Communications in
Commun. Math. Phys. 75, 153-178 (1980) Mathemaﬁcal
Physics

©by Springer-Verlag 1980

A Multi-Channel Scattering Theory
for Some Time Dependent Hamiltonians,
Charge Transfer Problem

Kenji Yajima*
Department of Mathematics, University of Tokyo, Tokyo 113, Japan

Abstract. Scattering theory for time dependent Hamiltonian H(t)=
—(1/2)4+Y, V:(x —q;(t)) is discussed. The existence, asymptotic orthogo-
nality and the asymptotic completeness of the multi-channel wave operators are
obtained under the conditions that the potentials are short range:
|V;(x)] = C;(1 + |x|)” > 7% roughly spoken; and the trajectories g;(t) are straight
lines at remote past and far future, and |q;(t) =g, ()] > 0 as
t— + 0(j #k).

1. Introduction

The purpose of this paper is to study the scattering theory for a class of Schrodinger
equations with time dependent potentials

(t X)=—= A u(t, x) + Z Vi(x = q;(1)ult, x), (LD
j=1

where ¢;(t)e R"(n = 3) are the functions of te R! which are straight lines at remote

past and far future.
Suppose that N-centres of forces are traveling along the given trajectories
q;()(j=1,2,..., N)each of which acts on a quantum mechanical particle of mass 1
through the potentxal V;(x), then the Schrodinger equation for the particle is written
as (1.1). If |g;(t) — q,(t)| = oo as || — oo sufficiently rapidly in conjunction with the
rate of decay of the potentials, one would naturally expect that the behaviour of the
particle in far future or remote past are classified into (N + 1)-ways: (1) The particle
behaves like a free particle; (2) the particle travels with one of the centres g;(t)
forming a bound state around the centre (j = 1, 2, ..., N). We shall prove in this
paper that this is actually what is going on with the equation (1.1) under a suitable
condition. In physics literature these centres of forces are usually supposed to be
atoms and ions, and the particle to be the electron. In such case the scattering theory
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for (1.1) is nothing but to study how the electron is transfered from some atom or ion
to another. This is the reason why the problem is named “charge transfer problem”.

Assumption I. (1) For any j=1,2,..., N, ¢;(t) is a continuously differentiable
function from R! to R™.
(2) There exist vectors v; ,a; . €R" such that for +t =1,

q;)=q; LO)=tv; 4 +a; +. j=12,...,N. (L.2)
B) vja Fope if j#k

AssumptionIl. Forany j=1,2,..., N, V;(x)is a real valued function on R" such
that there exist functions W, ;e Ws(R" for somen/2 < s < n, W, ,e Wi °(R")and a
constant 1 <9 < 3/2 such that

Vi) = (1 +1x%)7 (W, 1 () + W], 5 (). (1.3)

Here W*4(R" (k = 01is an integer, 1 < g < oo)is the Sobolev space (see Yosida [18],
p. 55 for the definition).

Remark 1.1. By Sobolev’s embedding theorem (Stein [15], p. 124), W, e [*(R"),
1/p =1/s — 1/n. Note p > n. Hence by Holder’s inequality V; e L*(R") for any n/26 < q
<p; A;(x) =01+ x|’ V;(x)e LA(R") for any n/6 < g <p. In what follows p is
always defined by 1/p=1/s— 1/n.

Before stating the last assumption, we state here several preliminary results of
Assumption (I) and (II) which can be readily obtained by using the well-known
theorems.

(A) Let H, be the unique selfadjoint extention of — 4/ 2]030 (n ON the Hilbert space
$ = L*R"). By Remark 1.1, the multiplication operator V(x) is H,-compact
(Reed-Simon [13], p. 369). Hence for any teR' and j=1,2,....N,H(t)=
H, + ZVj(X - qj(t))5 H.()=H, +Z Vilx —q;,+(t)), H;()=H,+ Vi(x —q;(0),
H; (()=Hy+ Vj(x —q; +(t)) and H; = H, + V;(x) are selfadjoint on $ with the
common domain W% 2(R") = H2(R").

(B) Since 0V;/0x, e L4(R") for any n/26 < q <s,
CLH+ 17 Y= g, 0)(Hy + 1))
(Reed—Simon [11], Theorem X.19 and Theorem X.20). Therefore by Simon [14],
Theorem 11.27, —iH(t) generates a unique propagator U(t, s) (— o0 <t, s < 20):
i) U(t, s) is a unitary operator on § and is strongly continuous in (z, s);

i) U(t,s)U(s,r)=U(t,r), — o0 <r,s5,t < 0;

iii) for feD(H}'%), U(t, s) fe D(H}/?) and

@)Ut s)f = —iH@®U(L, s) f, (1.5)

where the derivative in the L.H.S. of (1.5)is understood as the strong derivative in the
space H ™ '(R") = the dual space of W' 2(R").
The same statements are true for H, (1) and H; (1) and we write the

=C(f) <o (L.4)
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corresponding unitary propagators as U,(t,s) and U, ,(t,s), respectively
(j=1,2,...,N)

(3) Letussetas 4(x)=(1+ | x|y V(X)Bx)= (1 + [x]?)~%?2 and write as A;and
B; the corresponding multiplication operators. RL = [0, o). For Banach space %,
B(X)is the Banach algebra of all bounded operators on X. For a closable operator T,
[T7] is its closure. We write as ro(z) = (H, —2) " ', z&R%.

(i) (Ginibre—Moulin [4], Prop. 3.1.) Let Q;(z) = [4;(H, —z)~ ' B;] for ze C'\R}.
Then Q;(z) is a B(9)-valued analytic function there and can be extended to the closed
cut plane (the closure of C'\R% where upper and lower boundaries are distin-
guished) as a B($)-valued Holder continuous function. ||Q;(z)| -0 as |z|— oo.

We write its boundary values on R} as Q;(4 +i0) = lim Q; (4 + ie).
el 0

(ii) (Konno-Kuroda [9]) For any j=1,2,..., N, H; has at most finite number
of negative eigenvalues of finite multiplicity. We write the eigenvalues and the
corresponding eigenfunctions of H; as u; y,..., W, and @; 1, ..., @; ,, (@ 18
normalized). Clearly H; .(f) has the same eigenvalues and the eigenfunctions
i v =0 (x—q; + (), k=1,...,m;. We write the projection onto the closed
subspace spanned by ¢; ; ,;’s as P; . ().

(iii) (Agmon [1], Lemma 4.2.) For any multi-index |«| <2 and any p =0,
(1+|x?)P(0/0xY ;v L*(R"), (1.6)
j=1L2...,N, k=12,...,m,

Assumption I11. For any j=1,2,...,N,I + Qj(i +i0) has its inverse in B($) for

A20.

Remark. By this assumption we assume that H;(or H; . (f)) has no non-negative
eigenvalues or resonances.

Now we can state our main theorem in this paper.
Theorem. Let Assumptions (I), (II) and (I11) be satisfied. Then for any seR?, the
following statements hold.
(1) (Existence of the wave operators.) The following limits exist:

s-lim U(t,s)” exp (—i(t —s)Hgo) = W, . (s); (1.7
t— +
s-lim U(t,5)” ' U; . (t, s)exp (ix-v;, 1) P 1 (s) = W . (s). (1.8)
t—> +

(2) (Asymptotic orthogonality.) The ranges R(W; 1 (s)),j=0,1,..., N, are ortho-
gonal each other.
(3) (Asymptotic completeness.)

