But when λ - q2 the representation Pλ sud-
denly becomes smaller, and its Poincare series is

Iq2(t) = tq\\-t2cι+l}π(t\

Notice that tq2π(t) = X χr2(ί).

r^q

The Decomposition of the Representation of Map^1 G)for other G
Let us now turn to the more general situation of the last part of Sect. 4. We con-
sidered there some irreducible projective representations of M = Map^S1 :T),
where T was a torus. The representations are of the form

AeX
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where Hλ is an irreducible representation of the identity component M0 of M on
which Γc M acts by the character λ. The set X of characters is a coset of L = π^Γ)
inL* = Hom(T;T).

The group Diffiβ1) is a group of automorphisms of the central extension M of
M : it does not preserve the cocycle c defining M, but acts by

φ*(z, e ί f ) = ze-ww<*f.fuκ°»-f(*»9 φ*(eV).

This means that Diff^S1) acts projectively on H, as before, preserving each subspace
H λ . To find the cocycle which arises it is enough to consider H0 , which is an irredu-
cible representation of the vector space V= M0/T. This vector space, with its skew
form, is simply the product of d copies of F(1) = Maρ(S1 ;R)/R, where d is the di-
mension of T. H0 is therefore the tensor product of d copies of H(^\ the irreducible
representation of F(1). This gives us

Proposition (6.6) Diffi^1) acts projectively with the cocycle d.c on the faithful ir-
reducible representations of M^p(S1 Γ), where d = dim(T), and c is cocycle of
Proposition (6.2).

By considering the action of the Lie algebra i^ on H0 we know a priori that
under DiffίS1) the decomposition of H0 must be of the form

where Pd

q is an irreducible representation of 'f with the cocycle d.c generated by a
lowest weight vector with positive integral lowest weight q. (It is clear from general
considerations that up to isomorphism there can be only one such representation
Pq.) The case d > 1 is slightly easier than the one we have already studied, and we
have

Proposition (6.7) The Poincare series ofPd

q is tqπ(t) ifq > 0, and is (1 - t)π(t) ifq = 0.
Proof. When q = 0 the proof is essentially the same as that of (6.5). Pd

q can be
identified with the cyclic f^-module generated by the vacuum vector in H0 = S(W).
Choose an orthonormal basis {ξ l , . . . , ξd } of the Lie algebra t of T. This gives one a
basis {aj

M = ξjeimθ} (j = 1, . . . ,d m = 1, 2, 3, . . .) of W. The elements βk of (6.5) are
replaced by

*=1 7=1

and β(d\ β(3\ ... are algebraically independent as before.
To treat Pd

a for q > 0 we consider the action of i^ on H, . The vacuum vector
" 1

Ωλ oϊHλ is obtained from Ω0 by the action of e eM, so the argument we have used
earlier when d = 1 shows that the group of rotations # acts on Ωλ with weight
\ <λ, λ>. We choose λ so that ^</l, A > = q and let Pd

q be the 1^-module generated
by Ωλ. We can calculate the action Vk of vkε Von Hλ in terms of its action Vk on
H0 : when HQ and Hλ are both identified with S(W) we have

when k ± 0, where {λj} are the components of λ with respect to the basis of t. In
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other words, when k > 0 the action of Vk on Sr(W) is multiplication by β(d} =
β(k} + ΣV* modul° Sr(W). The elements βf for fc = 1, 2, 3, ... are algebraically
independent, and that establishes our result.

In view of (6.7) we can write down at once the decomposition of H0 under
DiffitS1) : the result is that Pd

q occurs with multiplicity mq equal to the coefficient
of tqmt + π(ty-1.

It is more interesting, however, to decompose the space H = 0 Hλ under the
λeL

group G x DiffitS1). To do so we write down the character of H as a representation
Tx .R.It is

λeL

where t is now regarded as the "identity" character R -> T. We should like to write
this in the form £ fμ(t)χμ, where P is the set of dominant weights in L, and χμ is

μeP

the character of the irreducible representation of G associated to μeP. The follow-
ing result was shown to me by Macdonald.

Proposition (6.8) The character of H as a representation of G x R ίs
where

α>0

(Here the product is over the positive roots of G, and p is half the sum of the positive
roots.)

Proof. By the Weyl character formula/μ(ί) is the coefficient of eί(μ+p} in A F, where
Δ = £ (- l)Vwp is the Weyl denominator, W being the Weyl group of G. This

weW

gives
τ (- 1)

But we know from the Weyl denominator identity that

V ( _ nw^wp.O _ ΓT Ml/lXα.ξ) _

wePF α>0

for any ^eL; and applying that when ξ= — μ — p gives us the desired formula.
The character of H can also be calculated in a completely different way by

using the generalized Weyl character formula of Kac[6]. I shall not give the details
here, but the result is

λeL
oo

where Π = n(t)d f] f](l - ίVα), α runs over all the roots of G, and n is the Coxeter
k = l α

number of G. Equating this to our earlier expression gives the interesting identity

FT ΊΓTQ _ ^^fαx

fc = 1 α

which has also been found by Kac from another point of view ( [6](3.38)).

