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Perturbation Theory of Odd Anharmonic Oscillators
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Abstract. We study the perturbation theory for H = p2 + x2 +βx2n+ί,
n = l , 2 , . . . . It is proved that when ImβΦO, H has discrete spectrum. Any
eigenvalue is uniquely determined by the (divergent) Rayleigh-Schrodinger
perturbation expansion, and admits an analytic continuation to Imβ = 0 where
it can be interpreted as a resonance of the problem.

I. Introduction

It is our purpose in the present paper to study the perturbation theory of the
quantum mechanical Hamiltonian p2 + x2 + βx3 or, more generally, of any odd
anharmonic oscillator p2 + x2 + βx2n+ί, n= 1,2,.... Unlike the even anharmonic
oscillators, extensively studied in recent years (see e.g. Reed and Simon [16] for a
review), to our knowledge the above problems did not receive so far any rigorous
treatment, in spite of the fact that they are quoted in many textbooks among the
simplest examples of bound state perturbation theory (see e.g. Davydov [5]). This
is of course due to the well known fact that the Schrόdinger operators correspond-
ing to the above Hamiltonians admit infinitely many self-adjoint extensions when
defined on D(p2)nD(x2n+1). As is known, this leads to the non-uniqueness of the
quantum dynamics (for a discussion on this point, and on the connection with the
behaviour of the corresponding classical motion, see e.g. Reed and Simon [15]).
Although any self-adjoint extension has discrete spectrum, we shall see that the
Rayleigh-Schrodinger perturbation theory near any single eigenvalue of p2 + x2

exists (in the sense that the expansion is finite order by order, although divergent)
but is related to the self-adjoint extensions only through a spectral concentration
phenomenon.

The present situation is thus closely analogous to the Hydrogen Stark effect
(with the additional complication of the non-uniqueness of the self-adjoint
extensions) where the difficulty has been overcome by showing the existence of
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resonances [7, 9] to which the (divergent) Rayleigh-Schrόdinger perturbation
expansions are uniquely associated through the Borel summability [7]. Here a
somewhat analogous solution is obtained: more precisely, it will be shown that
when Im/?>0 the formal operator p2 + x2 + βx2n+1 can be realized as a holomor-
phic family of compact resolvent operators in L2(R), with non-empty spectra for
\β\ small enough. The Rayleigh-Schrόdinger perturbation expansions are Borel
summable to the eigenvalues of p2 + x2 + βx2n+ί when \β\ is small and
π/8 + η< arg/?<7π/8 — η, η>0. Any such eigenvalue admits an analytic con-
tinuation to Im/? = 0, enjoying the following properties: (i) the real part is a
pseudoeigenvalue of any self-adjoint extension (ii) it satisfies the Schrodinger
equation with the Gamow-Siegert boundary condition at infinity and, conversely,
any Gamow-Siegert eigenvalue must be the analytic continuation to Imβ = 0 of an
eigenvalue of p2 + x2 + βx2n+1, lmβ>0; (iii) it is a second sheet pole of the scalar
products of a unique generalized resolvent of the symmetric operator
p2 + x2 + βx2n+1 on some dense set in L2(IR).

We can thus conclude that in these problems there is a natural notion of
resonance, which is uniquely associated with the bound state perturbation theory.

The exposition proceeds as follows. In Sect. II we realize the operator
p2 + x2 + βx2n+1 and discuss its spectral theory, by closely following Simon's
treatment [17] of p2 + x2 + βx2n. In Sect. Ill we treat the perturbation theory. First
we prove the Borel summability and the spectral concentration of any self-adjoint
extension near the unperturbed eigenvalues; then, through dilation analyticity
arguments, we characterize the analytic continuation to Imβ — 0 of all eigenvalues
existing for lmβ>0 as the Gamow-Siegert eigenvalues of the problem as well as
the second sheet poles of a unique generalized resolvent of the symmetric operator
p2 + x2 + βx2n+1.

II. The Operator p2 + x2+βx2n+\

As already mentioned, in this section we propose to realize the differential
expression p2 + x2 + βx2n+ί, Imβ>0, as an operator in L2(1R), and to determine its
spectral properties. To this end we shall follow as closely as possible Simon's
treatment of the even case p2 + x2 + βx2n [17].

Let us begin by stating some notations. By L2 we will always mean the Hubert
space L2(R). p2 will always denote the self-adjoint realization of — d2/dx2 in L2

defined in #2(IR), the usual Sobolev space. By D(xn\ neN, we shall mean the
domain of the maximal multiplication operator by the function xn in L2.

