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Abstract. Scattering theory for time dependent Hamiltonian H(ή =
— (1/2) A -f ]Γ Vj(x — qj{t)) is discussed. The existence, asymptotic orthogo-
nality and the asymptotic completeness of the multi-channel wave operators are
obtained under the conditions that the potentials are short range:
I Vj(x)\ = Cj(l + \x\)~ 2 ~ε, roughly spoken; and the trajectories g7 (ί) are straight
lines at remote past and far future, and \qj(t) — qk(ή\-+ oo as
ί->±oo(; φk).

1. Introduction

The purpose of this paper is to study the scattering theory for a class of Schrόdinger
equations with time dependent potentials

&t9X)=-\Δw(ί,x) + Σ VM-
at 2 j = i

where qj{t)e Un{n g: 3) are the functions of te U1 which are straight lines at remote
past and far future.

Suppose that iV-centres of forces are traveling along the given trajectories
q.(t) (j = i5 2 , . . . , N) each of which acts on a quantum mechanical particle of mass 1
through the potential Vj(x), then the Schrόdinger equation for the particle is written
as (1.1). If |^.(ί) — qk(t)\ -> oo as |ί| -• oo sufficiently rapidly in conjunction with the
rate of decay of the potentials, one would naturally expect that the behaviour of the
particle in far future or remote past are classified into (N + l)-ways: (1) The particle
behaves like a free particle; (2) the particle travels with one of the centres q^t)
forming a bound state around the centre (j = 1, 2, . . . , N). We shall prove in this
paper that this is actually what is going on with the equation (1.1) under a suitable
condition. In physics literature these centres of forces are usually supposed to be
atoms and ions, and the particle to be the electron. In such case the scattering theory
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for (1.1) is nothing but to study how the electron is transfered from some atom or ion
to another. This is the reason why the problem is named "charge transfer problem".

Assumption I. (1) For any j — 1, 2 , . . . , iV, qfo) is a continuously differentiable
function from U1 to Un.

(2) There exist vectors vjt +,ajt±eUn such that for ± t >̂ ί0,

qj(t) = qJt ± (ί) = ί^ ± + ajt ± , j = 1, 2 , . . . , N. (1.2)

(3) υit±φυκ± if ^/c.

Assumption II. For any j = 1, 2,.. ., JV, Pj(x) is a real valued function on Un such
that there exist functions Wjt 1 e WUs(Un) for some n/2<s< n, Wji2eWUco {Rn) and a
constant 1 < (5 < 3/2 such that

Here Wk q{Un) {k ^ 0 is an integer, 1 ^ q S oo) is the Sobolev space (see Yosida [18],
p. 55 for the definition).

Remark 1.1. By Sobolev's embedding theorem (Stein [15], p. 124), WjΛeLP(Un)9

\jp — 1/s — 1/n. Notep > n. Hence by Holder's inequality Vi eLq(Un) for any nβδ < q
Sp; Aj(x) = (l + \x\2)δl2Vj(x)eLq(nn) for any n/δ<q^p. In what follows p is
always defined by \jp = 1/s — 1/n.

Before stating the last assumption, we state here several preliminary results of
Assumption (I) and (II) which can be readily obtained by using the well-known
theorems.
(A) Let Ho be the unique selfadjoint extention of —A/2\c°o{Rn) on the Hubert space
§ = L2([Rn). By Remark 1.1, the multiplication operator ΪΛ(x) is iί0-compact
(Reed-Simon [13], p. 369). Hence for any teU1 and j = 1,2,... ,ΛΓ, H(t) =
^ o + ΣVM - φ l H±(t) = H0 + Σ Vj(x - qjt ±(0), Hj(t) = Ho + Vj(x - qj{t))9

Hj ± (t) = H0+Vj(x- qjt + (ί)) and Hj = Ho + ^(x) are selfadjoint on § with the
common domain W2>2(Mn) = H2(Un).

(B) Since dVj/dxkeLq(Un) for any n/2δ < q ^ s ,

^ C(ί) < oo (1.4)

(Reed-Simon [11], Theorem X.19 and Theorem X.20). Therefore by Simon [14],
Theorem 11.27, — iH(t) generates a unique propagator U(t, s) (— GO < ί, s < oo):
i) C/(ί, 5) is a unitary operator on § and is strongly continuous in (ί, 5);
ii) 17 (ί, s) 17 (s, r) = U(t, r), - 00 < r, s, ί < 00
iii) for/eD(Hj / 2), U{t,s)feD(Hί

0

/2) and

(d/dt)U(t9 s)f = - iH(t)U(t, s)f9 (1.5)

where the derivative in the L.H.S. of (1.5) is understood as the strong derivative in the
space H " X(R") = the dual space of WU2(Un).

The same statements are true for H+(t) and Hj+(t) and we write the
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corresponding unitary propagators as U±(t,s) and l/ j ±(ί,5), respectively

(3) Let us set as A.{x) = (1 + | x \2f2 VpήBfx) = (1 + | x \2yδ/2 and write as A. and
Bj the corresponding multiplication operators. (R+ — [0, 00). For Banach space X,
B(X) is the Banach algebra of all bounded operators on X. For a closable operator T,
[T] is its closure. We write as ro(z) = (Ho - z)~~ \ z^U\.
(i) (Ginibre-Moulin [4], Prop. 3.1.) Let Qj(z) = lAJ(Ho-z)-ίBj] for zeCΛjRi
Then Qj (z) is a B(§)-valued analytic function there and can be extended to the closed
cut plane (the closure of C^R1^ where upper and lower boundaries are distin-
guished) as a B(£)-valued Holder continuous function. || Qj(^) || —>0 as |z|-»oo.
We write its boundary values on [R + as QAλ ± iO) = lim QAλ ± is).

ε i 0

(ii) (Konno-Kuroda [9].) For any j = 1, 2,..., JV, i/̂ . has at most finite number
of negative eigenvalues of finite multiplicity. We write the eigenvalues and the
corresponding eigenfunctions of Hj as μ̂  1 ? . . . , μJ)W. and φ7- 1 ? . . . , φjjm. (Φj,k i s

normalized). Clearly Hj + (t) has the same eigenvalues and the eigenfunctions
Φj, ± ,t,k == ^ j , k(χ ~" ̂ j, ± (OX k=l9.. .,πij. We write the projection onto the closed
subspace spanned by φjt±tttk

9s as Pjt ±(t).
(iii) (Agmon [1], Lemma 4.2.) For any multi-index |α| ^ 2 and any p ^ 0 ,

^ (1.6)

= 1, 2 , . . . , N, k = 1, 2 , . . . , mr

Assumption III. For any j = 1, 2,..., N, / + Q.(λ ± iO) has its inverse in B(§) for
20

Remark. By this assumption we assume that H7(or H y ±(ί)) has no non-negative
eigenvalues or resonances.

Now we can state our main theorem in this paper.
Theorem. Let Assumptions (/), (//) and {III) be satisfied. Then for any seU1, the
following statements hold.
(1) (Existence of the wave operators.) The following limits exist:

5-lim U(t, s)~ ' e x p ( - i(t - s)H0) = WOt±(s); (1.7)
t-> ± oo

s-lim 17(ί, s)- * U}ι ± (t, s) exp (ix • v}< ±)Ph ± (s) = Wh ± (s). (1.8)
t-> ± oo

(2) (Asymptotic orthogonality.) The ranges R(Wj ±(s)\ j = 0, 1,. . . , JV, are ortho-
gonal each other.
(3) (Asymptotic completeness.)