AeL ΛeL fc = 1 α
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7. Group Extensions

(a) Map^ G)
In Sect. 4 we constructed some projective unitary representations of the group
Γ = MaptS1 G), where G was a compact, simply connected, simply laced Lie
group, but we did not describe explicitly the central extension T -> f -» Γ involved.
We shall now discuss it further.

The first point to notice is that as a topological space f is not the product of
Γ and T, so it cannot be described by a continuous cocycle Γ x Γ -> T as in Sect. 2.
(This is closely related to the fact that Γ does not come from an extension of Γ by R.
It is easy to see that if an extension of a group Γ by T lifts toIR then it is topologically
a product. The converse is true if Γ is connected, but not otherwise : the extension
M -> M of Sect. 2 is topologically a product but does not lift to IKL)

The topological type of the circle bundle Γ -> Γ can be determined from the
extension of Lie algebras

R -> Lie(f) -> Lie(Γ)

in view of the following simple result, which I think is well-known.

Proposition (7.1) If a group extension J -> Γ -> Γ corresponds to the Lie algebra

cohomology class ωe//2(Lie(Γ); (R), then the image of— under the map
2π

is the first Chern class of the circle-bundle Γ -» Γ(with real coefficients).
The map in (7.1) is the one which interprets a skew multilinear form on Lie (Γ)

as a left-invariant differential form on the manifold Γ. (The 2π comes in because we
are identifying T with R/2πZ.)

Let us recall from Sect. 4 that in our case the extension of Lie algebras is defined
by the cocycle ω, where

and < , > is the invariant inner product on g = Lie(G) described in Sect. 4.
For any compact Lie group G we can define elements λ in H 2(Γ Z), and hence

natural circle-bundles on Γ, by the transgression of elements αeH3(G;Z) : one pulls
α back to ε*(α)eH3(S1 x Γ) by the evaluation map ε S1 x Γ -> G, and integrates
overS1 to get Λe#2(Γ).

With real coefficients α can be represented by a left-invariant form, again de-
noted α, given by

where ξ,η,ζe Q are thought of as tangent vectors to G at some point, and < , > is
an invariant inner product on g. We have

Proposition (7.2) //G is simply connected then α is an integral class if and only if
<λ, Λ,>e2Z/or each co-root λ in the Lie algebra of the maximal torus ofG.
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Let us recall that the definition of co-roots does not involve choosing an inner
product on g: in particular, if Aα is the co-root associated to a root α then α(Aα) = 2.
The condition of (7.2) is satisfied for the inner product of Sect. 4.

Now suppose φ, ψ \8l -» g are two tangent vectors to Γ at/ S1 -> G. If 0, ̂

and— are regarded as tangent vectors to S1 x Γ at (θ, /) then

and accordingly λ is given at/eΓ by

V^ ^) = Λ ίoπ 0

This is not an invariant differential form on Γ, but it is cohomologous to — , where
2π

ω is the invariant form defined above. In fact λ = — -f dβ, where
2π

jβ/Φ) = Λ f < Φ(θ\/(θr ιf(θ) > dβ.oπ 0

If G is connected and simply connected then so is Γ, because π2(G) = 0. In
that case #2(Γ;Z) -> H2(Γ;R) is injective, and we have

Proposition (7.3) If Ύ -+ Γ -> Γ is a group extension corresponding to the Lie
algebra cocycle ω then topologically Γ is the circle-bundle on Γ with Chern class

We have still not proved the existence of any such extension Γ, except by the
indirect method of Sect. 4. One way to remedy this is by analogy with the discus-
sion in Sect. 5.

Let M be a finite dimensional real representation of G with an inner product
< , >, and let Fdenote the vector space of smooth maps S1 -> M modulo constants.
V has an inner product given by

The group Γ acts orthogonally on V. As in Sect. 5 we decompose the complexi-
fication of Fas Fc = W® W, where PFis the holomorphic maps of the unit disk
into M (modulo constants). If /is an orthogonal transformation of Fwe write it as
a matrix

a(f] b(f)

b(f) «(

with respect to the decomposition Vc = W φ W.
In the symplectic case the operator α(/): W^> FT was necessarily invertible.

This is no longer true in the present situation, but nevertheless for any/eΓ it is
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easy to see that a(f) is a Fredholm operator, and b(f) is Hubert -Schmidt. It
follows that /h-»α(/) defines a homomorphism Γ -» Au^FPO/Aut^PF), where
Aut^J/F) are the automorphisms of Wof the form (identity) + (operator of trace
class). Thus the extension

pulls back to define an extension of Γ by Aut^W). But on Aut^W) we have the
determinant, a homomorphism

and this gives us an extension Γ of Γ by C x.

Proposition (7.4) The extension C x -»Γ->Γ corresponds to the Lie algebra
cocycle ώ defined by

j 2π

2π 0

where < , >M is the trace-form ofM(i.e. < ξ, η^M = trace(£ Mη M), where ξM is the action
ofξe$onM}.