Definition 2.1. Let βe<£ {βeIR allowed), β + 0. Then T{β) will denote the operator in

L2 defined in the following way: D(T(β)) = D(p2)nD(x2n+1), T(β)u = (p2 + βx2n+1)u,

ueD(T(β))9n=l,2,..

Lemma 2.2. Let βeIR\{0}. Then T(β) is symmetric. Its closure f(β) has deficiency
indices (1,1), and admits infinitely many distinct self-adjoint extensions. All self-
adjoint extensions have discrete spectrum.

Proof. We have to verify only the last assertion, since the remaining ones are
well known (for a proof, see, e.g. Naimark [14]). Let β > 0 and ua(x) be a



Perturbation Theory of Odd Anharmonic Oscillators 53

solution of the differential equation —ψ" + βx2n+ίψ = iψ such that
lim [ua(x)ύ'a(x) — u'a(x)ύa{x)~]=O, and υa(x) a (linearly independent) solution

which is L2 at + oo. Then it is well known (see again [14]) that the Green's
function

W(a)-\(x)va(y\ -c

WiμY^iyXixl -c

W(a) being the Wronskian of ua and υai specifies the integral kernel of (Ta — z)"1,
where Ta is a self-adjoint extension of T. Through standard "WKB type" estimates
(see again [14]) one easily finds the following asymptotic behaviours :

Γi2n+1)/\\ua(χ)\~\χ

t>«MI~M~ ( 2 n + 1 ) / 4, χ->-oo

\υ ω i - ! x Γ ( 2 " + 1 ) 4 ^ ~ ^ χ ( 2 n + 3)/2 x-^ + oo

+ 00 +00

so that an easy computation yields J J \G(x,y;i)\2dxdy< + oo. Hence (7^— z)
— oo — oo

is Hilbert-Schmidt, and Ta has discrete spectrum. Since all self-adjoint extensions
have the same essential spectrum (see again [14]) the assertion is proved for β>0.
If β<0, it is enough to interchange — oo with + oo in the above argument. The
lemma is proved.

When Im/?Φ0 the operator T(β) has entirely different features. Considering
only the Imβ > 0 case (the Imβ < 0 case admits of course a completely analogous
treatment) we first prove a quadratic estimate which extends to all n Herbst's one
[9] obtained fon n = 0.

Lemma 2.3. Let Imβ>0, and ueD(T(β)). Then there are positive constants a and b
such that:

| 2 . (2.1)

Proof. As quadratic forms on D(T(β))®D(T(β)) we have:

{p2+βx2n+ί){p2+βx2n+1)

(with

^A(p4+\β\2x4n+2)-(2n+l)Imβp2-(2n+l)Imβx4n.

Now one can always find b/2>0 and α, 0 < α < l , such that
oιAp4-(2n+l)Imβp2 + b/2>0, \β\2ocAx4n + 2-(2n+l)Imβx4n + b/2>0, whence
the assertion with α " 1 = ( l — a)A.
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As an easy consequence of this quadratic estimate we have :

Theorem 2.4. Let \mβ > 0. Then T(β) is closed, and its resolvent set is never empty.

Proof. The quadratic estimate (2.1) implies that T(β) is closed on D(p2)nD(x2n+1).
Now it is easily checked that the Green's function of the differential equation
— ψ" + βx2n+1ψ = 0 with L2 boundary conditions at ±oo is given by:

G{x ) = ίπ~x

where x' = 2/(2n + 3)i}//fr(2n + 3 ) / 2, yf = 2/(2n + 3)i}/%?(2n+3)l2, and i f ( 2 U 1 ) ( ) are
the Hankel functions. Taking into account the known asymptotic behaviour of
such functions (see e.g. [6]) a simple computation shows that
+00 +00

ί ί \G(x,y)\2dxdy< + oo. If K denotes the Hubert-Schmidt operator in L2

— oo — oo

generated by G, one immediately has T(β)K = /, and this proves the result.

Corollary 2.5. Let Im/J>0. Then T(β) is a holomorphic family of type A of operators
in L2.

Proof D(T(β)) does not depend on β, and the resolvent of T(β) is Hilbert-Schmidt
by the former result. Since T(β) u is of course a holomorphic vector valued
function of u for any ueD(T(β)), T(β) is a holomorphic family of type A by
definition (see [16], XII. 2). This proves the corollary.