N
@ RV, +(5)=9. (1.9)
ji=o
The rest of this paper is devoted to the proof of this theorem. We sketch here the
outline of the proof with somewhat crude terminology, displaying the plan of this
paper. In Sect. 2, we shall prove the existence and the asymptotic orthogonality of
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the wave operators by standard methods (Reed—Simon [12], Sect. X1.3, XL.5). We
shall prove the asymptotic completeness in Sect. 3 which is devided into five
subsections. To prove the completeness we must make a detour. According to
Howland [5], we shall introduce bigger Hilbert spaces &, =IL*(R},
P(RY))®L(RHD - @ L*(R)) and &, = [2(R}, [*(R")) of square integrable func-
tions of time-space variables (¢, x): &, is the “channel Hilbert space” and R,
is the “basic space”. The channel Hamiltonian K| = (—id/dt + Ho)® Y. @ (— id/dt

Jk
+ ;) is considered on & and the Hamiltonain K, = —i0/0t + H(t) is considered
on &,. Then we shall study the two space scattering between K, and K, via the
identification operator J:&; - &,, J is defined by (3.2). It will be proved in

Subsect. 3.1 that the wave operators #, = s-lim exp (itK,) J exp (— itK,) exist

Tt

and are the isometries; the completeness of # . implies that of the original wave
operators. Thus by eliminating the explicit time dependence of the Hamiltonians by
this procedure, the problem is reduced to the completeness problem of the wave
operator # , for the time-independent Hamiltonians. Here is an important
observation: If we replace —i0/0t by the kinetic energy — A /2 of certain particle and
q;(tys by y in K, and K,, then K, and K, have the same form as the Hamiltonians
appearing in three body scattering theory (see Faddeev [3], Ginibre—~Moulin [4],
Howland [6], Kato [8] and Yajima [17]). Being suggested by this observation, we
shall prove the completeness of #".. by using the methods of three body problem. In
Subsect. 3.2, we record the abstract theorem due to Kato [8] by which the
completeness will be finally proved. In Subsect. 3.3, an algebraic procedure of the
construction of the substitute of the “Faddeev matrix” will be carried out in a way
similar to that of Howland [5] in three body case. Various estimates of the operators
necessary to apply Kato’s theorem will be done in Subsect. 3.4. The proof of the
completeness of the original wave operators will be completed in Subsect. 3.5.

The following notation and conventions are used throughout the paper. For
1 =g =< 90, LYR") is the Banach space of all g-summable functions on R" with
natural norm. For non-negative integer k, W*%(R") is the Sobolev space,
HY(R") = W*2(R"). For yeR', LZ(R") is the weighted L*-space:

LR = {f e Li (R : [ (1 4+ 2 [ | o=

The norm of L*(R")is usually writtenas | | regardless of the dimension of the space
R"; the norms of other spaces are denoted as || |9, | [ w~« and etc.

For mu1t1 index o= (o, 0,,...,0,), o,eN, (¢/ox)" =(c/ox )" .. (8/6'x")“";
x*=x7"...x. For multi- mduces o and B, oc( <,p means o < B, for all j=1,.

if a§/3,<;>=<;i>...(;"), where for a,beN,(Z) Wag-‘?l;ﬁ L = {zeC:

Imz 20} and for IR, C, (I)={zeC, :Rezel}. #_(or #)) is the Fourier
transform with respect to the varlable x (or 1). We write / 7 f = f. regardless of the
variable.

For Hilbert spaces $;,..., 9, 9P - D 9H,,and H; ® - ® H,, are their direct
product and tensor product. If there exists a linear topological space £ such that
9;= Lforany j=1,...,m 9, + -+ 9, is the sum space of H;s. If 4;,..., 4

m
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are closed operatorson 9, . . ., 9,,, respectively, 4, @@ A, and 4, ® """ ® A4,

are their direct product and tensor product. A; ® I and I ® A, are often written as

A, and A, simply. Identity operator is often written as 1. If 4 is a one-one closed

operator from §, to H,, the range R(A) of A is considered as a Hilbert space with the

norm | Au| gy = (|| Aul|* + |u[|*)"?. For a family of Hilbert spaces {H(1):
@

— o0 <t < oo},  H(t)dt is the direct integral of {$(r)}. For a closable operator A4,
[A] is its closure. If [A] is a bounded operator we often use the notation as if the
operator A itself is a bounded one. For Banach spaces X and %), B(¥X, 9)) is the space
of all bounded operators from X to %), B, (X, ) the compact operators from X to 9,
B(X) = B(X, X). The symbol @ is also used to denote the sum of orthogonal elements
in a Hilbert space.

If m(x) is a function, the same symbol m(x) is also used to denote the
multiplication operator by the function. The integral without referring to the region
of integration is understood to be taken over the whole region of the variable.

2. Existence and Asymptotic Completeness

Here we shall prove the first two statements of the theorem. We start with the
following lemma.

Lemma 2.1. Let Assumptions I and 11 be satisfied. Then for any se R! the following
statements hold.
(1) The following limits exist:

s-lim U(t, 8)" U (L, 8) = T4 (s);

t—>+

s-lim U, (¢, 5)" UL, s) = Q. (s).

t—> +

(2) I' 4 (s) and Q. (s) are unitary operators on S and I',(s)=Q ,(s)” ..

Proof. Since H(t)=H . (t) for +t=ty, Ulty, t,)=U,(t,ty) if +2;,=¢t, and
+t, 2 t,. Therefore if +1 =1,

U(t,s) U (8, 8)=Ulty, )" LU 4 (to, 5);
Ui (t> S)_ ! U(ta S) = Ui(t07 S)“ ! U(t09 S),

by Sect. 1, (B), ii). Thus (1) holds trivially. (2) is an immediate consequence of (1).
(Q.ED.)
By Lemma 2.1 and the chain rule for the wave operators (Reed—Simon [12], p.
18), it suffices to prove the theorem under the condition that g;(t) = g; . (¢) for
“+47 case (t— 00), and ¢;(t) = g; _(¢) for “—" case (t—> — o). Since the following
argument for “ +” case equally applies to “ —” case, we shall treat the “ +” case only.
Thus we assume hereafter that H(t) = H . (t), H;(t) = H; . (t) and we write v; ,, etc.
as v}, etc., omitting the suffix “+”. Since the cases a; # 0 can be treated similarly, we
assume a; =0 (j =1,2,..., N) hereafter.
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Lemma 2.2. Let F, G be the multiplication operators by f, ge L(R")(1 £ g < o0 ) and
ue$. Then

(1) |[Fe™ "o Gul = @nlt) ™" f |allg ]l wallul;

(2) lim [[(e” "Hou)(x) — ||~ "2 &2 =D (x /1) || = 0.
t—> t+ o
Statement (1) is proved by Kato [ 7], p. 277 and statement (2) is Theorem IX. 31
of Reed—Simon [11].

Lemma 2.3. For any t,seR*, j=1,2,... , Nand k=1,2,..., m,

(U;(t, s)(exp (ix-0,) ;. ) (x) 2.1
=exp (ixv; — i(t — )V /2 + ;) B;. 5.1 (x — (t — 5)v)).

Proof. 1ft =s,(2.1) obviously holds. By using the equation H;(t)®; ; ,(x — (t — s)v;)
= ;1P 51 (x — (t —5)v;), we get by direct calculations that for any seR’

(—id/ot + Hj(t))(exp (ix- v; — it — s)(uf/2 + ,uj,k))d)j,s’k(x —(t—s)v;)) =0.

Then the uniqueness of the propagator (Sect. 1, (B)) shows that (2.1) holds.
(QE.D)

Proof of Statement (1). We prove the case s = 0 only. The other cases can be proved
similarly. We use the Cook’s method (Reed—Simon [12], Theorem XIL.4).