Proof. Let the derivative of/V-»α(/) at the identity be denoted by φt-+A(φ). We
have to show that

trace { [A(φ)9 A(ψ)] - A([φ9 f|)} = - 4iώ(φ9 ψ) ...(*)

for φ, i / / : S1 -> g.
We can write

Lie(Γ)=

where Lfc = g zfe and Wk = Mc zk. Obviously [Lfc,Lm] c L f e + w, and if
then ^4(φ) PFk c Wk+m, where PFn = 0 if n ^ 0. It is enough to prove (*) for homo-
geneous elements φeLk and ψεLm. I f / c + m ^ O then the left-hand side is zero
because the matrices of \_A(φ), A(ψ)] and A([_φ,\l/~\) have no diagonal entries;
and ώ(φ, ψ) = 0 also. If φ = ξzkεLk with ξeg and k ̂  0, and ψ = ηz~keL_k then
[^4(φ), AW\ and ^4([φ, ̂ ]) both preserve each subspace Wm and coincide on Wm

iϊm> k.lΐm^k then

so the trace on Wm is < ξ, η >M . The trace on all of W is accordingly

in accordance with (*).
The extension Γ which we want can now be constructed. Choose a real ortho-

gonal representation M of G such that < ξ, η >M = n< ξ, η >, where n is an integer.
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Then f is an rc-fold covering of Γ : in fact πi(Γ) = Z/n9 and f is the universal covering
of f . In the case of simple simply laced groups one can take for M the adjoint
representation of G : then n is the Coxeter number of G.

Remark. The Infinite Dimensional Spin Group
One could carry the preceding discussion further in precise analogy with Sect. 5.
One can define a subgroup 00(F) of the orthogonal group O(V\ and a central
extension

T -> Spinc

0(F) -> 00(F).

Spiri0(F) acts unitarily on the completion of the exterior algebra Λ(W) : this is the
"spin" representation [11], analogous to the metaplectic representation oΐSpQ(V).
It can be constructed by starting with a space X of polarizations of Fsuch that
X = 00(V)/U(W), defining a holomorphic line bundle Lon X whose fibre at U
(where Fc = U 0 17) is det (l/)1/2, observing that Spin^F) acts on L, and associat-
ing to each fibre of L a ray in Λ(W). The only significant difference between
this and the symplectic case is that L is now not a trivial bundle. One might have
guessed that π0(00(F)) = Z because any /e00(F) defines a Fredholm operator
#(/)• W-+ W which has an index in Z; but it turns out that a(f) must have index
zero, because w >— >fc(/)vv is an isomorphism ker a(f) -> ker a(f)* and π0(00(F)) =
Z/2, with the components distinguished by the parity of the dimension of ker a(f\

(b) DifϊίS1)
We have already seen how a central extension of DiffΐS1) by T arises from the
embedding Diff^S1) ^Sp0(V\ where V= Mapβ1 R)/(constants). This extension
is topologically a product, so it can be defined by a cocycle ω : DiffίS1) x Diff^S1)
-> T. Indeed we know that

ω(φ, ψ) = μ det(α(0Γ la(φιl/)a(\l/Γ T 1/2,

where a(φ): W-* W is the component of φ: F-> V in the decomposition
Fc = W © W, and μ :CX -> T is the projection. We should like, however, to have
a more explicit formula for the cocycle.

Such a formula has been found by Bott. If φ :Sl -> S1 is a diffeomorphism
(where S1 is regarded as R/2πZ) define φ : T - > T (where T = {zeC: |z | = l})
by φ(βίθ) = ̂ ίφ(θ). Then Bott's cocycle ώ is given by

where

w(φ,ιA)-Re J logψ' dlogχ',
s1

and χ - ψφ. (Here φ' (eΐθ) is to be interpreted as φ'(θ)ei(φ(Θ}~Θ\)
I shall show that the cocycles ω and ώ are cohomologous, i.e. that they define

the same extension of Dif^S1) by T. I do not know whether they are actually
equal : it seems to me an interesting question.

Before comparing ω and ώ we again need some general remarks. A group
extension T -» G -> G of the kind we are considering is a smooth principal T-
bundle on the manifold G. If one chooses a vector space splitting of the extension
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of Lie algebras R -» g -> g then the elements of g define left-invariant vector
fields on G, and hence a left-invariant connection in the T-bundle. The curvature
of this connection is a left-invariant 2-form α on G. It is easy to check that α
represents the Lie algebra cohomology class of the extension Q: it is the represent-
ative defined by the chosen splitting g = g 0 IRL

The class αeH2(g;(R) nearly determines the extension G. To see that, let us
recall that the extensions of G by T form an abelian group Ext(G T). One way to
obtain an extension is to take a homomorphism θ :πt(G) -> T and to define G as
the extension (G x T)/π1(G) induced by θ from the universal covering G -> G. This
gives a homomorphism

the extensions so obtained are flat vector bundles, and we have

Proposition (7.4) The sequence

Hom(πι(G) T) -» Ext(G T) -» H2(g R) -» H2(G T)

is exact. (ΓΛe right-hand map is the composite o/fί2(g;(R) -> #2(G ;(R), wήic/z regards
a left-invariant form as a de Rham cohomology class, and H2(G IR) -» H2(G T).)