0 κ(w;.+(5)) = $. (1.9)
j = o

The rest of this paper is devoted to the proof of this theorem. We sketch here the
outline of the proof with somewhat crude terminology, displaying the plan of this
paper. In Sect. 2, we shall prove the existence and the asymptotic orthogonality of
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the wave operators by standard methods (Reed-Simon [12], Sect. XI.3, XI.5). We
shall prove the asymptotic completeness in Sect. 3 which is devided into five
subsections. To prove the completeness we must make a detour. According to
Howland [5], we shall introduce bigger Hubert spaces Rί=L2(Ml,
L2(Un

x))®L2(Ul)®''' Θ L2(R}) and ft2 = L2(M}9 L2(Un

x)) of square integrable func-
tions of time-space variables (t, x): S{1 is the "channel Hubert space" and S\2

is the "basic space". The channel Hamiltonian K1=(— id/dt + Ho)@ £ ® (— ίd/dt
hk

+ μjJc) is considered on ftx and the Hamiltonain K2 = — id/dt + H(t) is considered
on 512 Then we shall study the two space scattering between Kx and K2 via the
identification operator J :S\1-^S\2, J is defined by (3.2). It will be proved in

Subsect. 3.1 that the wave operators W± = s-lim exp(iτK2) J exp(— iτKt) exist
t —> + oo

and are the isometries; the completeness of 1V' ± implies that of the original wave
operators. Thus by eliminating the explicit time dependence of the Hamiltonians by
this procedure, the problem is reduced to the completeness problem of the wave
operator Ψ"+ for the time-independent Hamiltonians. Here is an important
observation: If we replace — id/dt by the kinetic energy — Δy/2 of certain particle and
qffis by y in Kx and K2, then Kx and K2 have the same form as the Hamiltonians
appearing in three body scattering theory (see Faddeev [3], Ginibre-Moulin [4],
Howland [6], Kato [8] and Yajima [17]). Being suggested by this observation, we
shall prove the completeness of W ± by using the methods of three body problem. In
Subsect. 3.2, we record the abstract theorem due to Kato [8] by which the
completeness will be finally proved. In Subsect. 3.3, an algebraic procedure of the
construction of the substitute of the "Faddeev matrix" will be carried out in a way
similar to that of Howland [5] in three body case. Various estimates of the operators
necessary to apply Kato's theorem will be done in Subsect. 3.4. The proof of the
completeness of the original wave operators will be completed in Subsect. 3.5.

The following notation and conventions are used throughout the paper. For
1 <Ξ q ^ oo, L W ) is the Banach space of all g-summable functions on Un with
natural norm. For non-negative integer fe, Wk'q(Mn) is the Sobolev space,
Hk(Un) = WK2(Un\ For yeM\ L2{Un) is the weighted L2-space:

The norm of L2(Un) is usually written as || || regardless of the dimension of the space
Un; the norms of other spaces are denoted as || ||L«, || \\w

k>q a n ( 3 etc.
For multi-index α = (α1 ? α 2 , . . . , αM), α.ef^, (<3/ox)α = {d/dx^f1 ... (o/<3xjan

xα = x^1... xx

n

n. For multi-induces α and β, 0L<^β means oίj^βj for all j = 1,..., n

where for .U
I m z ^ O } and for / cz R1, C±(/) - {zeC± :Re zel}. ^ x (or &t) is the Fourier
transform with respect to the variable x (or t). We write # / = / , regardless of the
variable.

For Hubert spaces § 1 ? . . . , § m , § i ® *••© § m and§ x (g) ® § m are their direct
product and tensor product. If there exists a linear topological space £ such that
ξϊjCi £ for any j = 1, . . . , m, § x + — + § w is the sum space of §/s. If Al9..., Am
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are closed operators on § x , . . . , § m , respectively, Ax® — ® Am and Λί (x) — (x) Am

are their direct product and tensor product. A1®I and / (x) A2 are often written as
Ax and 4 2 simply. Identity operator is often written as 1. If A is a one-one closed
operator from ξ)1 to § 2 , t n e range R(A) oϊA is considered as a Hubert space with the
norm \\Au\\R{A) = (\\Au\\2 + \\u\\2)1'2. For a family of Hubert spaces {§(t):

Θ

— oo < ί < oo}, j ξ)(t)dt is the direct integral of {§(ί)} F ° r a closable operator A,
[v4] is its closure. If \_A~\ is a bounded operator we often use the notation as if the
operator A itself is a bounded one. For Banach spaces 3E and ^), B(£, 2)) is the space
of all bounded operators from X to ̂ ), B^ (X, *ϊ)) the compact operators from X to 2),
B(£) = B(3E, X). The symbol © is also used to denote the sum of orthogonal elements
in a Hubert space.

If m(x) is a function, the same symbol m(x) is also used to denote the
multiplication operator by the function. The integral without referring to the region
of integration is understood to be taken over the whole region of the variable.

2. Existence and Asymptotic Completeness

Here we shall prove the first two statements of the theorem. We start with the
following lemma.

Lemma 2.1. Let Assumptions I and II be satisfied. Then for any seU1 the following
statements hold.
(1) The following limits exist:

s-lim U(t, s)~ λ U± (ί, s) = Γ± (s);
t~+ ± 00

s-lim U± (t, s)~ x U(t9 s) = Ω± (s).
ί-* ± 00

(2) Γ + (s) and Ω±(s) are unitary operators on ξ> and Γ±(s) — Ω±(s)~ί.

Proof. Since H(t) = H±(t) for ± ί ^ ί 0 , [7(ί2, ^) = U±(t2, tt) if ± ίx ^ t 0 and

± 2̂ = ίo Therefore if ± ί ̂  ί0,

by Sect. 1, (B), iί). Thus (1) holds trivially. (2) is an immediate consequence of (1).
(Q.E.D.)

By Lemma 2.1 and the chain rule for the wave operators (Reed-Simon [12], p.
18), it suffices to prove the theorem under the condition that q-} (ί) = qh + (ί) for
" + " case (£—• oo), and q^(t) = q^~(f) for " —" case (ί-> — oo). Since the following
argument for " + " case equally applies to " — " case, we shall treat the " + " case only.
Thus we assume hereafter that H(t) = H + (t\ Hj(t) = Hjt + (t) and we write vjt +, etc.
as vp etc., omitting the suffix " + ". Since the cases a} ψ 0 can be treated similarly, we
assume aj = 0 (j = 1, 2 , . . . , N) hereafter.
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L e m m a 2 . 2 . L e t F , G b e t h e m u l t i p l i c a t i o n o p e r a t o r s b y f g e L q ( U n ) ( l ^ q S v
u e ξ > . Then

(1) \\Fe-ίtH°Gu\\ ^ ( 2 π | ί | Γ | | | | | | | | | |

(2) lim || (e~ ίtH°u)(x) - \t\-n/2ei(χ2/2t ~ nπ'4)ύ(x/t) \\ = 0.
±± oo

Statement (1) is proved by Kato [7], p. 277 and statement (2) is Theorem IX. 31
of Reed-Simon [11].

Lemma 2.3. For any t,seMί,j = l,2,...,N and k = 1, 2 , . . . , mp

(Uj(t9s)(Gxp{ix'Vj)φJta^)(x) (2.1)

= exp (ix Vj - ί(t - s)(υ2/2 + μjΛ))φhsΛ(x - (ί - s)vj).

Proof. If t = s, (2.1) obviously holds . By using the e q u a t i o n Hj(t)φj sk(x — (t — s)Vj)

= μjfkφj>s,k(
χ — (ί — s)Vj)9 we get by direct ca lculat ions t h a t for any S G R 1

( - id/dt + Hj(ί))(exp (ix Όj - i(t - s){vj/2 + μjΛ))φj^k(x - (ί - s)vj)) = 0.

Then the uniqueness of the propagator (Sect. 1, (B)) shows that (2.1) holds.
(Q.E.D.)