(i) We first prove the existence of the limit (1.7). Let f,geCZ(R"). Then
(U(t,0)" *exp (—itHy) f, g) = (exp (— itH,) f, U(t, 0)g) is continuously differentiable
with respect to ¢, since exp( — itH,)) fe D(H ;) and U(t, 0)g is continuously differenti-
able in H™ 1(R") by Sect. 1, (B), iii). Hence

(Ul(ty, 0)” texp (it,Ho) £, 9) — (U(ty, 0)” texp (=it Ho) f; g)

d
= fg(exp(— icH,) f, U(a, 0)g) da

N ta

=Y i[(U(s,0)" "Vj(x — ov;)exp(—iocH,) f, g) do.

j=1 1
By Schwartz’s inequality we have

|(U(t,, 0)" texp (—it,Ho) f — Ult;, 0)” "exp (— it Ho) £, 9)l
N t2

= X [IVitx —ov)exp(—icH,) f || da]g],

ji=1t

which obviously implies

H Ul(t,, 0" Lexp (— it,Ho) f — Ul(t;,0)” "exp (~ it1Ho)f” (2.2)
N
< Y J|Vix—ovj)exp(—iocH,)f | do.
i=1t

Now take g as n/26 <q<n/2. Then by Holder’s inequality | V;(x —ov;)
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exp(—ioHo) f | = || Vil |l exp(—ioHq) f|,, 1/r+1/q=1/2. Applying Kato’s es-
timate (Kato [7]), we have |exp(—igH)f |, =Q2nlol)” ™| f|,, 1/r+1/r = 1.
Thus we have || V,(x — ov))exp(—ioH)f | = | V,],| f ]I, (27|a])~"4 Since n/26 <
q <n/2, the integrand in the R.H.S. of (2.2) is integrable on (1, c0). Therefore
U(t,0)" "exp(—itH,)f is convergent as t — 0. Since U(t,0)”'exp(—itH,) is
unitary for any 0 < ¢ < oo, this holds for any f € 9.

(i) Next we prove the existence of (1.8). Obviously it suffices to prove that
U, 0)? U (t,0)(exp(ix-v)¢, , ) is convergent as t > c0. We omit the suffix 0 in
®;.0,x hereafter. By a similar argument as to derive (2.2), we have

[U(t,,0) ! U;(t,, 0)exp (ixv;); 4)

— U(ty, 00 U (ty, 0)(exp (ix-v;)d; )| (2.3)
< Y (| Hix — o0 U,(a, 0)exp ix-v;) by 1) do.
1t
By (21), [[W(x—av)U;(0,0)(exp(ix-v;)d; ) || =l Vi(x — ov)¢; ,(x — ov;)|| =
[Vi(x)0;, ((x —a(v; —v))]. We write v, —v,=0#0. Then by

Holder’s inequality | V;(x)e; ,(x —ov) || < [ Vi(x)(1 + [x[)”2 ], [|(I +]x]>)”%% x
(1+|x—0v]) ™ 7| = [ (L + |x — 002 ¢; ((x —0v) ||,  1r+1/m=1/2. By
Remark 1.1 | V(x)(1 +]x]*)%?| . < o0; by (1.6) and Sobolev’s embedding theorem
[(1+1xY2¢; ,(x)||.- < . On the other hand we have by elementary computation
that [[(1+x|*)7°2 (1 +|x —ov|>)"%*| = £27%2(1 +|ov|?)” %% Since § > 1, the
R.H.S. of (2.3) is integrable on (1, o). Hence U(z, 0)™ ' U;(t, 0) (exp (ix-v;)¢; ;) is
convergent as t —» . (Q.E.D))

Proof of Asymptotic Orthogonality. Again we prove the case s = 0 only. Other cases
can be proved similarly. For j, k=0,1,2,..., N,

(W;(0)f, Wi(0)g) = tlim (U;(t, 0)e™ ™ P;(0) £, U,(t, 0)e™ ** P (0)g),

where v, =0, P (0)=1 and U (¢, s)=exp(—i(t —s)H,). Therefore it suffices
to prove

lim (U,(1, 0) f; U,(t, 0) (exp (ix“ v;)p; ) = 0; (2.4)
lim (U;(t, 0)(exp (ix-v;)9; ), Uy(t, 0)(exp (ix - v) ¢y, ) = 0, (2.5

for jl=1,2,...,N, k=12...,m;, m=1,2,....m_, j#1 and feC(R"). Since
(U (z, 0)(exp (ix - v;) ¢ 1), Uy(t, 0)(exp (ix - v) ;. )|
= Rj 16,k (x = vt} by m(x —vit)]dx,
(2.5) obviously holds. By Lemma 2.2, (2) and (1.6),
limsup |(exp (—itH,) f, U;(t, 0)(exp (ix - v;)P; )

t— o0

<limsup | "2 f (x/t), . (x —v;1)|dx

t—> o0 Rn
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< timsup £ 7 | (14 LS D2, | (14167 02)
=0.
This proves (2.4) (Q.ED,)

3. Asymptotic Completeness

This section is devoted to the proof of the asymptotic completeness of the wave
operators, the third statement of the theorem.

3.1. Reduction to the Stationary Problem

According to Howland [5], we shall prove the asymptotic completeness, reducing
the problem to the stationary one. Let us first introduce two accessory Hilbert
spaces ], and K, as follows.

K, = (LARHQ LAR) O LARY D LR @ ... ® LA(R'), ) m-copies 3.1)
K, = LA(RH @ LAR",
We write the generic element of &, as i ="(u, 0, ;, ..., 6y, ), where ' stands for
the transpose. We define the identification operator J from K], to &, as
N mj
Ji=u+ Y ij< > oj,k®d>j‘k>, (3.2)
i=1 k=1

where for any vector ve R" the operator T, is defined as
(T.)(t, x) = exp(i(x-v —v?t/2) f (t, x — v1)

for fe*(R")®L*(R") = L*(R"* ). Obviously JeB(R,, &,). Now we define one
parameter families of operators % (r) and %,(t) (— © <t < ) on the spaces &,
and &,, respectively as follows:
(% (T)i)(t) = (exp (— itH y)u(t — 1), exp (— ity 4)oy ((t—1),
oo XP (= 1Ty ) ON (= T)); (3.3)
(U ,(Du)(t)=Ul(t, t — t)ult — 7). (3.4)
% (7) is obviously a strongly continuous unitary group on &, and so is %,(t) on &,

since U(t, s) is strongly continuous in both variables ¢t and s and is unitary. Hence by
Stone’s theorem there exist selfadjoint operators K, on &, and K, on &, such that

U\ (v)=exp (-itK,), U,(t)=exp(—itK,). (3.5)
By (3.3) we readily see that
N m;j
Ki=Ly® Y @( Y @L,-,k>,
ji=1 k=1
Lo=—id/0t+ Hy; Lj,= —id/0t+ u;,. (3.6)

The following lemma plays an import role.
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Lemma 3.1. Let Assumption (I) and (I1) be satisfied. Then the following statements
hold.

(1) For any ief,,

lim || Jexp(—itK )l = |a|.
(2) The following limit exists:
s-lim exp (itK ;) J exp (itK,) = #".
t— o
(3) The operator ¥~ is isometry from & | to K, .
(4) If the range R(#") = K,, the statement (3) of the theorem holds.
Proof. By definition
Jexp (—itK,)u(t) (3.7)

N m; "
=e Hoy(t — 1)+ Y ij< Y, e e (’j,k('—f)®¢j.k>(t)'

ji=1 k=1

Each term under the Z-sign in the R.H.S. of (3.7) can be written by (2.1) as

e"(""’i_“’jz/z)qu,k(x —v;t)e” i’”j’koj,k(t —1) (3.8)
—e i~ !)l‘j»ko.j’k([ —1) ®(Uj(t, 0)8”“""675}“,().