I shall not give a proof of this here : but exactness at Ext(G T), which is what we
shall use, holds because if αe#2(g IR) is zero then the splitting g = g0 IR can be
chosen so that the connection in the circle-bundle G -» G is flat, and so defines a
homomorphism πt(G) -» T. The result is of course very well-known when G is
finite-dimensional, and I state it here to emphasize that finite-dimensionality is not
required. The consequence that is relevant for us is

Corollary (7.5) An extension o/Diffiβ1) by T is determined by its infinitesimal class
in H2 (VectlS1);^) together with its restriction to PSL2(ff3) c Diff^S1). In fact
ExtODiffitS^ T) £ T x R.

The corollary follows from (7.4) because πί (Diff^1)) = nl (PGL2(R)) = Z, and
Hom(π1(PGL2([R));T)^Ext(PGL2([R);T) because PGL2((R) is semίsimple. We
saw in Sect. 6 that H2(Vect(ίS

1);K) ̂  R.
Another way to formulate the result (7.5) is to say that the group G = DiffΐS1)

has a universal central extension A -> G with A = Z ® IR. This E is an extension
IR -> E -> G, where G is the simply connected covering of G, the group of diffeomor-
phisms φ: R -> R satisfying φ(θ + 2π) = φ(θ) + 2π.

Returning to the cocycles ω and ώ, we observe first that they both vanish
identically on PSL2(R), which is the group of holomorphic automorphisms of
the unit disk in C, and is the subgroup of Diffiβ1) which preserves the polarization
Vc = W® W. In the case of ω we have only to notice that the restriction of
α : DiffOS1) -» Aut(W) to PSL2( R) is a homomorphism. In the case of ώ the integral
defining w(φ, ψ) vanishes for φ, ι//ePSL2(lR) by Cauchy's theorem, as then φ and
χ extend to holomorphic functions in the disk.

Now let us consider the Lie algebra cocycles induced by ω and ώ. The general
formula for the Lie algebra cocycle associated to a cocycle c : G x G -> U is

(ξ,η)*-+D2c(ξ,n)-D2c(n,ξ),

where D2c :g x g -> R is the mixed second derivative of c at (1, 1).
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In the case of ώ an elementary calculation gives

whereas from ω we get

(ξ, η)^i trace ([ξ, η]w - \ζw,nw~\\

where ξw : W-+ ^denotes the W- ^component of the action of ξ on K Each of
these formulae is invariant under the group R of rotations, so to prove they coincide
it is enough to evaluate them on ξ = v_k and η = vk. The first formula gives

— k(k2 — 1), so we must show

f W r - [>_ k f W r, vktW\) = \k(k2 - 1).

The calculation is just like that in the proof of (7.3). The operators 2fc^0 w and
[_v_kw,vkw] are both diagonal with respect to the basis elements {am}m> i of W.
They coincide on am if m > k. If m ̂  k then 2kvQ w multiplies am by 2km. But

= m(m + k)am ,
m

and so the trace is ]Γ m(fc — m) = |fc(/c2 — 1), as we want.
k= 1

Before leaving the central extension of Diff^S1) it would be pointed that the
extension of Lie algebras

{R -> VectίS1)^ VectίS1)

is closely related to the "Schwarzian derivative". One ordinarily thanks of this as a
third-order non-linear differential operator S defined on functions on the circle,
characterized by the property that

S(aφ + b/cφ + d} = S(φ)

for any constants α, b, c, d. The formula is

I shall think of it, however, as defined for diffeomorphisms φ of S1 = R/2πZ by the
formula

Then it has the properties

(a)

(b)

Here ψ* is the operation defined by (ψ*f)(θ) =f(ψ(θ)). The second property can be
expressed by saying that σ is a crossed homomorphism from DiffίS1) to β, the
space of quadratic differentials on S1.
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New β is naturally dual to Vect (S1). To describe an extension of the Lie algebra
VectOS1) by (R it certainly suffices to give the adjoint action of DiffίS1) on
R Θ VectCS1), or dually on R 0 β. The latter action preserves the affine hyperplane
1 0 β, and is obviously determined by its restriction to that. This restriction can be
thought of as an affine action of DiffίS1) on Q.

Proposition (7.6) For the extension we have been studying the affine action of
Diffβ1) on Q is given by

(φ-\q)^φ*q + σ(φ\

where if q = a(θ)dθ2 then φ*q = a(φ(θ))φ'(θ)2dθ2.
The proof of this is obvious from what has preceded. For an affine action is the

same thing as a crossed homomorphism, and the crossed homomorphism
σ : Dif^S1) -> Q is determined by its derivative Dσ at the identity, which is given by

in agreement with the formula we found earlier for the cocycle defining the exten-
sion.

8. Orbits

According to Kirillov and Kostant's theory of "orbits" the irreducible unitary
representations of a group G are roughly in correspondence with a class of orbits
of the action of G on g*, the dual of the Lie algebra of G. More precisely, if αeg*
then the orbit XΛ of α is naturally a symplectic manifold with a closed 2-form α>α.
The orbit is called integral if ωα defines an integral cohomology class in H2(Xa IR).
If Gα is the isotropy group of α, and gα is its Lie algebra, then α|gα is a homo-
morphism of Lie algebras gα -> IR, and one can ask whether it lifts to a character
χ :Gα -> T. If one is lucky then representations of G will correspond to pairs
(XΛ , χ), where XΛ is an integral orbit and χ : Gα -» T is a lift of α|gα .