Proof of Statement (1). We prove the case 5 = 0 only. The other cases can be proved
similarly. We use the Cook's method (Reed-Simon [12], Theorem XI.4).
(i) We first prove the existence of the limit (1.7). Let /, g<=C$(Mn). Then
(U(t9 0)~ 1 exp ( - hH0)f g) = (exp ( - UH0)f U(t, 0)g) is continuously differentiable
with respect to t, since exp( — itH0)feD(H0) and U(t, 0)g is continuously differenti-
able in H~ ^U") by Sect. 1, (B), iii). Hence

(U(t2, 0)- ' exp (it2H0)f g) - (U(tl9 0)~ ' exp ( - ittH0)f9 g)

= J ^ - (exp ( - iσH0)f U(σ, 0)g) dσ
tιdσ

= Σ i](U(σ,0y1Vj(x-σvj)exip(-iσHo)fg)dσ.
7 = 1 ti

By Schwartz's inequality we have

|(t/(ί2> 0)- x exp ( - H2H0)f - t/(ίx, 0Γ J exp ( - i ί^o)/ , g)\

^ Σ ί l ^ x - σ i jίexpί-iσHoJ/μσllβll,
j = 1 ίi

which obviously implies

|| U(t2, 0)- 1 exp ( - it2H0)f - U{t 15 0)- 1 exp ( - it^HJf \\ (2.2)

^ Σ ί IIVM - συj) e χ p ( - iσHo)f II rfσ

J = 1 ίi

Now take <? as n/2<5 fkq< n/2. Then by Holder's inequality || Vj(x — σv})
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exp(-iσHo)f\\^\\Vj\\q\\exp(-iσHo)f\\r, 1/r + 1/q = 1/2. Applying Kato's es-
timate (Kato [7]), we have | | exp(- iσH0)f\\r ^(2π\σ\)~n/q\\f\\r,, l/r + l/r' = l.
T h u s we h a v e || V.(x - σv.)exp( - iσH0)f \\ S \\ V. \\q\\f | | r , ( 2 π | σ | Γ n / ί Z . S ince n/2δ ^
q <n/2, the integrand in the R.H.S. of (2.2) is integrable on (1, oo). Therefore
U(t, 0)~1 exp( - ίtH0)f is convergent as ί -> oo. Since l/(r, 0)~x exp( - HH0) is
unitary for any 0 ^ t < oo, this holds for a n y / e § .
(ii) Next we prove the existence of (1.8). Obviously it suffices to prove that
U(t, 0)~ ι Up, 0)(exp(ix v^φ. 0 k) is convergent as t -> oo. We omit the suffix 0 in
Φj,otk hereafter. By a similar argument as to derive (2.2), we have

j ^.)</>i,fc)|| (2.3)

^ Σ fll^x-σ^l/

By (2.1), || Vt(x - συ,) Uj(σ, 0) (exp (ix Vj)φjΛ) \\ - 1 | Vt(x - συ^φ^x - συs) \\ =
\\VM)Φj,k(x-σ(vj-υι))\\' We write Vj-v^vφO. Then by
Holder's inequality || Vι{x)φj k (x-σι;) | | S \\ ^(x)(l + l^cl2)^2 ||j | |(i + l-xl2)"^2 x

2δ/2 || | 2f 2 | |(1 + |x - σv\2Γδ/2 ||Lco ||(1 + |x - συ\2f 2φhk(x - σι;)||L,, 1/r + 1/n = 1/2. By
Remark 1.1 || Kz(x)(l + \x\2)δ/2 \\L» < oo; by (1.6) and Sobolev's embedding theorem
I (1 + Ixl 2)^ 2^. k(x)\\Lr< GO. On the other hand we have by elementary computation
that | |(l + | x | 2 j " ί / 2 ( H - | x - σ t ? | 2 ) - ί / 2 | | L c o ^ 2 " * / 2 ( l + |σi; | 2)- ί / 2 . Since δ > 1, the
R.H.S. of (2.3) is integrable on (1, oo). Hence U(t9 0)" 1 Uj(t, 0) {exp(ix'Vj)φjΛ) is
convergent as ί -> oo. (Q.E.D.)

Proof of Asymptotic Orthogonality. Again we prove the case s — 0 only. Other cases
can be proved similarly. For j , k = 0, 1, 2 , . . . , N,

(Wj(0)f Wk(0)g) = lim {Uj{t9 0)eiχ ^Pj(0)f Uk(t, 0)eίxv*Pk(0)g\
t-+ oo

where v0 = 0, Po(0) = / and U0(t, s) = exp( — i(t — s)H0). Therefore it suffices
to prove

lim (l/o(ί,0)/, ί/J (ί,0)(exp(iχ i;j)Φj,k)) = 0; (2.4)

lim (I7j(ί, 0)(exp (ix Vj)φjJ, U,(t, 0)(exp (ix i>,WJ>m)) = 0, (2.5)
t - > oo

for , 1 = 1 , 2 , . . . , N , fc=l,2,..., m., m = 1, 2, . . . , m m , jφ I a n d / e Q ( R " ) . Since

\(Uj(t, 0)(exp (ix • υj)φjtk\ Ut{t, 0)(exp (ix • v^Um))\

S ί \φjtk(x-Vjt)φlιm(x-Ό,t)\dx,

(2.5) obviously holds. By Lemma 2.2, (2) and (1.6),

limsup I (exp ( - itH0)f, Uj(t, 0)(exp (ix Vj)φjtk))\
t-+ oo

^limsup 1 Γ«2\f(x/t)φjtk(x-vjt)\dx
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= 0.

This proves (2.4) (Q.E.D.)

3. Asymptotic Completeness

This section is devoted to the proof of the asymptotic completeness of the wave
operators, the third statement of the theorem.

3.1. Reduction to the Stationary Problem

According to Howland [5], we shall prove the asymptotic completeness, reducing
the problem to the stationary one. Let us first introduce two accessory Hubert
spaces 5^ and R2 as follows.

= L2(R1)®L2(IRn),

We write the generic element of ftj as u = f(u, σ1 1 ? . . . , σN m ), where f stands for
the transpose. We define the identification operator J from ftx to ft2

 a s

Σ <rj.k®ΦjΛ (3.2)
= 1 /

where for any vector v e Un the operator Tv is defined as

(TJ)(ί, x) = exp(i(x υ - v2t/2))f(t, x - υt)

for /eL2(IR1)®L2(R I I) = L2(IRn + 1). Obviously JeB(ft 1,ft 2). Now we define one
parameter families of operators ^ ( τ ) and ̂ 2 ( τ ) ( - oo < τ < oo) on the spaces SKγ

and R2, respectively as follows:

= (exp(-ίτH0)u(t - τ), exp(-hμu γ)σlΛ{t - τ),

. . ., exp ( - iτμNmN)σN^mN{t - τ)); (3.3)

(®2{τ)u)(t) = t/(ί, ί - τ)w(ί - τ). (3.4)

^i(τ) is obviously a strongly continuous unitary group on Λt and so is ύlί2(
τ)on ^2

since U(t, s) is strongly continuous in both variables t and s and is unitary. Hence by
Stone's theorem there exist selfadjoint operators Kx on Rλ and K2 on 5 2̂ such that

^ ( τ ) - exp (-ίTKi), <%2(τ) = exp ( - ίτK2). (3.5)

By (3.3) we readily see that

N

Σ ®L

j = 1 \k = 1

Lo = - id/dt + Ho; Ljtk == - iδ/δί 4- μj>fc. (3.6)
The following lemma plays an import role.
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Lemma 3.1. Let Assumption (I) and (II) be satisfied. Then the following statements
hold.
(1) For any

lim || Jexp(— iτ
τ -*• oo

(2) The following limit exists:

s-lim exp (iτX2) J exp (iτK^ = W.
ί-> oo

(3) The operator W is isometry from 5tx ίo ft2.
(4) // the range R{W) = ft2, ί/ie statement (3) of the theorem holds.