We prove (1) first. Since T, is unitary, it suffices to prove that forj, [=1,2,..., N,
k=1,2,...,m;m=1,2,...,m such that (j, k) # (I, m),

}Lr?o (e_i'HOu(t — ‘E), ¢j,k(’x — vjt)e—‘i(f!lj,k_X.Uj+l("}/2)o-j’k(t _ T))Rz =0; (3.9)
lim (g, (x —v;t)e” (e x0T 03D g (¢ 1),
T

bp (X = ppt)e” T2 g R g (1— 1))q, = 0. (3.10)

Let us prove (3.9) first. The inner product is majorized by

fdt [dxlte™ " ou(t — 7, N(x)d, 4 (x = v;0)0,,(t = 7)]
= [lo; ((Dldt [ dx|(e™ "Mou(t,))(x); ,(x —v;{t + V))]. (3.11)

By Schwartz’s inequality the integral by x in the R.H.S. of (3.11) is majorized by
| u(z,.)|| which is square integrable with respect to t. On the other hand if we fix 7, this
integral coverges to zero as t — co. This can be proved exactly in the same way as to
prove (2.4). Hence (3.9) is an immediate consequence of Lebesgue’s dominated
convergence theorem. Next we prove (3.10). If j =land k # m,(3.10) is obvious, since
¢; . and ¢, are orthogonal each other then. Suppose j # I. The inner product is
majorized by

jdtlf’, (D)0 m( jdx|¢1 K(x — Uj(['"T))¢l,m(x‘vl(t+f))|- (3.12)
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The integral by x in (3.12) is uniformly bounded by 1; for each fixed teR! this
converges to zero as t— o0, since ¢; , and ¢, ,, are normalized and v; # v,. Thus
(3.10) is an immediate consequence of Lebesgue’s dominated convergence theorem.
Next we prove (2). By (3.4), (3.7) and (3.8) we have

(exp (itK ,) J exp (— itK,)u)(?)
=U(t, t +1)(Jexp(—itK,)U)(t + 1)
=U(t, )[U(0,1 + t)e™ 1 D HogitHoy(y)
+ Y. e, (D@ U0, t + 1)U (t + 7, 00e™ ¥, ;] (3.13)
ik
By (3.13) and statement (1) of the theorem, for any fixed teR?, we have
s-lim (exp (itK,)J exp (— itK,)u)(t) (3.14)

L g o}

= U(t, 0)[W,(0)e™ ou(t) + ) e™iva; ()@ W;(0) &, ],
Jsk
where the limit is understood in the sense of the strong convergence in $. Here
in the R.H.S. of (3.14) all summands are orthogonal each other by statement
(2) of the theorem and the isometry property of W;(0)s. On the other hand
[[(exp (itK,) J exp (— itK ) (1) || < ||u(t)| + Y lo; . (1)], and the R.H.S. of (3.14) is
also majorized by ||u(1)| + Y. |a; (1)]. Since (|u(t)|| + ). |6, (t)]) is integrable with
respect to teR?, Lebesgue’s dominated convergence theorem implies that

s-limexp (itK,)J exp (—itK,) = #"

exists on K.
Statement (3) is a direct consequence of statements (1) and (2). Finally we prove

statement (4). Let the operators Ton &,, 0 on & and #~ from & to &, be defined as

(Tw)(t) = U(t, O)u(t), uef,;
Ou)(1) = (™ oult), e™ roy ((1). .., " NN gy (D)

(7 u)(t) = Wo(O)u()® <Z 75,k ® Wj(0)¢>,~,k>-
J.k

T is unitary on &, and O is unitary on ®,. By (3.14) we have # = T #~ O, hence
R(#")=TR(#)andif R(#) = K,, R(#) = K,. By asymptotic orthogonality,

R(7)=(L2(R) ® R(W,:(0)))® <Z® (L2 (RH®< V%(O)¢j,k>>

=L RHYDRMW0)D Yy &< W (00, >),
J.k

where < W;(0)¢; > stands for the one dimentional subspace spanned by
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W,(0)¢; ,. Hence if R(#) = ], = *(R") ® L*(R"),
9 =R(W,(0)® ) &W;(0)¢; > ,
Jnk

which obviously implies statement (4). (Q.E.D)

3.2. Abstract Stationary Theory

By Lemma 3.1, the proof of the completeness of the wave operators is reduced to
prove R(#") = K,. For proving this we shall apply the following abstract theorem
due to Kato [8].

Theorem 3.2. (Kato [8]). For j=1,2, K be a selfadjoint operator on the Hilbert
space R, with the resolvent R (z) = (K - z) U and the spectral measure E (d/) Let
JeB(K,, &,) be the identifi catlon operator and I < R! be a Borel measurable subset
of R. Suppose the following conditions be satisfied.

(I) lim [Jexp(—itK u| =

T+ 0

uek,.

(2) There exists a linear manifold X . 1 Of 8 such that there is no proper subspace of |
invariant under K and containing %J and such that X, is a normed space with llé
own norm (we write the completzon of X as i ) satisfying the following conditions:
(2.) For x,yeX , f(z,x,y) =7 ‘]Ima[’ R (z )x R,(2)y) defined for zeC () has a
continuous boundary value for z = A€l. o

(2ii) There is a strong continuous family of operators Y(z)eB(X,, X,) defined for
zeC (1)1 such that if zeC (), Y(z) maps X, into X with

R,(z)y =JR (2)Y(2)y, for yeX,. (3.15)

Then K, and K, are spectrally absolutely continuous on I and there exists
Z, €B(K,, 8)) which is partially isometric with initial set E(I) and final set E,(I)
and such that

s-Abel lim exp(itK,)J exp(—itK )Z, = E,(I). (3.16)

=t

In particular, if #, = s-limexp (itK,)J exp( — itK ) exists on E,(I)R,, then

>t oo

R(# )2 E,(I)K,. (3.17)

3.3. The Faddeev’s Matrix

In the following subsections we shall prove that the conditions of Theorem 3.2 are
satisfied for our operators K, and K,, taking the spaces X,, X, and the set |
appropriately. In this subsection, we shall derive the decomposition formula (3.15)
for the resolvent R,(z)=(K, —z)~ ', postponing the proof of various estimates
necessary for its justification until next subsection, although we shall prove some
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preliminary lemmas here. To avoid unnecessary complexity, we assume here and
hereafter thatm; = 1for j =1,2,..., Nand write it ,, ¢; yand L; , as u;, ¢; and L;
simply. The general case can be treated by a simple modification of the formulas
which will appear in what follows.
N
We set 8;= @ (L*(R")® L*(R") and define the operators .«/ and 4 from

j=1
[2(RY® [A(R") to K, as

Au="T(d ult,x),...,oyult, x)), (3.18)
Bu="(B,ult,x),..., Byult, x)),
where
of ju(t, x) = A;(x — v;0)ult, x), (3.19)

RBu(t, x) = B;(x — v;t)ult, x).
We write G (z) = (L, — z2)"4j=0,1,...,N.

Lemma 3.3. Let #(z) be any one of oAGy(2)B* ABGylz)d*, AGylz)d™,
BGo(z)B*. Then

(1) .4 (z)is a B(K,)-valued analytic function of zeC . and is uniformly bounded there.
(2) M (2) can be extended to the closed cut plane as a B(K3)-valued Holder continuous
function of z.

() | #(2)| -0 as |Im z| > .

In particular of and % are Ly-smooth in the sense of Kato [ 7). Let us write as # (4 + i0)
(AeR?) the boundary values on the reals.

Proof. Let us write the generic element of K5 as u=(u;,...,uy). By the
definition, for Im z > 0 (we prove only this case, the other case can be proved
similarly),

(A Go(2)B*u); (1) (3.20)
N ©

= Y ife*A;(x —v;0)e” "HOB, (x — v, (t — 5))u(t — s)ds.
K=1 0

Therefore taking g =1 as n/d < g <n, we have by Lemma 2.2, (1),

| (£ Go(2)B*u); (1)) (3.21)

= ¥ Jermemina, Bl is "% LA, Bt~ 9 s

k=10

Here in this section || f

s are [P-norm of f. ForImz =0,
o0

Ciu@)= e min (|4, |, Bellys ™" [ 4; ]| Billgs™"ds (3.22)
0 p.q

is uniformly bounded and

C;i(2)>0 as Imz— 0. (3.23)
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Young’s inequality shows that

[ (4 Go(2)B*u), | o, = Z Ci.@ s (3.24)

Hence by Schwartz’s inequality we get

/2
|.4Go(2)B*ullg, < (Z C; 4(2) > ] g5 (3.25)

By (3.22) and (3.25), we see that /G (z)#* has the bounded closed extension
[/ Gy(z)Z*] and this is obviously a B(3)-valued analytic function of zeC, . By
(3.23) and (3.25), we also see that

lim | .ZGy(z)8*| =0. (3.26)
Imz— o
For proving that .o/ G,(z) #* can be extended to C, U R* as a B({,)-valued Holder
continuous function, it suffices to prove that .&/G,(z)#* is uniformly Holder
continuous on C,. We first note that if Imz, Imz' > 0 and s> 0,

‘eisz _eisz'| §5a|z _ z/la
for any 0 <o < 1. Hence by (3.20) and Lemma 2.2, (1),
[ (4 Go(2)B*u);(t) — (A Go(2') B*u); (1)

N o

= L ]tz = Fmin (A, Bs

k—l

il Bellgs™ " (e = 5)] ds.