It would be very optimistic to hope for such a correspondence to exist in the
case of the infinite dimensional groups considered in this paper. Nevertheless it is
interesting to inspect the orbits to see whether any of them show signs of corres-
ponding to the representations we have found.

The groups we have considered are central extensions by T of Γ = Map^1 G)
and Diff^1), where G is a compact group. Their Lie algebras can accordingly be
identified with IRφMap^1 g) and IRφVect^1). The duals of Map^1 g) and
VectίS1) are spaces of distributions on the circle; but we shall consider here only
the "smooth" part of the duals, identified respectively with L = Map^1 g) (using
an invariant inner product on g) and Q, the space of quadratic differentials on S1.
Thus we have to consider the action of Γ on IR φ L and the action of Diffiβ1) on
[R0β. As we are interested only in representations which are faithful on the
centre T we need only consider the orbits in 1 0 L and 1 0 β. It turns out in both
cases that these orbits are very easy to classify (unlike the orbits in 0 0 L and 0 © β).

(a) The Case ofΓ = MapίS1 G), where G is Compact
The action of Γ on 1 0 L will be thought of as an affine action on L :
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where /eΓ and ξeL, and/ ξ denotes the obvious adjoint action of/ on ξ. Because
/-» af is a crossed homomorphism it is determined by its derivative at the identity
element, which is η ι-> ω(η, •), where ω : L x L -> R is the Lie algebra cocycle defining
the extension Γ of Γ. Recalling that

we find

iProposition (8.1) af(θ)=ff(θ)f(Θ

Note. Here, and from now on, I shall employ notation as if G were a matrix group,
and/ S1 ->G a matrix-valued function. Thus the adjoint action of/ on ξ above is

given by (f ξ)(θ)=f(θ)ξ(θ)f(ΘΓl.
For any £eL there is a unique function Fξ :[0, 2π] -> G such that ^(0) = 1

and FJ(Θ) - ξ(θ)Fξ(θ) for 0 ̂  θ g 2π. Let us define # :L -» G by 0(ξ) - Fξ(2π).

Proposition (8.2) (i) 0(/*ξ) ̂ /((^/(OΓ1,
(ii) the orbits of the affine action ofΓ on L are the inverse-images by g : L -> G o/ίλe

conjugacy classes ofG,
(iii) eαc/z orbiί contains a constant map ξ:Sl -»g, and
(iv) ίλe isotropy group of any ξeL is isomorphic (via f *-+ f(0)) to the centralizer

ofg(ξ) in G.

Proof, (i) Because the solutions of ordinary differential equations are unique one

(ii) If g(ξ) = g(η) then define /eΓ by f(θ) = Fη(θ)Fξ(ΘΓ l. (This does belong to
Γ, being smooth at θ = 0 = 2π.) By calculation it appears that/*£ = η.

(iii) Given any ξeL choose ξ0eg so that Qxp(2πξ0) = g(ξ). Regarding ξQ as
a constant element of L we have Fξo(θ) = exp(θξ0) and so g ( ξ 0 ) = g(ξ).

(iv) We have/*ξ = ξ if and only if

This equation is uniquely soluble for/given/ (0) providing/(0) commutes with g(ξ).
(It is enough to consider the case when ξ is constant: then the solution is

Now let us consider some constant ξeg cz L and ask whether < ξ, > lifts to a
character of its isotropy group, the centralizer Z of exρ(2πξ) in G. Let T be a
maximal torus of G whose Lie algebra contains ξ. It is well-known that if < ξ, > is a
weight of Tthen exp (2πξ) is in the centre of G, so that Z = G. On the other hand if
exp (2πξ) is in the centre of G then it is easy to see that < ξ, > is liftable. The orbit of
Oeg is Γ/G = ΩG, the loop-space of G, and one can identify it with a subgroup of Γ.
It is easy to check that its symplectic form is the 2-form discussed in Sect. 7, the
Chern class of the central extension regarded as a circle-bundle on ΩG. The other
orbits can be identified with the connected components of ΏG', where G' is the
quotient of G by its centre.

We have seen in Sect. 4 that the representations of Γ of positive energy are
indexed by the centre of G, and Kac's method leads to the same conclusion. So the
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suggestion of the orbit method would be that all the projective unitary represent-
ations with the cocycle we are considering are of positive energy.

(b) DiffCS1) and HilΓs Equations
The smooth part of the dual of the Lie algebra of the central extension of Diff^1)
that we are concerned with can be identified with R 0 Q, where Q is the space of
quadratic differentials on S1, and the projective representations of Diff(S'1) with
the given cocycle ought to correspond to the orbits of Diffiβ1) on 1 © Q = Q. We
have seen in Sect. 7 that the action is the affine action

where σ(φ) is the Schwarzian derivative.
The space 106 has an interesting interpretation in terms of Hill's equations.