Proof By definition

(3.7)

Each term under the ^-sign in the R.H.S. of (3.7) can be written by (2.1) as

eiί*'»j-tvϊl2)φhk(x - V j t ) e - iτμJ>kσjΛ{t - τ) (3.8)

We prove (1) first. Since Tv is unitary, it suffices to prove that for j , / = 1, 2,. . ., JV,
fe = 1, 2,.. ., m; , m = 1, 2,. . . , mι such that (7, h) Φ (Z, m),

lim (β~/ίHow(£ - τ), φ j > k(χ - υ,t)e~i{τμs'h-χ'Vi + tv^l2)σUk(t - τ ) ) ^ = 0; (3.9)
τ-> 00

lim (φΛ f c(x - Vjt)e~ ^N^-X-VJ + tvV'2)σjk(t - τ),
τ —>• 0 0

Let us prove (3.9) first. The inner product is majorized by

\dt\dx\(e- ίτH°u(t - τ, ))(x)φhk(x - Vjt)σjfk(t - τ)|

By Schwartz's inequality the integral by x in the R.H.S. of (3.11) is majorized by
I u(t,.) I which is square integrable with respect to t. On the other hand if we fix t, this
integral coverges to zero as τ -• 00. This can be proved exactly in the same way as to
prove (2.4). Hence (3.9) is an immediate consequence of Lebesgue's dominated
convergence theorem. Next we prove (3.10). If j = I and kφm, (3.10) is obvious, since
φjtk and φι m are orthogonal each other then. Suppose/ Φ I. The inner product is
majorized by

J dί |σM(t)σ I i i n(t) | Jdx\φ j Λ(x - Vj(t + τ))φι?m(x - Vι{t + τ))|. (3.12)



162 K. Yajima

The integral by x in (3.12) is uniformly bounded by 1; for each fixed teU1 this
converges to zero as τ-» GO, since φjΛ and φlm are normalized and v} Φ vv Thus
(3.10) is an immediate consequence of Lebesgue's dominated convergence theorem.
Next we prove (2). By (3.4), (3.7) and (3.8) we have

(exp {iτK2) J exp ( - hK^u)^)

= U(t, t + τ ) ( J e x p ( - iτKx)u)(t + τ)

= U(t, 0)[l/(0, t + τ)e~ i{t + τ)H°eitH°u(t)

U(0, t + τ)Uj(t + τ, 0)eix'ΌJφjtk] (3.13)

By (3.13) and statement (1) of the theorem, for any fixed ίetR1, we have

s-lim (exp (iτK2) J exp ( - iτKJuJiή (3.14)
τ -»• oo

= l/(ί,0)[%(0)^H°M(ί)+ Σ^ μ j ' k σ Λ f c (0® ^ ( 0 ) ^ J ,
j , k

where the limit is understood in the sense of the strong convergence in §. Here
in the R.H.S. of (3.14) all summands are orthogonal each other by statement
(2) of the theorem and the isometry property of Wj(O)'s. On the other hand
||(exp(ϊτX2) J Qxpi-ίτK^iή \\ ^ \\u(t)\\ + Σ l σ , ,k(ί)l, and the R.H.S. of (3.14) is
also majorized by \\u(t)\\ + X|σ j § f c(ί)|. Since (||w(ί)|| + X |σ j k(ί)|)2isintegrablewith
respect to teU1, Lebesgue's dominated convergence theorem implies that

s-limexp(ίτX2)Jexp(— iτK1)= W
x —* oo

exists on $K2.

Statement (3) is a direct consequence of statements (1) and (2). Finally we prove

statement (4). Let the operators Ton SK2,0 on SKX and Ψ from S\x to $\2 be defined as

(Tu)(t) = U(t, O)M(ί),

(Ou)(t) = \eUH°u(t), eu^ >σul(t)...,

j,k

T is unitary on S\2 and 0 is unitary on S\x. By (3.14) we have W = ΊΨ 0, hence
= TR(ΪF)SindiϊR{Ψ) = &29R(Ψ) = ft2. By asymptotic orthogonality,

\j,k

= L2(U1)®(R(Wo(0))® j j

j , k

where ζWj(Q)φjtky stands for the one dimentional subspace spanned by
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Wj(0)φjtk. Hence if R(Ψ) = R2 = L2(U1)<g>L2(R"),

which obviously implies statement (4). (Q.E.D.)

3.2. Abstract Stationary Theory

By Lemma 3.1, the proof of the completeness of the wave operators is reduced to
prove R(W) = Si2. For proving this we shall apply the following abstract theorem
due to Kato [8].

Theorem 3.2. (Kato [8]). For j = 1, 2, K. be a self adjoint operator on the Hubert
space $\j with the resolvent Rj(z) = (Kj — z)~1 and the spectral measure E.(dλ). Let
JeB(Siί, Si2) be the identification operator and I czU1 be a Borel measurable subset
ofU1. Suppose the following conditions be satisfied.

(1) lim | | J e x p ( — iτKι)u\ = | | M | | , ueK
1.

(2) There exists a linear manifold X. ofRj such that there is no proper subspace of Si.
invariant under K. and containing 3L. and such that 3E. is a normed space with its
own norm (we write the completion ofX. as £.) satisfying the following conditions:
(2.ί) For x, yeX1 ,/0(z, x, y) - π " ^Imz^R^zU, R^y) defined for zeC±(I) has a
continuous boundary value for z = λel.
(20) There is a strong continuous family of operators Y(z)eB(X2,X]) defined for
z e C ± ( / ) u / such that if ze£±(I\ Y(z) maps X2 into Xχ with

R2(z)y = JRί(z)Y{z)yi for yeX2. (3.15)

Then Kί and K2 are spectrally absolutely continuous on I and there exists
Z+eB(5^2,5^1) which is partially isometric with initial set E2(I) and final set Et(I)
and such that

s-Abel lim exp(iτK2)Jexp( - iτKι)Z± = E2{I). (3.16)
τ-> ±oo ~

In particular, if Ψ"± = s-lim exp (iτK2)J exp( — hKx) exists on E1(I)Siί, then
τ-+±oo

(3.17)

3.3. The Faddeev's Matrix

In the following subsections we shall prove that the conditions of Theorem 3.2 are
satisfied for our operators Kγ and K2, taking the spaces ϊ l 5 X2

 a n ( ^ t n e s e t ^
appropriately. In this subsection, we shall derive the decomposition formula (3.15)
for the resolvent R2(z) = (K2 — z ) " 1 , postponing the proof of various estimates
necessary for its justification until next subsection, although we shall prove some
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preliminary lemmas here. To avoid unnecessary complexity, we assume here and
hereafter that m^ = 1 for j = 1, 2 , . . . , N and write μjt k, φjk and L} k as μ p φ } and L3

simply. The general case can be treated by a simple modification of the formulas
which will appear in what follows.

N

We set $Ϊ3 = © ( L 2 ^ 1 ) ® ^ ^ " ) ) and define the operators si and $ from
j i

L2(U1)(g)L2(Un) to #3 as

x)

, x),. ., ̂ " ( ί , x)),

siu = ̂ {si^uit, x), , sdNu(t, χ)\

where

j^-ufo x) = ̂ .(x - Vjt)u(t, x), t

^.M(ί, x) = 5,.(x - ^ ί)w(ί, x).

We write Gp) = {Lj - z)~ \ j = 0,1,. . . , N.

Lemma 3.3. Let ,M{z) be any one of .^G0{z)^, ^G0(z),$f*> stG0(z)s/*,

@G0(z)@*. Then
(1) ,M{z) is a B($\2)-valuedanalytic function of zeC+ and is uniformly bounded there.

(2) Jί(z) can be extended to the closed cut plane as a B(R3)-valued Holder continuous
function of z.
(3) | |Λf(z)| |-*0as |Imz|->oo.
In particular si and & are L0-smooth in the sense ofKato [7]. Let us write as Jί{λ ± iO)
(XetR1) the boundary values on the reals.