Consider now in L2 the operator H0(y), |argy|<π, defined by:

D(H0(γ)) = D(p2)nD(x2l H0(y)u = (p2 + yx2)u, uεD(H0(y)). (2.2)

The following result is proved in Simon [17].

Lemma 2.6. H0(y) is a holomorphic family of type A of compact resolvent operators.
The spectrum of H0(y) is given by the sequence of the simple eigenvalues

Definition 2.7. Let βe<L (βeWL allowed). By H(β) we shall mean the differential
operator in L2(IR) defined as follows:

D(H(β)) = D{p2)nD{x2n+ L), H(β)u = (p2 + x2)u + βx2n+ xu

= D(H0(y))nD(x2n+1). (2.3)

When jSeIR\{0}? iί(/?)has properties completely analogous to those of T(β) listed in
Lemma 2.2, since its proof applies also to H(β) without modifications. To define
H(β) for ImβΦO we need a second quadratic estimate (compare with [17],
Lemma II. 9.1).

Lemma 2.8. Let usD(p2)nD{x2n+ 1) J and lmβ>0. Then there are positive constants
a and b such that

|2. (2.4)
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Proof. Again as quadratic forms on D(H(β))®D{H{β)) we can write:

\β\2x4n+2) + x4 + 2Reβx2n+3-2-(2n+l)Imβp2-(2n+l)Imβx4n

whence the assertion by proceeding exactly as in Lemma 2.3.
Hence, in complete analogy with Theorem 2.4 and Corollary 2.5, we have:

Theorem 2.9. Let lmβ>0. Then H(β) is a holomorphίc family of type A of operators
in L2.

In order to determine the nature of the spectrum of H(β) and its stability as
/?->0 we need the analog of a further result of Simon, namely:

Theorem 2.10. Let y belong to the half-plane Rey>0. Then H(y,\β\)
= H0(y)-\-ί\β\x2n+1 defined on D(p2)nD(x2n+ί) is a holomorphic family of type A
(in y). For any compact Ω of the half-plane there are a>0 and b>0 such that

\\x2u\\2 ̂ a\\(p2 + yx2 + i\β\x2n+1)u\\2 + b\\u\\2 (2.5)

ueD(p2)nD(x2n+1\ yeΩ, 0 < | β | g l , a and b being independent of y in Ω.

Proof Let us prove the assertion through a further quadratic estimate, i.e:

\\(p2 + ί\β\x2n+1)u\\2 + \y\2\\x2u\\2

Sa\\(p2 + γx2 + i\β\x2n+1)u\\2 + b\\u\\2, ueD(p2)nD{x2n+1), (2.6)

where the positive constants a and b can be chosen independent of y in Ω. Remark
that (2.6) implies (2.5) and, by the quadratic estimate of Lemma 2.3, it also implies

\β\2\\x2n+1u\\2^af\\(p2 + yx2 + i\β\x2n+ί)u\\2 + bf\\u\\2 (2.7)

again with α'and b' independent of y in Ω, ueD(p2)nD(x2n+ x). To see (2.6), always
as quadratic forms on D(p2)nD(x2n+ 1)®D(p2)nD(x2n+ x) let us write:

+ \y\2x4 + Rey(p2x2 + x2p2) + ilmy(p2 - i\β\x2n+ x)x2 - ίlmyx2(p2 + ί\β\x2n+ x)

= \γ~ HmγKp2 - ί\β\x2n+ λ + ί\y\x2)(p2 + i\β\x2n+ ί ± ί\y\x2)

+ (1 -17 - x ImyDKp2 - i|y9|x2w+ ^ ( p 2 -f- f|y8|x2"+ x) + | y | 2 x 4 : - 2 Rey + 2 Reypx 2 p

^ (for some A< 1 - \y~1 lmy\)A{p2- i\β\x2n+1)(p2 + i\β\x2n+ x) + A\y\2x4-B

whence the assertion, with the required uniformities, with a = A~x, b = BA~1, for
some £ > 2 R e y .
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Of course in this case as well a basic tool is the Symanzik scaling property.
Exactly as in [17], Theorem II. 2.1, one has

Theorem 2.11. Let Rey >0, Imβ>0, λ>0. Then ifE(γ9β) is an eigenvalue ofH{y,β\
we have:

(2.8)

Remark. (2.8) extends to λ complex by analytic continuation, whenever such
continuation exists.