By taking 0 < o < (n/q) — 1, we see that

Jk_ 55 mm(”Ajn annp

4 gl Bellgs™ ") ds < <o
Hence by Young’s and Schwartz’s inequalities we get
| 4Go(z)B*u— A Gy(2') B,

/2
gu-m(w ,f) el

Thus we see that .o/ G (z) #* is uniformly Holder continuous on C ;. with exponent o,
o 18 an arbitrary number satisfying 0 < « < (n/q) — 1, « < 1. This completes the proof
of the statements (1)—(3) for .o/ G(z)#*. The forgoing arguments obviously apply
for any other operator being considered here. The L,-smoothness of o/ (or 4) is
obvious by the statement (1) for .o/ G (z).«7* (or #G (z)%#*) and the definition of the
L,-smoothness (see Reed—Simon [13], Theorem XIII. 25).

(Q.ED.)
Remark. By (3.21) we have

Js

C; k(Z) = Cp,qrgix(“ Aj ”p” Bknp’ “ AJ’ ”qHBk“q)
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where C, , is a constant depending only on p and q. Hence
H ‘MGO(Z)’%)*“ s Cp,qmax(” Aj “p“ Bk llp' ” Aj ”q” Bq”q s k=1,....,N). (3'27)
p.q

Therefore if all A;’s (or B,’s) converge to zero in LP(R") and LY(R") (1 =q <n/2<p
< o0), then the operator .o/ G,(z)B* converges to zero in operator norm. Similar
result obviously holds for other operators being considered in Lemma 3.3. This
result will be used in the proof of Lemma 3.8.

We need the following auxiliary operators.
For j=1,2,..., N, define one parameter unitary group ¥";(r) on &, as

(7 @NO=U;t,t =) f(t —1) (3.28)

and write the generator of this group as L

1i(t)y=e ", —x <1< . (3.29)

We write as

Gi(2)=(Z;—2)" ", Imz#0. (3.30)
Lemma 34. For Imz+0, j=1,...,N,

Ry(2) = Gol2) — [BGo(2)T*(1 + 29(2)” ' #/Gol2), (331)

G,(2) = Gol2) = [8;Go(2)T*(1 + 2;(2)) " "o, G (2), (3.32)

where 2,(z) = A G (2)B* and 2. = o .G (2)B*.
0 0 J ji-o0 J

This lemma can be proved similarly as Lemma 3.3 of Yajima [ 16], using Lemma
3.3 above and (B) of Sect. 1. Hence the proof is omitted here.
Now we proceed to the derivation of (3.15). Let

D(z) = (N x N)-diagonal matrix with (j, j)-element .o/ ; G,(z) %7 .
Fo(2) =Q(2) — D(2).

By (3.32) we have
(1 +D(2))” ' =(N x N)-diagonal matrix with (j, j)-element

1 — .o 9 ,(2)BF; (3.33)
1+ D) ' AGy(2) = ,%,(2), ..., ANGy(2)); (3.34)
(1 + D(2))” *Fy(z) = (N x N)-matrix with (3.35)
(j k)-element §; , o/ ;% () B,
where
haef) 4121
We write the R.H.S. of (3.34) and (3.35) as
AG(2) =N (A, %,(2), ..., o xGx(2)), (3.37)

F(2)=(5; 4 ;% (2)B); 1 (3.38)
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Thus combining (3.33)—(3.38) with (3.31), we have
R,(2)
= Go(2) = [BGo(@)]*(1 + (1 + D(2))” ' Fo(2))” '(1 + D(2)) ™ ' 4 Gy(2)
= Go(2) — [#Go(2)1*(1 + F(2)” ' 4G (2). (3.39)

To go further we need the following lemma.

Lemma 3.5.

T,(—i0/ot@I+1®H; —z) 'T} =% (z). (3.40)
Proof. Note that

(TEf)t x)=e =07 902 £ (¢ x + v;1). (3.41)
Then simple calculations show

T,,Go(2) T3, = Gol2), (3.42)

Tyd,T, =1®A4; T;#FT, =1®B}. (3.43)

We apply to the both sides of (3.32), T, from the right and T, from the left. Then we
get by (3.42) and (3.43) that
TE9,(2)T, = T Go(2) T, — [T*BT, (T*Gy(IT, ) ]* (3.44)
x (1 + T3 .o;T, (TFGo(2) T, (TE3,T,) !
x T o T, (T Go(2)T,,)
=Golz) — [(I®Bj)GO(E)]*(1 + ®1‘1J‘)G()(Z)(1@Bj))~ !
X (I® A;)Gy(2).

®

We regard as L*(R') ® L*(R") = [ L*(R")dt. Then the last member of (3.44) is written
®

as F, 'roz—0—[roz—1)B; 11 +Q;(z— 1))~ HArgz—0))dtF,=F, 1 x

®

((H,—z+17) 'de, = (—i0/ot®I +I®H; —z)" .. This proves (3.40). (QE.D)

By spectral decomposition we have
H;=H;(1—-P;)+u;P; =HS+ u; P
We write as 1 — P; = P4. Then

i

(—idfor @I +I®H; —2) " (3.45)
=(—i0/0t®1 +IQHS ~2) "I ®P)+G,(2)P;.
We write
T,(—i0/0t@I + IQHS —2)” "I®P) Ty = %5(2) (3.46)

and set ;e BIX(R) @ L*(R"), L*(R")) as
(I u)(®) = [¢ (ult, x)dx.
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Then equations (3.40), (3.45) and (3.46) imply

G(2)=95(2) + T, I G,(2)I';T7. (3.47)
Now we proceed to further decomposition of (3.39). We define (1 x 2N)-matrix
L(z), (N x 2N)-matrix X(z) and (2N x 2N)-matrix A(z) as follows:

L(z)=T( % (2), ', Tk, .., dyGN2), TyTY); (3.48)

X(Z):(Xjk(z))j=1 ,,,,, N:k=1,...,2N, (3.49)
I, k=2—-1, j=1,...,N,

Xu(2)= .ijijF;"Gj(z), k=2, j=1,...,N,

0, otherwise;

Alz)= (Ajk(z))j,k =i,...,2N, (3.50)
oA G (2) B, j=2m—1, k=2l—-1, m#l,
A G5 (2)BF A, T, FG(2), j=2m—1, k=2, m#l
Aulz) =3 T, T¥ B} j=2m, k=2-1, m#l
I, T% BF,T,I'FG(2), j=2m, k=2, m=#l.
0, otherwise.