Proof. Let us write the generic element of R3 as u = (uί,. . ., uN). By the
definition, for Im z > 0 (we prove only this case, the other case can be proved
similarly),

(j*G0(z)£*u)j{t) (3.20)
N oo

= X i J eiszAj(x - Vjήe' isIi°Bk{x - vk(t - s))uk(t - s)ds.
fc= 1 0

Therefore taking q ^ 1 as n/δ < q < n, we have by Lemma 2.2, (1),

\\(^G0(z);%*u)j(t)\\ (3.21)
N oo

SC Σ Je-
taιmin(μ j||p|β ik||p|sr-"'>μ,||β||β ik|| ί|s|-/«)||« ik(ί-s)|μS.

k = l o p,q

Here in this section \\f ||p's are Lp-norm of / For I m z ^ O ,

00

r* (7\— [ p~ s l m z m i

is uniformly bounded and

CjΛ(z)->0 as Imz^oo. (3.23)
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Young's inequality shows that

CM(z) | |« k | | f t 2 . (3.24)
2

fc= 1

Hence by Schwartz's inequality we get

i/2

)a ) \\u\\Λy (3.25)
j,k

By (3.22) and (3.25), we see that s#G0(z)&* has the bounded closed extension
[j/G 0 (z)^*] and this is obviously a B(^3)-valued analytic function of zeC + . By
(3.23) and (3.25), we also see that

lim || J / G 0 ( Z ) J** || = 0 . (3.26)
I m z -*• oo

For proving that sfGQ(z)0S* can be extended to C+ u U1 as a B(ft3)-valued Holder
continuous function, it suffices to prove that jtfG0(z)$* is uniformly Holder
continuous on C + . We first note that if Im z, Im z > 0 and s > 0,

\eίsz-eisz'\^sa\z-z'\a

for any 0 ^ α ̂  1. Hence by (3.20) and Lemma 2.2, (1),

0(z)<8*u)j{t)

k = 1 0

By taking 0 < α < (n/̂ f) — 1, we see that

>^α _ f α r n / II A || I D I „ - n/p II j II II D II ς - n/q\J

0

Hence by Young's and Schwartz's inequalities we get

\ l / 2

Σ ( q , / c ) 2
 I | M | Λ 3 .

j,k /

Thus we see that .s$G0(z)3$* is uniformly Holder continuous on C + with exponent α,
α is an arbitrary number satisfying 0 < α < (n/q) — 1, α ̂  1. This completes the proof
of the statements (l)-(3) for J / G 0 ( Z ) ^ * . The forgoing arguments obviously apply
for any other operator being considered here. The L0-smoothness of stf (or 38) is
obvious by the statement (1) for J / G 0 ( Z ) J / * (or ̂ G 0 (z)^*) and the definition of the
L0-smoothness (see Reed-Simon [13], Theorem XIII. 25).

(Q.E.D.)
Remark. By (3.21) we have

CjJz)^Cp,qmΆχ(\\Aj\\p\\Bk\\p,\\Aj\\q\\Bk\\q)
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where Cpq is a constant depending only on p and q. Hence

μ j . | | p | |β t | | p ,μ j . | ϊ | |β ? | | I , : i , fc=l, . . . , iV). (3.27)

Therefore if all AJs (or £fc's) converge to zero in Lf(Rn) and Lq{Un) {\^q<n/2<p
S GO), then the operator s$G0{z) J** converges to zero in operator norm. Similar
result obviously holds for other operators being considered in Lemma 3.3. This
result will be used in the proof of Lemma 3.8.

We need the following auxiliary operators.
For j — 1, 2 , . . . , N, define one parameter unitary group ^-(τ) on $\2

 a s

(τTy(τ)/)(ί) = Uj(t, t - τ)f(t - τ) (3.28)

and write the generator of this group as ££.:

V.(τ) = e~iτ*\ - x < τ < x . (3.29)

We write as

&j(z) = (£έfj-zy\ Imz^O. (3.30)

Lemma 3.4. For Im z Φ 0, j = 1,. . ., N,

R2(z) = G0(z) - [«G 0(z)]*(l + J 0 (z))- ' .j^Go(z), (3.31)

^•(z) - G0(z) - [^.G 0(z)]*(l + Άj(z))- ι^jG0{z\ (3.32)

where £0{z) = ̂ G0{z)@* and Ά. = jrf.G0(z)Og*.

This lemma can be proved similarly as Lemma 3.3 of Yajima [16], using Lemma
3.3 above and (B) of Sect. 1. Hence the proof is omitted here.

Now we proceed to the derivation of (3.15). Let

D(z) = (N x JV)-diagonal matrix with (j, j)-element .jrfjG0(z)&f.

F0(z) = Q(z)-D(z).

By (3.32) we have

(1 + D(z)Y x = (N x JV)-diagonal matrix with {j, ^-element

l-stj9j(z)£f; (3.33)

(1 + D{z)Γ ̂ Goίz) = H^&M ^ Λ W ) ) ί (3 3 4 )

(1 -f D(z))" xF0(z) = (N x N)-matrix with (3.35)

(j, fe)-element ^jtkj^j

where

(0 if j=fc.

We write the R.H.S. of (3.34) and (3.35) as

ΛG(z) = \s^^x(z\ . . . , .s/NgN(z)), (3.37)
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Thus combining (3.33)-(3.38) with (3.31), we have

= G0(z) - [^G 0(z)]*(l + (1 + D(z)Γ 'Foiz))- '(I + D(z))~ *s*G0(z)

= G0(z) - D»G0(z)] (l + F(z)Γ 'AGiz). (3.39)

To go further we need the following lemma.

Lemma 3.5.

Tv.(- id/dt®I + I®Hj-z)-1 T* = £ .(z). (3.40)

Proof. Note that

(7*/)(ί, x) = e- ί x ^ ^ a ^ 2 / ( ί , x + vjt). (3.41)

Then simple calculations show

7;.G 0 (z)T*=G 0 (z), (3.42)

7 * ^ 7 , , , = 7® A,-, T*βJTΏ. = l®Bf. (3.43)

We apply to the both sides of (3.32), Tυj from the right and 7*. from the left. Then we
get by (3.42) and (3.43) that

7* 9J(Z)TVJ = T G0(*)70, - ίT*£ijTΌJ(T*Go(z)Tvj)γ (3.44)

x (1 + 7* a*,7β/7* G0(z)7,,)(7*#,7β>)Γ »

x 7*^7^.(7* G0(z)7ei)

= G0(z) - [(/ ® Bj)G0(z)Y(l

®

We regard as L^R1) ® L2(U") = | L2(K")dί. Then the last member of (3.44) is written

as &- ' ^(ro(z - t) - [ro(z - τJBJ (1 + Q/z - τ))" J \_Aro{z - τ ) ] ) d τ ^ ( = Jf- i x

1 (Hj - z + τ)~ ' i j τ / , = (~id/δt®I +I®Hj- z)~ \ This proves (3.40). (Q.E.D.)

By spectral decomposition we have

Hj = Hj(ί - Pj) + μjPj = H) + μjPj.

We write as 1 - Pi, = PJ. Then

- z ) - 1 (3.45)

= ( - id/θt ® / + / ® HJ - z)~ J (/ ® PJ) + G/z)® P,-

We write

Tv.(- id/dt ® / + / ® HJ - z)- ' ( / ® PJ)T* = 3J(z) (3.46)

and set ΓJ.€B(L2(R1)®L2(1R'1), L 2 ^ 1 ) ) as
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Then equations (3.40), (3.45) and (3.46) imply

<&j(z) = &j(z) + T ΓjGj(z)ΓjT* . (3.47)

Now we proceed to further decomposition of (3.39). We define (1 x 2iV)-matrix
L{z), {N x 2iV)-matrix X(z) and (2N x 2N)-matrix A(z) as follows:

L(z) = Hs/^M Γ, T* ,..., stMz), ΓNT*N);

X(z) = (Xjk(z))j=U...,N:k=i,...,2N,

(I, k = 2j-ί, j = 1 ΛΓ,

Xjk(z) = i^jTVjΓjGj(z), k = 2j, j = l,...,N,

[O, otherwise;

(3.48)

(3.49)

(3.50)

flTvιΓ*

Γw

o,
^m^ΐ^lTvιΓΐGι{

j=2m-\, k = 2l-\, mφl,

j = 2m - 1, k = 2l, mφ I

j =2m, k = 2\-\, mφ I

j = 2m, k = 21, mφl.

otherwise.

A(z) is a substitute of so-called Faddeev matrix in three body problem. By (3.32) and
(3.47), we can easily see that

AG(z) = X(z)L(z); (3.51)

F(z)X(z) = X(z)A(z); (3.52)

and hence

(1 + F{z))~ ιX{z) = X(z)(l + A(z))~ \ (3.53)

Here the existence of the inverse in both side of (3.53) can be proved by the standard
way (Faddeev [3], p. 50, Lemma 7.5). Combining (3.39) with (3.51) and (3.53), we
get

R2(z) = G0{z) - [J>G0(z)]*X(z)(l + A{z))'ίL(z). (3.54)

By definition,

[J>G0(z)]*X(z) (3.55)

= t(G 0(z)^ 1, Goiz^T^ΓfGM . . . , Go(z)@N,Go(z)VNTVNΓ*GN(z)).