A Hill's operator is a second-order linear differential operator on the circle of the
form

d 2

where q is a real- valued function on S1. If the parameter θ is changed by a diffeo-
morphism θh^φ(θ) so that d/dθ becomes (φ')~ 1d/dθ then D becomes

It is very easy to check that this is

where q(θ) = q(φ(θ))-φ'(θ)2 + S(φ), and M(ψ) is the operation of multiplication by
ι//. This means that ΰDq is regarded not as an operator on functions on S1 but as an
operator taking of weight \ to densities of weight f then the natural transform of
Dq by φ is D~. We have, therefore, a natural action of Diff^1) on the space of Hill's
operators, and can identify the Hill's operators with the affine space 1 0 Q. To make
the fit precise we shall redefine Dq as (d/dθ)2 + q, where q = 6q + ^.

The orbits of this action have been studied in [9]. I shall recall the result here,
as I wish to state it differently (and the result in [9] seems not quite correct).
Consider the equation Dqf= 0 as an equation on R rather than S1. Let Vq be its two-
dimensional space of solutions. Evaluation at a point θe R defines an element of the
dual space F^*, or, more accurately, of the projective line P(V*)9 as Vq consists of
densities rather than functions. Thus to Dq is associated a natural map
Fq : IR -> P(F*), which is easily seen to be a local homeomorphism. Because Dq has
periodic coefficients the operation of translation by 2π induces a map Mq : Vq -> Vq

called the monodromy ofD , such that the following diagram commutes:

P(V*)
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where T is θ\-*θ + 2π. Conversely if one is given a smooth immersion F:(R -» P^
and a projective automorphism M of P^ such that MF = FTthen it is clear that the
pair (F, M) arises from a unique Hill's equation. So Hill's equations can be identi-
fied with pairs (F, M), where two such pairs are regarded as the same if they differ
by an automorphism qfP^. The action of a diffeomorphism φ of S1 on (F, M)
simply replaces it by (Fφ, M), were φ : R -> U is a lift of φ. Now for a given operator
Dq the monodromy Mq determines a well-defined conjugacy class in PGL2(R);

but (because π1 PGL2((R) = π t P^) the path Fq determines a definite lift of this to a

conjugacy class in SL2((R), the simply-connected covering group of PGL2((R).
The following result is now obvious:

Proposition (8.3) The orbits o/Diff^1) on 1 © Q correspond precisely (by assign-
ing to Dq its lifted monodromy) to the conjugacy classes of SL2(R).

Note. SL2(U) has an outer involution, and the preceding statement really refers to
conjugacy under the full automorphism group.

The conjugacy classes in SL2(R) are determined by the trace, and are of three
types, elliptic, parabolic and hyperbolic. The conjugacy classes in SL2(R) are
correspondingly of three types. The elliptic ones are all on one-parameter sub-
groups, and are determined by giving, up to sign, a number θe [R such that 2 cos θ =
(trace). The parabolic and hyperbolic classes from a disconnected space with com-
ponents corresponding to Z: they are determined by their trace and the number of
their component—evidently only those in the 0-component lie on one-parameter
subgroups.

When the lifted monodromy lies on a one-parameter subgroup (and not other-
wise) the corresponding orbit contains a representative with q constant. (The
other orbits can presumably be represented by Mathieu equations, but the re-
sults of [9] seem wrong at this point.) For these orbits the isotropy group always
contains the group R of rotations of the circle. It is possible to lift q to a character of
R only if q is an integer. The monodromy Mq is

cos2πx/α —sin!

in PGL2(IR) if q ̂  0 (and an analogous hyperbolic element if q < 0). This is the
identity if q = ̂ m2, i.e. q = ~(m2 - 1), where m is an integer. The isotropy group
of q is R if q =£ ^m2, but if q = ^m2 it jumps in dimension from 1 to 3, and becomes
the m-fold covering of PGL2(IR) consisting of the elements of Diffiβ1) which are
periodic with period 2π/m and are m-fold coverings of diffeomorphisms in PGL2(ίR).

All this means that the elliptic orbits correspond rather well in a qualitative
way with the results of Sect. 6, and with Kac's results, but the values of q predicted
are not quite right, as often happens with the orbit method.

Appendix

A string is the image of a smooth map x : [0,1 ] -> [R3. When it moves it sweeps out a
"world-surface" x :[0,1] x U -> [R4 in Minkowski space-time (I shall take the
metric in Minkowski space to be - dt2 + dx2 + dy2 +dz2). The particles of which
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the string is made up are regarded as indistinguishable, so the parametrization has
no physical significance. Nevertheless I shall suppose that the string can be paramet-
rized in such a way that its individual particles move no faster than light, i.e.

— , — ) ̂  0. Then the world-surface between times ί0 and ti has an area

The motion of the string is supposed to be governed by an action-principle which
requires this area to be minimized, or at any rate to be stationary.

If the world-surface lay in Euclidean rather than Minkowski space this would
not make sense, as we should have a soap-film without a wire, and the string
would collapse completely. But in Minkowski space the problem is well-posed,
and we see that the ends of the string must move with the velocity of light at right
angles to the string, for then and only then will the area of the surface not change to
first order if one simply shrinks the string in on itself.

I shall make two more assumptions. The first is that the motion is such that if
one sends a light signal along the string from either end then it will get to the other
end in a finite time. That seems reasonable physically, as the part of the string
reachable by light signals from one end will presumably behave independently
of the rest. Granting this assumption there is a natural parametrization of the
world-surface which assigns to a point P the pair (ί, t'\ where t is the time at which
one must send a light-signal from the end along the string to arrive at P, at t' is
the time at which a signal from P will reach the end. (I am choosing a preferred end
of the string.)