A(z) is a substitute of so-called Faddeev matrix in three body problem. By (3.32) and
(3.47), we can easily see that

AG(2) = X(2)L(2); (3.51)

F(z)X(z) = X(2)A(2); (3.52)
and hence

(1+F(z) 'X(z2)= X (z)(1 + A(2))" " (3.53)

Here the existence of the inverse in both side of (3.53) can be proved by the standard
way (Faddeev [3], p. 50, Lemma 7.5). Combining (3.39) with (3.51) and (3.53), we
get

R,(2) = Go(2) — [#G,(2)]* X (2)(1 + A(2)” ' L(2). (3.54)
By definition,
[BG,(2)]* X (2) X ) (3.55)
=YGo(2)%,, Go(2)V, T, T{G(2), ..., Go(2) BN, Go(2) VT, T RGy(2)).
On the other hand by (3.32), (3.40) and (3.44),
Gol2) VT, T3 G,(2) = Go(2) V,%,( T, I’}
=(Gol2) — G T, I’}

vt J

= Gy(2)T,, ¥ — T, *G,(2). (3.56)

Here in (3.55) and (3.56) we wrote as VJ = .o/ ;B simply. We write as
(1+A(2)" 'L(2) = (A ((2), 4y (2)), - .., Hy(2) 5y 2)); (3.57)
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N
Yo()=1— Y (B,#,(2)+ T, T 4,(2); (3.58)
Y(2)=—4;z) (j=12...,N). (3.59)

Then combining (3.54)—(3.59), we finally get

N

(BA (2)+ T, T4 z)> Z TG (20 f2)

R,(z) = Go(z)<1 -

I»Mz

j=1

Go(2) Yo(2) + Z (G2 Y ()@ ¢))

=JR,(2)Y(2), (3.60)
where, of course,
Y(2)="(Yo(2), Yi(2), ..., Yy(2)). (3.61)

3.4. Estimates of Operators

In this subsection we give several estimates of the operators which are necersary for
the application of Theorem 3.2. To start with, we prove the following lemma.

Lemma 3.6. Let y>1/2 and j=1,2,...,N. Then G;(z) satisfies the following
properties.

(1) Gj(z) is a B(LZ(R"), L2 (R"))-valued uniformly bounded analytic function of
zeC, and can be extended to C. UR' as a Holder continuous function.

(2) G;(2)eB, (L7 (RY), L2 ,(R")).

(3) HGJ-(Z)UB(L%,LZ_V)aO as |Imz|— oo.

Proof. Letm(t) = (1 + t*)~ 7> and M be the multiplication operator by m(t). Then M
is a unitary operator from L?(R') to L2(R*) as well as from L2 ,(R") to L*(R"). Hence
for proving (1)—(3), it suffices to prove that

(1) Gj(z) =MG;(z)M is B(L*(R!))-valued uniformly bounded analytic function of
zeC, and can be extended to C. UR" as a Holder continuous function;

(2) Gi(2)eB, (IA(RY);
) “Gf Z)”B(LZ(R ))—>0 as ]Imz| — 0.
We prove (1)'—(3)' for ze C ;.. The case ze C_ can be proved similarly. Since G;(z)is a

convolution operator with the function iexp (i(z — i;)t)0(t), 6(¢) is the Heaviside
function, Gj(z) is the integral operator with the kernel

iyt sy 2)=i(1+ 1) 72 E 190 (r —5)(1 +57) 772,
jIK (¢, s; 2)|?dtds
= j(l +12)77(1 + 52) " Ve~ At de s, (3.62)

The R.H.S. of (3.62) is uniformly bounded for zeC, and converges to zero as
Im z — <o, since y > 1/2. Hence G'(z) is a Hilbert-Schimdt operator on L*(R')and
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the Hilbert—Schmidt norm converges to zero as Im z— oo. This proves (2)’ and (3)’
and a part of (1)". Thus for completing the proof it suffices to prove that Gj(z) is a
uniformly Holder continuous B(L?(R?))-valued function. This is simple, since for
any 0<a<2y—1and a <1,

JIK; (6, s52) = K; (6, 55 2)|dt ds
Slz—2'Fflt—sl*(1 + )7 "(1 +s*) " Vdt ds

and the integral in the R.H.S. is finite. (Q.EE.D)
We define the spaces X, and X, as follows:

N
=R(#%® Y LiRY);
=1
%, = 2R (3.63)

X, and X, are equipped with the natural Hilbert space structure. Obviously X, and
X, are dense linear submanifolds of &, and &,, respectively.

Lemma 3.7. X, and K, satisfy the condition (2.i) of Theorem 3.2.

Proof. Since R,2)u=(K, —2)" 'u="Go(2)u, G,(2)04, ..., Gy(2z)ay) and

Jolz, x, y) =|Im z|(R,(2)x, R, (2)y) = (I/Zm)((R (2) — R{(2))x, y), it suffices to prove

that #*G,(2)# (or G,(z)) can be extended to the closed cut plane C, UR" as a

B(L*(R"* 1)) (or B(LZ(RY), L2 5(RY)))-valued continuous function of z. For

G;j(z2)(j=1,2,..., N) this is proved in Lemma 3.6, and for #*G(z)# in Lemma

3.3. (Q.E.D)
The following is the key lemma in this section.

Lemma 3.8. Ifj + k, o/ ;G,(2) B} is a compact operator on L*(R" " ') for any z in the
closed cut plane C, UR".

For proving the lemma we need the following preliminary lemmas. In Lemmas 3.9,
3.10 and Corollary 3.11, n is any positive integer.

Lemma 3.9. Let g, p > 0.1f Ke B(L*(R"), L2(R"))and K e B(L*(R"), H*(R")), then K is
a compact operator on L*(R").

Proof. Let R > 0 and yy be the characteristic function of the ball {|x| < R}. Then
xrK is a compact operator on L?(R") by Rellich’s compactness theorem. On the
other hand,

| Ku— yxKu| < ( f lKu(x)]zdx>l/2

[x[zR

S(1+RY) 2| Ku|L2£(1+R?) p/ZHK“B(LZ,L%)“u”‘

Therefore as R — o0, | K — yzK | —0. This proves Lemma 3.9.
(QED.)

Lemma 3.10. Let xeR", ye R™ and &, 1 be the conjugate variables of x, y (m may be
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zero). Let g(&,n) be a function such that for any multi-index o, sup|(0/0Eyg(&, n)l
=C,< . Let G(D,’ D,) be the operator defined as >

G(Dy, D))= F 39 M F (r, -
Then for any peR?,

[(1+[x?YG(D,, D,)(1 +|x]*)~*|| < c0. (3.64)

Proof. Let p =20 be an integer. By Parseval’s relation and Leibniz’s rule we have
[ (1 +|x[?¥ G(D,, D,)(1 +lez)_”u (x, y)||
=1 = 497g(&n (1 = 47 uE )|

) (6>(—1)“0 g ( /;’ )(0/0@”"’9(5, no/oy
<o <p =p =2

(1= 4977, "1).

2
< ¥ _(” )(")Czo 510108 (1= 47 PiE ). (3.65)
a<p0<p<2 g ﬁ

0<
where 26 = (20, 20, ...,20). Since 0 <0 <p, 0 < f < 20,

1@y (1 + 4y~ m | = [x"(1+x*) " ulx, )| < Julx, ).

Combining this with (3.65), we get (3.64) for p non-negative integers. For general p
>0, (3.64) is the consequence of the above case and the interpolation theorem
(Lions—Magenes [19], p. 27). We now prove the case p < 0. Let u, he CJ'(R"). Then
the result for the case p > 0 implies

I((1 +1x12PG(D,, D) (1 +|x[?)™ "u, h)|
Sl (L+1x)7*G(D,, DY (1 + |xPPh)| < Clluf |[A].