On the other hand by (3.32), (3.40) and (3.44),

G0(z) VjTVjrj Gj(z) = G0(z) VJ<SJ(Z)TΌJΓ*

= (G0(z)-Gj(z))TVjΓf

= G0(z) TVjΓf - TVjΓJ Gj(z). (3.56)

Here in (3.55) and (3.56) we wrote as Vj = s#j@* simply. We write as

(1 + A(z)y1L(z) = f(Jf i(z), Aγ{zγ\ . . ., jeN(z), ήN(z)); (3.57)
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Y0(z) = 1 - Σ i&}XM) + TVjΓfΛj(z)); (3.58)
i= i

YJ(Z)=-AJ(Z) 0" = 1.2,...,JV). (3.59)

Then combining (3.54)—(3.59), we finally get

= G0(z)70(z) + Σ TVj{Gj{z)Yj{z)®φj)
j = i

= JJR^zJYtz), (3.60)

where, of course,

r(z) = t(Y0(z),Y1(z),...,YN(z)). (3.61)

3.4. Estimates of Operators

In this subsection we give several estimates of the operators which are necersary for
the application of Theorem 3.2. To start with, we prove the following lemma.

Lemma 3.6. Let y > 1/2 and j = 1, 2,. . ., N. Then Gj{z) satisfies the following
properties.
(1) Gj(z) is a BCL^IR1), IΛ. y(Uι))-υalued uniformly bounded analytic function of
z e C + and can be extended to C+ u U1 as a Holder continuous function.

(2) ^ ^ ^

(3) \\Gj(z)\\B{L2ytL2_y)-*0 as | Imz|-*oo.

Proof Let m(t) = (1 + t2)"yl2 and M be the multiplication operator by m(ί). Then M
is a unitary operator from L 2 ^ 1 ) to L^U1) as well as from L2_ ̂ R 1 ) to L 2 ^ 1 ) . Hence
for proving (l)-(3), it suffices to prove that
(1)' Gj(z) = MGj(z)M is BίL^tR1))-valued uniformly bounded analytic function of
zeC+ and can be extended to C+ utR1 as a Holder continuous function;
(2)' G ^ e B J L 2 ^ 1 ) ) ;

(3)' || G'j(z) || B ( L 2 ( K l ) ) ->0 as | lmz | ->oo.

We prove (l)/-(3)/ for ze C + . The case zeC_ can be proved similarly. Since Gj(z) is a
convolution operator with the function iexp(i(z — μj)t)θ(t), θ(t) is the Heaviside
function, G'^z) is the integral operator with the kernel

Kjιy{t, s; z) = i(l + t2)' yl2eiiz~^)(ί ~s)θ(t - s)(l + 5 2)" y / 2.

J ( ) ( (3.62)

The R.H.S. of (3.62) is uniformly bounded for z e C + and converges to zero as
Imz-^oo, since y > 1/2. Hence G'}(z) is a Hubert-Schimdt operator on L2{Rι) and
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the Hubert-Schmidt norm converges to zero as Im z-> oo. This proves (2)' and (3)'
and a part of (1)'. Thus for completing the proof it suffices to prove that Gj(z) is a
uniformly Holder continuous B(L2(1R1))-valued function. This is simple, since for
any 0< α < 2y — 1 and α ̂  1,

$\Kjtγ(t9s;z)-Kjtγ(t9s;z')\dtds
^ |z - z ' Γ J | ί - s | α ( l + t2y y(l + s2)-Ut ds

and the integral in the R.H.S. is finite. (Q.E.D.)
We define the spaces Xt and 3C2 as follows:

_ 2 1

J ~ 1 (3.63)

Xί and X2 are equipped with the natural Hubert space structure. Obviously X^ and
X2 are dense linear submanifolds of $\x and ft2, respectively.

Lemma 3.7. Xx and Kx satisfy the condition (2.ϊ) of Theorem 3.2.

Proof Since R^ύ — (Kί — z)~ 1ύ = f(G0(z)w, GjLiz)^!,..., GN(z)σN) and
/0(z, x, y) = |Im z| (R^zjx, Rι(z)y) — (l/2πi)((Λi(z) — i^^z))^, j), it suffices to prove
that ^*G 0 (z)J* (or G}(z)) can be extended to the closed cut plane C+uίR 1 as a
B(L2((R"+ ι)) (or B(Lf (ίR1), L2_ δ([R1)))-valued continuous function of z. For
Gj(z) (J = 1, 2,.. ., N) this is proved in Lemma 3.6, and for 3fl*G0(z)^ in Lemma
3.3. (Q.E.D.)

The following is the key lemma in this section.

Lemma 3.8. Ifj Φ k, &fjG0(z)&* is a compact operator on L2(Un + x) for any z in the
closed cut plane C ± u (R1.
For proving the lemma we need the following preliminary lemmas. In Lemmas 3.9,
3.10 and Corollary 3.11, n is any positive integer.

Lemma 3.9. Letσ, p >0ΛϊKeB(L2(UnlL2

p(Un))andKeB(L2(Un\Hσ(Un)XthenKis
a compact operator on L2(Un).

Proof Let R>0 and χR be the characteristic function of the ball {|x| :g JR}. Then
χRK is a compact operator on L2(Un) by Rellich's compactness theorem. On the
other hand,

/ \l/2

\\Ku-χRKu\\S[ ί \Ku(x)\2dx)
\\χ\ZR /

g ( l + R2ypl21| Ku |L p

2 ^ ( i + R2yp/2 \\ K W B ^ , ^ \\U\\.

Therefore as R -> oo, || K — χRK || ->0. This proves Lemma 3.9.
(Q.E.D.)

Lemma 3.10. Let xeU", yeUm and ξ, η be the conjugate variables ofx, y (m may be
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zero). Let g{ξ, η) be a function such that for any multi-index α, sup\(d/dξfg(ξ, η)\

SCa< oo. Let G(DX> Dy) be the operator defined as

Then for any peU1,

Ul+\x\2)»G(Dx,Dv)(l < oo. (3.64)

Proof. Let p ^ 0 be an integer. By ParsevaΓs relation and Leibniz's rule we have

I(1 + \x\2γG{DX, Dy)(l + \x\2)'"u(x, y)\\

= | | ( 1 - Δξyg(ξ,η)(l- Δξr
pu(ξ,η)\\

Σ (:>-'>• Σ (2;
0 < σ < p \σJ 0 rg β ^ 2σ \P

• ( 1 -

2σ

0<σ<p0<β<2a \σJ \P /
(3.65)

where 2σ = (2σ, 2σ, . . . , 2σ). Since 0 S σ S P, 0 ^ β S 2σ,

11(5/^/(1+ Δξy
pύ(ξ9η)\\ = | |x / ?(l+x2)""pw(x,y)| | ^\\u(x,y)\\.

Combining this with (3.65), we get (3.64) for p non-negative integers. For general p
^ 0, (3.64) is the consequence of the above case and the interpolation theorem
(Lions-Magenes [19], p. 27). We now prove the case p < 0. Let w, heC%(Mn). Then
the result for the case p > 0 implies

(Q.E.D.)This obviously implies (3.64).