Fig. 2

:i^t'^t + 2f(t)} -> ίR4,

where 2f(t) is the time taken for a signal to travel from the preferred end of the
string to the other end and back, beginning at time t.

This parametrization is a map

ξ :{(ί,
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The second assumption is more technical. Suppose that for a point x near the
edge of the world-surface the times taken for forwards and backwards light signals
from x to reach the edge are t+(x) and ί_(x). I shall suppose that the ratio
t+(x)/t_(x) tends to 1 as x approaches the edge of the surface. (I think that this is
equivalent to assuming that the string does not curl up at its ends, i.e. that its cur-
vature is bounded at any time.) Then we have

Proposition (A.I) (a) f(f) = £ is independent o f t , and

where f:R-+R4 satisfies
(i) f(t + 2/) —f(t) = 2πp is independent o f t , and

(π) </'(ίλ /'(*)> = <>.
It is easy to check that p is the total momentum of the string.
The map/ : U -> U4 is the trajectory of the end of the string parametrized by

the time coordinate in the particular Lorentz frame. It is more natural to repara-
metrize it invariantly by a parameter θ so that

f(θ + 2π)=f(θ) + 2πp. J (*)

These requirements fix the parametrization up to an additive constant.
The significance of Proposition (A.I) is that the motions of the string are com-

pletely equivalent to those of a point particle which moves with the velocity of
light along a trajectory / : IR -> U4 satisfying (*). The particle has a well-defined
rest-frame in which it describes a periodic closed orbit with the speed of light.

Proof of Proposition (A.I)

If the world-surface is parametrized arbitrarily in terms of parameters (w, v) then
the Euler-Larange equations for the variational problem are

fo^

where F = <xu,xυy
2 - Oα , *„ X *„ , xt; > > and *u = dx/du,xv = dx/dv. If the

parametrization is such that xu and xv are light-like then the equations simplify to

.
dudv

That is the case for the preferred parametrization introduced above, so we find

for some functions^ ,/2 : R -> U4 such that/^ί) and/2'(ί') are light-like. The trajec-
tory of one end of the string is ί ι->/i(ί) +/2(ί), and so/^ί) +/2(f) must be light-like
too. This means that/^ί) is parallel to/2'(ί).

Now we use the second assumption. Let /.° denote the time component of/t .
The time-coordinate of ξ(t, tf) is/j°(ί) +/2°(ί/X and the times taken for forward and
backward signals from ξ(t, £') to the end are t' -/t°(ί) -/2°(ί) and/^ί) +/2°(ί) - ί,
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i.e. / V) -Λ°W and /2°(ί') -/2°(ί) If the ratio of these tends to 1 as t' -> t then
/ι°'W =/2°'(4 and so/; =/2, and we can suppose^ =/2 -f/

The trajectory of the other end of the string is t \-+ j(f(t - S(t)) +/(t 4- /(ί))) For
this to be light-like f(t - /(ί)) and/'(ί + /(ί)) must be parallel. But the time-com-
ponent of each is 1, so/'(f - /(ί)) =f(t + £(t)\

Finally we apply the second assumption at this end. Suppose that t' is slightly
greater than t. The point ξ(t',t + 2£)) has time-coordinate |(ί +1 ') + f(t\ and
signals from it research the end at t + £(t) and t1 4- /(£')• From this we find that
(%tr - ί) + t(t') - /(ί))/Kί' - t) -» 1 as t' -> f, and so that /'(ί) = 0. Thus /(ί) is con-
stant, and/'(ί + 2/) =/'(ί). This gives the desired result/(f -f 2/) =/(ί) + 2πp for
some vector p.

U 2 l ( t )

Fig. 3

Before turning to the quantization of the system I shall make a few general
remarks.

Suppose that Y is a symplectic manifold on which a group G acts, preserving
the symplectic form. Then there is defined a natural map, the "momentum" map,
P :Y -> g*, where g is the Lie algebra of G, and g* is its dual. P is simply the trans-
pose of the map cj -> Maρ(Γ IR) which assigns to an element of g a Hamiltonian
function for the corresponding flow on Y. (The Hamiltonian are determined only up
to an additive scalar, and P is more properly a map Y -> g*, where g is the central
extension of g by U determined by Y.) Clearly P is equivariant with respect to G.
If one chooses an orbit ω of the coadjoint action of G on * then Yω = P~1(ω) is
G-invariant, and Xω = YJG has, if it is a manifold, a natural symplectic structure.
Xω is called the quotient system of 7 by G with momentum ω. If ω0 is a point of the
orbit ω notice that Xω can be identified with XωQ = ί^o/G0, where Yωo = P~ 1(ω0),
and G0 is the stabilizer of ω0.