This obviously implies (3.64). (Q.ED)

The Fourier transform of Lemma 3.10 implies the following

Corollary 3.11. Let feC*(R") and its derivatives are all bounded functions.
Then the multiplication operator by f'is a bounded operator on HYR") for any se R*

Proof of Lemma 3.9. (i) We first show that it suffices to prove that A(x — vt)
Go(+1)B(x) is a compact operator on &, when 4, Be CJ(R") and v # 0. Since
o ;Gy(2) B, is a B(K,)-valued continuous function of zeC, UR'by Lemma 3.3, it
suffices to prove that o/;G,(+ )%, B, (K,). Choose w(x)e Cy(R") such that
w(x)>0 w(x)=1 near x —0 and Sw Ydx = 1. For £¢> 0, w,(x) = ¢~ "w(x/e). Set
)= 0(Ex) (4% 0)(x)  and B, ()=o(ex) (B, * ©)(x. Then 4,
BkyeeCS"(IRE")and forn/o <q<nandp,1/p=1/s—1/n||A; . — A;| . |Bi..— B |.n
[A;.—A;|Leand || B, , — B, .« converge to zero as ¢ — 0. Therefore by the remark
following Lemma 3.3, | ., .Go(2) By, — 4 ;Go(2) %, || =0 as e - 0. Hence we may
assume A B,eCy(R"). By (342) and (343), T} o;G,(2)%,T,

Jj°
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Jj S vk

is the multiplication by 4;(x —v; — k)t) — 1, #0, we get the desired result
(ii) Let f(r)e C*(R?) be such that f(z) =1 for 7] 22 f(r)=0for|z| =1l and|f(7)]
<1 for 1 <|t| £2. Let Fy be the operator defined as Fr =%, * f(x/R)Z,
A(x — v8)Go(+ i) B(x) = A(x — v8) Go( £ i) F g B(x) (3.66)
+ A(x —vt)Go(£ i) (1 — Fr)B(x).
We first prove A(x —vt)Go(ti)(l — Fg)B(x)eB(K,) for any R > 0. Let E (7, &)
=(1— f(x/R))(t +|&]*/2 i)~ *. Obviously
Gol+ (1~ Fg)=Fg LF 4 (1, OF . ; (3.67)
[(0/60(8/08V E 1. (t, Ol = Chap (L + 1)) 77 (L +1ED 72, (3.68)

for any multi-index « and B, and any y >0. Hence G,(+ i)(1 — Fp)eB(L*(R"* 1),
H?(R"* 1)) and by Corollary 3.11

=Tr.4;T,Gy(z)(I ®B;).Since | ® B;is the multiplication by B;(x)and T} .«/; T,,

A(x —vt)Go(+ i) (1 — FR)B(x)eB(L*(R" 1), H*(R"* 1)). (3.69)
On the other hand by Lemma 3.10, (3.67), (3.68) and the obvious inequality

(A +fx—ove)" A+ xS C,(L+ x|+ t]) 7, (3.70)
we get

A(x —vt)Go(£ 1) (1 — Fp) B(x)eB(L2(R" 1), L2(R" 1)), (3.71)

for any p > 0. Hence by Lemma 3.9, A(x — vt)Gy(+i)(1 — Fg)B(x) is a compact
operator on L*(R"* ) = R,.
(i) Finally we prove

lim || A(x —01)Go(+ i) FrB(x)|| = (3.72)

R- x
which completes the proof of Lemma 3.8. Since A4, BeCZJ(R"),
Alx —vt) 7 eB(L2(R"* 1)) and #, ,B(x)eB(L2(R""!), [*(R")® H*(R") for
any k = 0. Therefore for proving (3.72), it suffices to prove that the multiplication
operator by the function f(t/R)(t + ¢%/2+i)" ! regarded as an operator from
(RN ® H*(R") to L*(R" * ') converges to zero in operator norm as R — oo, for some
k> 0. We take k= 1. Then by Sobolev’s embedding theorem (see Kuroda [10],
p. 4.13, Theorem 1 and p. 4.26, Theorem 1’), we have for ue H*(R"),

sup p" "2 (o) -y = C [ oy (3.73)
Pz

where $" 7! is the unit sphere in R"”. Let N < R. Then

i |f(@/Rju(z, &)I?

9 3.74
v epir o

< ]+ u(r, O

frea sy jereaan (@22 41
[t 2R It <R

drdé
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IIA

| lu(—1, E)Pdedé + (N* + 1) u]?
J2t—2N <& £ /21 + 2N
>R

T

V2t + 2N
d‘E{ | dp(p"~1 | ]u(—r,pw)izdw>}+(N2+1)”‘Hu]]2
J2t - 2N st

/2t + 2N
dv | fu(=t) |d@de + (N2 + 1) Hul?

J2t— 2N

(/21 +2N = /21 = 2N) Ju(— 1, ) |Bigem dp + (N> + 1)~ 2

[

IIA
@

He— 8 W= 8

A

C
SC/2NR =N [ Jlu(t, )| Zrgmdr + (N2 + 1)1 |ulf?

S(CY2N(R = N)™ Y2 (N2 1)7 Y| 22 gy s -

Here we used (3.73) in the fourth step. Deviding both sides of (3.74) by [ |21
and letting R — oo first and then N — o0, we get the desired result easily. This
completes the proof of Lemma 3.8. (Q.E.D))

Lemma 3.12 For any j=1,2,...,N and zeC,UR', 1 +.o/,Gy(2) B} has an
inverse in B(K,). Moreover (1 + </;Go(z)%%)™ " is uniformly bounded and Holder
continuous in zeC, UR™.

Proof. By (3.42) and (3.43),

1+.o,Go(2)BF =T, (1 + (1@ A)(—id/ot @I+ I®Hy~2) "U®B) T

(3.75)
=T, 7 {1+ (U®A)c +IQH, —2) (I ®B)#,TE,

where T is the conjugate variable of . Now we regard as [*(RY)® L*(R") =

®
jLZ(R") dt; we write as Q;(z) = A;(H, — z)~ 1Bj. Then by (3.75),

@
L+ o Go(2) B =T, 7/ x(yu +Q,(z— r))dt)gf*,T:‘j. (3.76)

Since (1 4+ Q;(z))” ! exists for zeC, UR' and is uniformly bounded and Holder
continuous there by Sect. 1, (C). (i) and Assumption (III), (3.76) implies that

(1+,Go(2)B) ' =T, 7, ' (?(1 +0,(z—1)" 1d1>.ﬂ",T3‘j (3.77)

exists and is uniformly bounded and Hélder continuous in ze C, UR™.

(Q.E.D.)
Lemma 3.13. Let j+k, jk=1,2,...,N. Then
(1) I;T} BeB(LA(R" ), LE(RY));
Q) o, T, TF, BT, TFeBLARY, L2, ,(R" 1)), p <0

J Tk
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Q) I, T3 #¢ 4\ T, I is a multiplication operator by a function f; (1) satisfying
fil=sC1+13)7°

Proof. We frequently use the following two results:
(1) fv+#v and p 0,
@ +]x —vtHP(A +|x —v't]2P S C1 + x| +t2Y, (3.78)

where C is a constant depending only on p and v —v';

(i) By (1.6) and Sobolev’s embedding theorem, for any O0=p,
(1+ [x]z)”d)j(x)eLq(R”), where q=2n/(n—4) if n=5;1 <g< o is arbitrary if
n=4;and 1 £q £ oo is arbitrary if n = 3. Therefore by Holder’s inequality,

(1+1x1?Y d;(x)e 2"~ (R, n=3. (3.79)

(1) (I TEBu)(0)] < [lob; (1 + [x — (0 — v)t1*) ™ P ulx —v;t, 8)] dx.
By Schwartz’s inequality and (3.78), the R.H.S. is majorized by the square root of

C(1L+ )72 (J (L + x|, (x)Pdx) ( fu(x, O)]*dx).