The Fourier transform of Lemma 3.10 implies the following

Corollary 3.11. Let /eC°°([Rn) and its derivatives are all bounded functions.
Then the multiplication operator byfis a bounded operator on Hs(Un)for any seU1

Proof of Lemma 3.9. (i) We first show that it suffices to prove that A(x — vt)
Go(± i)B{x) is a compact operator on $\2 when A, B e C^(Un) and vφO. Since
jtfjG0{z)&k is a B(5^2)-valued continuous function of z e C ± u IK b̂y Lemma 3.3, it
suffices to prove that ^jG0{±i)^keB00(S<2). Choose ω(x)eC${Mn) such that
ω(x) ^ 0, ω(x) ΞΞ 1 near x = 0 and jω(x)dx = 1. For ε > 0, ωε(x) = ε~nω(x/ε). Set
Aj ε(x) = ω(εx) (Aj * ωε)(x) and Bk ε(x) = ω(εx) (Bk * ωε) (x). Then Aj>ε,
Bk]εeC%(M")ϊmdΐoϊn/δ < q < nandp, ί/p = 1/s - 1/n, μ,. e - Λ | B k i 6 -

|| Ajt£ — Aj \\LQ and || Bk ε — ,βk ||L<? converge to zero as ε -> 0. Therefore by the remark
following Lemma 3.3, \\jtfj εG0(z)$k ε — stfjG0{z)έ%k\\ ->0 as ε->0. Hence we may
assume Ap BkeC$(Mn). By ' (3.42) and (3.43), T*krfjG0(z)όSkTΌk
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= T*ks/j TvkG0(z) (I ® Bj). Since / ® Bj is the multiplication by Bj (x) and T*ks/j Tvk

is the multiplication by Λj(x — Vj — υk)t\ Vj —υk=^0, we get the desired result,
(ii) Let / ( r J e C ^ R 1 ) be such that /(τ) - 1 for |τ | ̂  2 /(τ) = 0 for |τ | g 1 and |/(τ) |
S 1 for 1 g |τ | ̂  2. Let F Λ be the operator defined as FR = ̂ ~ 1f(τ/R)#r

t.

A(x - vt)G0(± i)B(x) = Λ(x - ιrt)G0(± i)FRB(x) (3.66)

We first prove A(x - vt)G0(± 0(1 - F J ? ) J B ( X ) G B 0 0 ( X 2 ) for any R > 0. Let £ ± (τ , ς)
= (1 - f(τ/R))(τ 4- |ξ|2/2 ± i)" '• Obviously

^ ; (3.67)

^ β \τ\yy(l + \ξ\r2

7 (3.68)

for any multi-index α and ft and any γ ^ 0 . Hence G o (± 0(1 -F Λ )6B(L 2 (K' I + 1),
H2([R"+ x)) and by Corollary 3.11

ι;ί)G0(± 0(1 - F J ^ M e B ^ ί r + ^ H 2 ( r + ^ (3.69)

On the other hand by Lemma 3.10, (3.67), (3.68) and the obvious inequality

(l + |x - ι*i)-"(i + \χ\yps c p ( i + |x| + \t\yp

9 (3.70)

we get

Λ(x - vt)G0{± 0(1 - FR)B(x)eB(L2(Un + x), L2

p(Un + x)), (3.71)

for any p > 0. Hence by Lemma 3.9, A(x — vt)G0(± 0(1 — FR)B(x) is a compact
operator on L2([R" +ί) = $\2.
(iii) Finally we prove

lim \\A{x-vt)Go(±i)FRB(x)\\=0, (3.72)
# - > OO

which completes the proof of Lemma 3.8. Since A9BeCQ(Mn\
Aix-vή^^eBiL2^^1)) and #'(ttJC)B(x)6B(L2(R l l + 1), L ^ t R 1 ) ® ^ ^ " ) ) for
any k ̂  0. Therefore for proving (3.72), it suffices to prove that the multiplication
operator by the function f(τ/R)(τ + ξ2/2 ± i)~ 1 regarded as an operator from
L2([RX) ® Hk(Un) to L2(Un + x) converges to zero in operator norm as R -> oo, for some
/c>0. We take fe= 1. Then by Sobolev's embedding theorem (see Kuroda [10],
p. 4.13, Theorem 1 and p. 4.26, Theorem Γ), we have for ueH\Un),

(3.73)
p g O

where S" ~ ι is the unit sphere in R". Let N < R. Then

-*Jw<»+ ^>»(τ + ξW + ldτdξ
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^ \ξI ̂
\u(-τ,ξ\\2dτdξ

- 2N

2N

ί dp p"- 1 { |u(-τ,
R W2τ- 2N \ S" l

oo J2τ + 2iV

j j

-Jlτ - 2N)||u(-τ, ) | i l m

Here we used (3.73) in the fourth step. Deviding both sides of (3.74) by || u \l,2(w)m\Un)

and letting R -> oo first and then N -> oo, we get the desired result easily. This

completes the proof of Lemma 3.8. (Q.E.D.)

Lemma 3.12 For any j = 1, 2,. . ., N and z e C ± u R 1 , 1 + sύfi^z)®* has an
inverse in B(ft2) Moreover (1 -f j ^ 7 G 0 (z) .^*)~ 1 is uniformly bounded and Holder
continuous in z e C 1

Proo/. By (3.42) and (3.43),

1 + rfjGoizWJ = Tv.(l id/dt®I 4- J® Ho - z)

(3.75)

where τ is the conjugate variable of ί. Now we regard as L2(R1) ® L2(Rn)
®

JL2([R") Jτ; we write as β/z) - Λj(H0 - z)" ̂ ^ Then by (3.75),

j*jG0{z)<gf = T y j.#T 1 (7(1 + Q, t T * . (3.76)

Since (1 + Qj(z))~ x exists for Z E C + uίR1 and is uniformly bounded and Holder

continuous there by Sect. 1, (C). (i) and Assumption (III), (3.76) implies that

(3.77)

(Q.E.D.)

(1 + .tfjGoizWjr ι = TVJ^~ x (7(1 + Qj(z - τ))- ^τj.J^T*

exists and is uniformly bounded and Holder continuous in zeC+

Lemma 3.13. Let j φ k, j , k = 1, 2 , . . . , N. Then

(1) ΓjTi^keB(L2(Un+ί),

(2) sJ^Jt, < ^ 7 r ? (
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(3) ΓjT*.&*.stfkTVkΓ* is a multiplication operator by a function fj}k(t) satisfying

Proof We frequently use the following two results:
(i) liv + υ' and p ^ 0,

(1 + \x - vt\2)p(l + \x- υ't\2γ £ C(l + |x | 2 + | ί | 2 ) p , (3.78)

where C is a constant depending only on p and v — v'\
(ii) By (1.6) and Sobolev's embedding theorem, for any Ogp,
(l + \x\2γφ.(x)eΠ{Un\ where q = 2n/{n-4) if n ^ 5 ; l < ^ < α o is arbitrary if
n — A\ and 1 ^ q S °° is arbitrary if n — 3. Therefore by Holder's inequality,

(1) \(ΓjT^Mku)(ή\ ^$\φj(x)(l + \x- (vk - Vj)t\2)~δl2u(x - vjt, t)\dx.
By Schwartz's inequality and (3.78), the R.H.S. is majorized by the square root of

C(l+t2yδ($(l+x2)δ\φj(x)\2dx)($\u(x,t)\2dx).

UP.Hence j(1 + t2yδ\(ΓjT*.^ku)(t)\2dt g C| | ( l + x 2 f 2<^
(2) K ^ T ^ Γ f σ)(ί, x)| = \Aj\x - Vjt)φk(x - vkt)σ(ή\.
Hence by Remark 1.1, (1.6), (3.78), (3.79) and Holder's inequality, we have

Cf (1 + x2 + t2f\ Wh ,(x - vjt) + Wh2(x - Vjt)\2

•(1 + |x - vkt\
2f\φk(x - vkt)\2\σ{t)\2dxdt

The other is easier to prove and the proof is omitted.
(3) ΓjT^.j^k^TVkΓ^ is obviously a multiplication operator by a function fjtk(t)
which is majorized by

~ (υk - υj)t)φk(x - υkt)\dx. (3.80)

By Holder's inequality, (3.78) and (3.79), (3.80) is majorized by constant times

Il(i + X2)SΦJ\\L2»,<*-2) | |(i +χ2)δΦk\\L2^-v \\vh\\Lnl2(i + t2yδ.
(Q.E.D.)