We are now in position to prove the key result of this section, namely the norm
resolvent convergence of H(β) to Ho as |/J|->0, Im/?>0. Let us proceed as in
Lemma Π.9.3 of [17]. First remark that, by a scaling of the phase of/?, \_H{β) is a
holomorphic family in /?] we can study H(β) by looking instead at H(γ9\β\)9 where
\γ\ = \, Rey>0, y = exp[ί(2π/(2n + 3)-4argj8/(2w + 3))]. The condition Rey>0
implies of course — (2n— l)π/8 <argjS<(2fl+7)π/8. As a second step, let us state a
simple remark under the form of a lemma.

Lemma 2.12. H(y,\β\) is uniformly sectorial when y ranges in any compact Ω
contained in the right half-plane, i.e. the union U of the numerical ranges of

, is contained in a half-plane.

Proof. We have:

RQ(H(y,\β\)^u) = Reφ2 + yx2)u,u}>0 when Rey>0,ueD(H(y,\β\))

Theorem 2.13. Let y belong to the half plane Rey>0, and let Ry(\β\,E)

= [H(yJj8|)-E]-SR^
uniformly on compacts with respect to y.

Proof Let us consider here only the n = l case, since it is a straightforward
adaptment of the argument of [17], Lemma II. 10.1. The general case requires a
more complicated argument, to be described in Appendix. Since it is enough to
prove the convergence for a single value of E, choose an £ at a positive distance c
from the union U of the numerical ranges of H(y,|j3|), which by Lemma 2.12 is
possible independently of y and |j8|^0. Then we have ||Ry(|/?|,JE)|| < c ~ \ uniformly
with respect to y and |j8|^0. Next, by the second resolvent formula Ry(\β\,E)
-Rγ(0,E)=-i\β\ίRγ(0,E)x~]lx2Ry{\βlE)l By LemmaII.9.4 of [17], we have
\Ry(0,E)x\\ <a + φ + a\E\) for some α>0, b>0 independent of y. By Theorem2.10
also x2Ry(\β\,E) is bounded for \β\ ^ 0 , uniformly on compacts in y. Hence there is
c '>0 such that ||Ry(|j8|,£)-Ry(O,E)||^c'|j8HO as |j8|->0 and the Theorem is
proved for n = 1. The proof for all n is given in Appendix.

Corollary 2.14. Let Reγ>0. Then H(γ, \β\) has compact resolvent for any γ and any β,
and the same is true for H(β\ Imβ > 0.

Proof. Since Rγ(0,£) is compact, there are values of \β\ so small that Rγ(\β\,E) is
compact. Since H(γ,\β\) and H(β) are holomorphic families of type A, the assertion
is a consequence of a well known result (see [11], Theorem VII. 2.4).

Thus the spectra of H(γ,\β\) and H(β\ Im/?>0, are discrete. The norm resolvent
convergence ensures that, at least for \β\ small, they are not empty. The following
result has the same proof of Theorem II. 10.2 of [17].
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Theorem 2.15. Let zeN0, and let Γ ba a compact subset of the half-plane Rey>0.
Then there is a B>0 such that for \β\<B and yeΓ,H(y,\β\) has exactly one
eigenvalue EJiy9\β\) near (2i+l)yί/2. As \β\->0 one has £.(y,|/?|)->(2ϊ+l)//2, un-
iformly for yeΓ.

Then, again as in [17] (TheoremII. 10.3) by rescaling the phase of /? one has:

Corollary 2.16. Let ieN0 and ε > 0 be given. Then there is a B>0 such that for
\β\<B, lmβ>0 H(β) has exactly one eigenvalue near 2z+l. Such eigenvalues are
analytic functions of β for |j8|<J5, Im/?>0, and admit a (many valued) analytic

continuation across the real axis to the whole sector \β\<B, — (2n—l) —
8

+ ε< argβ<(2τt + 7) — — ε.
o

Remark. It will be proved in the next section that the analytic continuation of the
functions Et(β) across the real axis is not single valued. However we will not
attempt here to discuss the global analytic structure of Et(β) on an algebraic
Riemann surface, in analogy with the results discovered by Bender and Wu [4] for
the even anharmonic oscillators, later rigorously justified by Simon [17], Loeffel et
al. [12], Loeffel and Martin [13].