Hence  [(1+ 2 °|(T; TEBa)(0)Pde < C | (1+ x>0, 2] | u] .
() (=, T, T o)(t, x)| = |A4;(x —v;0) ¢y (x — v, 1) (t)].
Hence by Remark 1.1, (1.6), (3.78), (3.79) and Hdlder’s inequality, we have

JQ+x2 422y Fo\ (ot T, Tio)(t, x) > dxdt
SCIA+ x>+ 2P |W, ((x —v;0) + W, ,(x —v;1)]?
(14 |x = 0t PP1B, (x — 0, 0)Plo(0)*dxdt
< CUIW, 2l (142 b Famne -2 [V 2 221+ %2 [ 0 |2
The other is easier to prove and the proof is omitted.
() ;T3 B5 T, It is obviously a multiplication operator by a function f; (1)
which is majorized by

j Id’,(x)Vk(x — (0 — Uj)t)¢k(x — vyt)|dx. (3.80)

By Holder’s inequality, (3.78) and (3.79), (3.80) is majorized by constant times
(14 Xx2° ;|| Lo - [ (1 4+ X2y || own -2 | Viel| (1 + 272

(QE.D)

Lemma 3.14. Forany j,k=1,2,...,N,
B} 1TL,J,I“;?‘eB(LZ([R’I), L2(R"*1)); (3.81)
oA T, ¥ T A5 L 1RijFijijeB(L2(R"+ H). (3.82)

Proof. (3.81) is obvious by (1.6). We prove (3.82). By Schwartz’s inequality,
J{ex)=(4,T, T, T*ﬁ"‘u)(t x) satisfies | fi{t, x)| =] 4,(x = v,1)p,(x — v;1)
”(jb )(1 + x2 "/2 | u(t, )H Hence by Holder’s inequality, || ;] < H(l + x?) ‘5/2¢ I
|lq§ ”szm > H A;|.]lu]]. We prove the second. The case j=k is obvious
by (3 18). We assume j=+k. By Lemma 3.13, (1), it suffices to prove
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BT, IFeBLYRY), L*R'')). By triangle inequality (1+¢°)7"%(1 +
|x —vt]?)? < C(1 + x)’'*. Hence

f1(#:1 T, I'fo)(, X)dtdx S C|(1+ x> ¢, | (1 + 2)a|?, (3.83)
from which the desired result follows. (Q.E.D)

Lemma 3.15. Foranyjk=1,2,...,N, X, (2) = oA ;%(2) B, satisfies the follow-
ing properties.

(1) A, (z)isaB(K,)-valued analytic function of ze C ;. and is uniformly bounded there.
(2) M, (z) can be extended to the closed cut plane C . U R" as a B(R,)-valued Holder
continuous function of z.

(3) If j #k, M ; (2) is a compact operator on K, for any zeC, URL

@) ||4; ()| >0 as |Imz|- 0.

Proof. By the resolvent equation
(—idfor@I+I®H;—z)" !
=Go(2) = Go(2)I Q@ V(- 0/t @I +I®H; —z)” \. (3.84)

Multiply to the both sides of (3.84), T, A; from the Ileft and
(I ®P§)T,’fj/ﬂk from the right. Then by (3.42), (3.43) and (3.46), we get

M52 = A Go(T, (I ® P)TE By — o ,Go(2) By M s 1(2). (3.85)
Therefore by Lemma 3.12,
M (2)=(1+ .o ;Go(2)B;)” lyijO(z)ij(I ®PY)T By (3.86)

Here ;Go(2)T,,(IQ PS)TEBy= o ;Go(2) By — A ;Go(2) BBy ' T, T ¥ ;T3 By
Since o7 ;G(z)%, satisfies Lemma 3.3 and is compact if j #k by Lemma 3.3;
By RjF;-“Fijj,%’keB(Rz) by (3.82) and (1 + o/ ;G(2)%;)” ' satisfies Lemma 3.12,
M ;. (2) satisfies all the properties of Lemma 3.15.

(QE.D)

We set as

9=.@ (R H® L2®Y) (3.87)

ji=1

with natural Hilbert space structure.

Lemma 3.16. (1) L(z) is a B(X,, U)-valued analytic function of zeC,. and is
uniformly bounded there.
(2) L(z) can be extended to C, v R* as a B(X,, 9)-valued Holder continuous function.

Proof. Lemma 3.13, (1) implies that I'; T e B(X,, L2(R")). Hence applying Lemma
3.15 to .o/ ;%(z), we get easily the statements of the lemma.

(Q.E.D.)

Finally we prove the following lemma.

Lemma 3.17. The operator valued function A(z) satisfies the following properties:
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(1) A(z) is a B(D)-valued analytic function of zeC, and is uniformly bounded there.
(2) A(z) can be extended to C, U R* as a B()-valued Holder continuous function of z.
(3) For any zeC, UR', A%(z) is a compact operator on J).

(4 lim [A4%*(@2)|=0.

[Im z|— =«

Corollary 3.18. There exists a closed null set e= R such that (1 + A(z))" ' can
be extended to C, w(R"e) as a B(Y)-valued locally Holder continuous function of z.

Proof. 1) .o/ ;%(2)#, satisfies the statments of Lemma 3.15.

2) I Tj‘j,%’k satisfies Lemma 3.13, (1).

3) Put C; (2) =T ;T3 B AT, IiG(2). Since I';TFBFA¢T, ' is a multipli-
cation operator by f; () satisfying the estimate | f; ,(1)] £ C(1 +*)~° by Lemma
3.13,(3), Lemma 3.6 implies that C; ,(z) is a B_ (L3 (RY))-valued bounded analytic
function of ze C, and can be extended to C, U R as a Holder continuous function;
|C; ()]~ 0as [Imz| - .

4) Put N, ()= ;9B A\ T, G (2. We show that A7, (z) is a
B (L}(RY), L*(R"* Y))-valued bounded analytic function of zeC, and can be
extended to C. = R' as a Holder continuous function; | A", ,(z)| -0 as |Im z] > o0
and is uniformly bounded. Using (3.85) for .«7;G(z) %, we get

N2 = ;G ()T, (@ P T A5 o4, T, ' Gi(2) (3.88)
— oA ;Go(2)B; N5, (2).
Therefore by Lemma 3.12, we have

N5 2) = (1 + ,Go(2)8;) ™ o ;Go(2) T,, (I @ P T B4, T, TG,(2).

(3.89)
=1+ 4;Go(2)B)) 1ot ;Go(2) BE( — B VT, T3 TEBF) 4, T, TEG(2).

Now we apply Lemma 3.12 to the first factor; Lemma 3.15 to .o ;G,(z) ;' ; Lemma
3.14, 8.82) to (1 -, 'T, I'fI;TEA¥); Lemma 3.6 and Lemma 3.13, (2) to
o, T, I't G, (2). Then we get the desired result.

Combining these results (1)—(4), we get easily the statements of Lemma 3.17.
Corollary 3.18 is a well-known result of Lemma 3.17.

(Q.E.D))

3.5. Completion of the Proof of the Theorem

What is left to be proved is R(#7) = & ,. We take e= R' as in Corollary 3.18. We set
I=RYe; &, and 8, as(3.1); K, and K, as (3.3),(3.4) and (3.5); J as (3.2); Y(z) as (3.60);
X, and X, as (3.63). We first check that all the assumptions of Theorem 3.2 are
satisfied. Condition (1) is satisfied by Lemma 3.1. In condition (2), for j = 1,2, X;isa
dense linear submanifold of & ; and is a Hilbert space. (2.1) is satisfied by Lemma 3.7.
The equation (3.15) is satisfied by (3.59). Y(z) is a B(X,, X,)-valued strongly
continuous function of zeC, (I)U1, since (1 + A(z))” ' L(z) is a B(X,, Y)-valued
strongly continuous function of ze C ;. (I)u I by Lemma 3.16 and Corollary 3.18; the
injection operator from X, into R(#)* is bounded and T. I 7 satisfies (3.81). Hence
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the all assumptions are satisfied. Therefore by Theorem 3.2. we see that K, and K,
are absolutely continuous on I; R(#") oE,(I)K],. Let us admit the following lemma
for a moment.

Lemma 3.19. K, is spectrally absolutely continuous on K.
By Lemma 3.19, E,(I){), = ], since R'\I has Lebesgue measure zero. Thus R(#")
= &,. This completes the proof of the theorem.

Proof of Lemma 3.19. Let us define a one parameter unitary group I(1),
— o0 <1< o0, and a unitary operator T on &, as

(M) (2, x) = ult -, x), (3.90)

(Tu)(t,") = U(t, Oyult,), uefK,. (3.91)
By Sect. 1, (B), (ii), (3.4) and (3.5), we can easily see that

exp (—itK,) = TI(t) T*. (3.92)

Since I(7) has the absolutely continuous generator —i(9/0t), (3.92) obviously implies
that K, is absolutely continuous.

(Q.E.D.)
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