Lemma 3.14. For any j , k = 1, 2 , . . . , N,

®j x TVjΓJeK(L2{Uι\ L2{W + x)); (3.81)

•^j 1 v j

1 j 1 j 1 vj^j » ^ k i ϋ J

i j ι j 1 vj

Proof (3.81) is obvious by (1.6). We prove (3.82). By Schwartz's inequality,

jJU x) - WjTvffr.Tffi ^)(ί, x) satisfies | fft, x)\ = \ A.(x - υ.t)φμ - v}t)
-1| φj(x)(l + x2f2 I || u(t, ) ||. Hence by Holder's inequality, || f. || g || (1 + x 2 ) i / 2 ^ . ||

• || Φj\\L2n/(n-2) \\ΛJ\ ^ | | M | | . We prove the second. The case j = k is obvious

by (3.18). We assume jφk. By Lemma 3.13? (1), it suffices to prove
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0S~ι TυΓ * 6 B ^ ί R 1 ) , L2{Mn+1)). By triangle inequality (1 + ί 2 ) " δ / 2 ( l +

\x - vt\2f2 S C(ί + xf2. Hence

jK^^^T ^^^l^ίdx^ClKl+xT'ΦjlHKl + ίT^II2, (3.83)

from which the desired result follows. (Q.E.D.)

Lemma 3.15. For any j , fc = 1, 2,. . ., JV, Jί jΛ{z) = srf ffi(z)<%k satisfies the follow-
ing properties.

(1) Ji ^ fe(z) is a 3(Λ2)-valued analytic function ofzeC ± and is uniformly bounded there.
(2) ^ f k(z) can be extended to the closed cut plane C+ u U1 as a B(5^^-valued Holder
continuous function of z.
(3) // j Φ k, Jίjt k(z) is a compact operator on $k2 for any z e C + u IR1.
(4) \\L£jΛ(z)\\->0 as |Imz|-^oo.

Proof By the resolvent equation

= G0(z) - G0(z)(I®Vj)(-id/dt®I + I®Hj - zY \ (3.84)

Multiply to the both sides of (3.84), TVjAj from the left and
{I®P))T*Mk from the right. Then by (3.42), (3.43) and (3.46), we get

MjΛ{z) = ^GoίzJΓ, ,//®PJ)r*« f c - s/jG0{z)&jJ(hk(z). (3.85)

Therefore by Lemma 3.12,

1 ^ k . (3.86)

Here J*JG0(Z)TΌJ{I® P))T*βk = s/jG0{z)<gk - ^jG0(z)^k^k

 ι Tv,ΓfΓjT^k.
Since s^ jGo(z)0βk satisfies Lemma 3.3 and is compact iϊjφk by Lemma 3.8;
&k Tv.ΓjΓjT*.^keB(${2) by (3.82) and (1 + J^JG0(Z)^SJY X satisfies Lemma 3.12,
Jί: Jz) satisfies all the properties of Lemma 3.15.

(Q.E.D.)
We set as

N

2) = , 0 {L2(Un + 1)® LKR 1 )) (3.87)
j = i

with natural Hubert space structure.

Lemma 3.16. (1) L(z) is a B(3£2, W-valued analytic function of zeC± and is
uniformly bounded there.
(2) L{z) can be extended toC+uU1 asa B(3E2, ty)-valued Holder continuous function.

Proof. Lemma 3.13, (1) implies that ΓjT* eB(X2, LjiU1)). Hence applying Lemma
3.15 to s$'β){z\ we get easily the statements of the lemma.

(Q.E.D.)
Finally we prove the following lemma.

Lemma 3.17. The operator valued function Λ(z) satisfies the following properties:
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(1) A(z) is a B(¥))-valued analytic function of zeC± and is uniformly bounded there.
(2) A(z) can be extended to C+ u U1 as a B(*ί))-valued Holder continuous function of z.
(3) For any Z G C + U R 1 , A2(Z) is a compact operator on $).

(4) lim μ 2 ( z ) | | = O .
llm z|->x-

Corollary 3.18. There exists a closed null set ecz U1 such that (1 + A(z))~'* can
be extended to C+ u([R1y) as a B(^J))-valued locally Holder continuous function of z.

Proof 1) .jtfj4?Cj(z)3$k satisfies the statments of Lemma 3.15.
2) Γ Ί*Mk satisfies Lemma 3.13, (1).
3) Put Cjtk{z) = ΓjT*J#is/kTOkΓ*Gk{z). Since Γ^Mt-^t^Jt is a multipli-
cation operator by fjik(t) satisfying the estimate \fjtk(t)\ ^ C(l + t2) δ by Lemma
3.13, (3), Lemma 3.6 implies that CiΛ(z) is a B^CLf (R1))-valued bounded analytic
function of zeC + and can be extended to C+ u U1 as a Holder continuous function;
| |C j i k (z) | | ->Oas |Imz|->oo.

4) Put jrjtk(z) = j*j&
c

j(z)&isίkTΌkΓ*Gk(z). We show that ,¥ jΛ(z) is a
B ^ C L K R 1 ) , L2(Un+ ^-valued bounded analytic function of z e C ± and can be
extended to C + <= U1 as a Holder continuous function; H-yKj k(z)|| ->0 as | Imz | —• oo
and is uniformly bounded. Using (3.85) for j / 7 Gj(z)^fcwe get

JTjt k(z) = s/JG0(z)TΌμ®P))TZ8*J*kTΰkΓ*Gk{z) (3.8

-stjG0(z)£jΛ Jtk(z).

Therefore by Lemma 3.12, we have

(3.89)

Now we apply Lemma 3.12 to the first factor; Lemma 3.15 to .^jG0(z).^ Lemma
3.14, (8.82) to {l-@k

1TυjΓJΓjTΐj@k*) , Lemma 3.6 and Lemma 3.13, (2) to
•^kTVkΓ*Gk(z). Then we get the desired result.
Combining these results (l)-(4), we get easily the statements of Lemma 3.17.
Corollary 3.18 is a well-known result of Lemma 3.17.

(Q.E.D.)

3.5. Completion of the Proof of the Theorem

What is left to be proved is R(W) = S\2. We takeec U1 as in Corollary 3.18. We set
/ = [R V ; Si and ft2 as (3.1); Kί and K2 as (3.3), (3.4) and (3.5); J as (3.2); Y(z) as (3.60);
X1 and X2

 a s (3.63). We first check that all the assumptions of Theorem 3.2 are
satisfied. Condition (1) is satisfied by Lemma 3.1. In condition (2), for j = 1,2,3E7 is a
dense linear submanifold of 5^ and is a Hubert space. (2.i) is satisfied by Lemma 3.7.
The equation (3.15) is satisfied by (3.59). Y(z) is a B(3E2, ϊx)-valued strongly
continuous function of zeC + (J)u J, since (1 + A(z))~ xL(z) is a B(£ 2, ?))-valued
strongly continuous function of ze C + (/) u / by Lemma 3.16 and Corollary 3.18 the
injection operator from 3E2 into R{β)* is bounded and TvΓJ satisfies (3.81). Hence
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the all assumptions are satisfied. Therefore by Theorem 3.2. we see that K1 and K2

are absolutely continuous on /; R(1Ψr) ZDE2(I)SΪ2. Let us admit the following lemma
for a moment.

Lemma 3.19. K2 is spectrally absolutely continuous on S\2.
By Lemma 3.19, E2(I)$\2 = 5*2 since UX\I has Lebesgue measure zero. Thus R(W)
= R2. This completes the proof of the theorem.

Proof of Lemma 3.19. Let us define a one parameter unitary group /(τ),
— oo < τ < oo? and a unitary operator T on R2 as

(J(τ)w)(ί,x) = κ ( ί - τ , x ) , (3.90)

(TM)(ί, )=l/(ί,0) M (ί, ), ueSK2. (3.91)

By Sect. 1, (B), (ii), (3.4) and (3.5), we can easily see that

exp ( - iτK2) = T/(τ) Γ*. (3.92)

Since /(τ) has the absolutely continuous generator — i{d/dt\ (3.92) obviously implies
that K2 is absolutely continuous.

(Q.E.D.)
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