The state space X of a string is a quotient system of this form. Suppose that Yis
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the space of all smooth maps/ : R -> R4 such that

is constant. 7 is a vector space, and has a symplectic structure given by the skew
fnrrn <v V v V -+ O H^fin^H KΛ/form S : Y x Y -> R defined by

Let G denote the universal covering group of DififS1), the space of diffeo-
morphisms φ :R -» (R such that φ(θ + 2π) = φ(θ) + 2π. G acts on 7 preserving S,
and the Hamiltonian function Hξ inducing the action of the vector field ξ(θ)d/dθ
is given by

Hξ(f) = 9 2π 0

In other words, the momentum map P : Y -> g* is/ι— > < /',/' >.
This means that Y0 = P" 1(0) consists of the trajectories/6 7 which travel with

the speed of light. Each such has a unique preferred parametrization, and so
XQ = YJG is precisely the state-space X of a string.

In favorable cases quotient systems of the form Xω can be quantized as follows.
One first chooses a quantization of 7, a certain Hubert space H. The action of G
on 7corresponds to a unitary action of G on H. This can be decomposed as a direct
integral

where Pω runs through the irreducible unitary representations of G. If the irredu-
cible representations Pω can be indexed by the orbits ω of G in g* then the Hubert
space Hω ought to be the quantization of the quotient system Xω.

When one attempts to apply this ideal procedure to the states of a string at
least two difficulties arise. The first appears when one quantizes any infinite
dimensional linear system 7 on which a group G acts : the extension of g by R
defined by 7is trivial, as each £eg has a canonical Hamiltonian which is a homo-
geneous quadratic function on 7; on the other hand when 7 is quantized in the
standard "metaplectic" way a non-trivial central extension G of G acts on H, and
the representations of G which occur in H correspond, if they correspond to
orbits at all, to orbits in a certain qffϊne action of G on g* (cf. Sect. 8). It is thus not
clear which Hω to associate to which values of the classical momentum.

The second difficulty is that one cannot quantize the linear system 7
satisfactorily. For to do so we should presumably begin by observing that the R4-
valued function/—^ on 7corresponds to the total momentum of the system, and
the corresponding operator (actually four commuting operators) should break up
Has

I »,.
peR4

where Hp is got by quantizing the linear system Vp = {feY'.pf = p}/IR4. (Thus
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Vp is a quotient system of Y by the group IR4 of translations.) To quantize Vp one
would choose a positive polarization Vp jC = W® PFand define Hp — S(W\ as the
body of this paper. But unfortunately, because the inner product in Minkowski
space is indefinite one cannot choose the polarization both positive and invariant
under the Lorentz group. The standard procedure is to choose an invariant polari-
zation W which is not positive (it is the part of Vp c of "positive energy" in the sense
of this paper), and to form a pseudo-Hilbert-space Hp = S(W) which has an inde-
finite inner product. The group G acts projectively on Hp, and it has a discrete de-
composition

where Pλn is the irreducible representation of G with lowest weight λn = n + 1< p, p >
which need not be integral here as G is now not Diff^1) but its covering group.

One wants to pick out in Hp the isotypical piece H(

p

} associated to a certain
irreducible representation Pα of G taken to correspond to the momentum condi-
tion < /',/' >= 0. This will be zero unless |<p, p > — α is a negative integer.
Physicists customarily take α = 1, for a reason I shall explain in a moment, though
this has the great disadvantage that the Hubert space then contains state vectors
with < p, p > = 2, i.e. particles moving faster than light with imaginary mass, so
called "tachyons". The general nature of the model, on the other hand, leads one
to suppose that the lowest state of a string ought to be when it collapses to a particle
moving with the speed of light: that would correspond to α = 0.

Goddard and Thorn [4] have shown that when α — 1 the metric of if (α) is
positive semi-definite. By dividing H(

p

} by its radical one obtains a genuine
Hubert space H(

p\ and physicists take

where p runs over all momentum vectors in IR4 such that |<p, p > - h α i s a negative
integer, as the Hubert space of quantum states of the string. (I should perhaps men-
tion that physicists define H^ as the subspace {ξeHp:V0ξ = α£, V_kξ = 0 for
k> 0} oϊHp (where the Vk are the basis for i^\ exploiting the fact that each irreduci-
ble representation of G contains a unique lowest-weight vector.)

To produce a space of states of a free string is not of interest unless one can
describe how strings interact. I am certainly not competent to do that, but I shall
simply point out, as it was the motivation for Sect. 4 of this paper, that one can
define for certain vectors ι?eR4 an operator Bv :Hp -> Hp+v which commutes with
the action of G and is supposed to correspond to the process of absorption of a
particle of momentum v by a string of momentum p to form a string of momentum
p + v.

One wants Bv to be defined only when ^<p + i > , p H - i > > - j < p , p > , i.e.
<p, ι>> 4- ^< v, v >, is integral. Now the elements/ of the additive group ^described
above act projectively on H by operators A(f). If <ι?,ι;> = 2, and we restrict
ourselves to the Hp such that </?, t;> is integral, then just as in the last part of
Sect. 4 we can define for each θe R a "blip" Bv

θ :Hp -> Hp+v . The integral
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is an operator which commutes with G, and is what we want. But it makes sense only
when <D, ϋ> = 2, and the particle absorbed is a tachyon. Physicists want the particles
absorbed to correspond to unexcited states of a string, i.e. to those such that
K P> P y ~~ α = 0» and ̂ y are therefore led to assume that α = 1.
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