III. Resonances and Perturbation Theory

Let us now begin by examining the perturbation theory of the problem. From now
on, let us denote H0=p2 + x2, V=x2n+\ so that H(β) = H0 + βV, defined as above.
We first state a lemma on the perturbation series itself whose content is essentially
well known.

Lemma 3.1. Let E(β) denote an arbitrary eigenvalue ofH(β), Im/?>0, \β\<B. Then
the function E(β) has a formal (i.e. divergent) Taylor expansion in powers of β2 near
β = 0:

£ ( / ? ) - Σ « 2 # k , αo = 2/+l, (3.1)
0

where the coefficients a2k, /c=l,2, . . . , are given by the Rayleigh-Schrδdinger
perturbation theory.

Proof. Remark that Z)(F)DC°°(#0) = f] D(Hn

0\ and that V leaves ^(HQ) in-

variant. In addition C°°(H0)CD(Hφ)\ and of course H(β)ψ = Hoψ + βVψ if

ψeC°°(Hoy Hence, by the norm resolvent convergence of Theorem 2.13 we can

conclude that all assumptions of Theorem XII. 14 of [16] are satisfied, so that E(β)

has the Taylor expansion (3.5), which is in addition uniformly asymptotic to E(β)

in any sector — (2n — l)π/8 + ε < argβ < (In + 7)π/8 — ε, ε > 0.
The fact that only the even terms are nonzero is an easy consequence of the

invariance of the problem under the transformations x-> — x, β->—β. Finally, the
divergence of the series follows by a diagram counting argument quite standard in
this framework, so that it will be omitted here.
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The one-to-one relationship between the eigenvalue E(β) and the (divergent)
Rayleigh-Schrodinger perturbation expansion is guaranteed by the Borel sum-
mability, which we proceed now to prove.

Theorem 3.2. Let E(β) be an eigenvalue of H(β) = H0 + βV, lmβ>0. Then there are
C>0 and η>0 such that the corresponding Rayleigh-Schrodinger perturbation
expansion is Borel summable to the function E(β) in the region |j8|<C,
π/8 + η < argjβ < 7π/8 - η.

Proof Again, let us adapt a quite standard argument (see e.g. [16], XII.4). First
remark that, by Corollary 2.16, the function E(β2) is analytic in the Riemann
surface sector 0 < | β | 2 < β 2 , - ( 2 « - l)π/4 + ε< arg(β2)<(2n + 7)π/4-ε so that
E(e~iπβ2) is analytic in the sector 0 < | β | 2 < β 2 , |arg(jS2)|<(2π + 3)π/4-ε. Then the
norm resolvent convergence of Theorem 2.13 allows to apply the very same
argument of [16], XII. 4, Example 1, to deduce the bound (D and σ being positive
constants)

I™ \

# = 1 , 2 , . . .

for \E — £ 0 | = l/2 (Eo the unperturbed eigenvalue, Ω the corresponding eigenvec-
tor) which yields (see again [16], XII. 4) the strong asymptotic bound

SDσN+1(nN+l)\β2\n.
o

This last bound, together with the analyticity of E(e~ίπβ2) in the the above sector,
yields by Watson's theorem (see again [16], XII.4) the Borel summability of

GO

Σ ( - l) f e a^ 2 k to E(e~iπβ2) for \β\ <C, |arg(e~ iπβ2)| <3π/4-?y, η>0, and this in turn
o

implies the Borel summability of the original perturbation expansion to E(β) for
|J8| < C, π/8 + η < argβ < 7π/8 - η.

This proves the theorem.

Remarks, (a) When n> 1, by Borel summability we mean for short the generalized
Borel summability of order n of Leroy (see e.g. [8]).

(b) All eigenvalues existing for \β\<B, arg/? = π/2, are real. This is due to the
Borel summability since all terms of the series are real when β is purely imaginary.

We can now prove the result on the multivaluedness of the analytic con-
tinuation of any function E(β) across the real axis mentioned in the remark after
Corollary 2.16.

Theorem 3.3. Let \β\<B9 Imβ>0, and E(β) be an eigenvalue of H(β). Then the
analytic continuation of E{β) across the real axis is not single valued^ and lim

ImE(/?)=|=0 except for a discrete set of points on the real line.

Proof. We have seen that E(β2) is not analytic at β = 0, since its Taylor expansion
is divergent. However E(β2) is analytic in the punctured sector — (2n— l)π/4 + ε
<arg/?2<(2rc + 7)π/4 — ε, ε>0, with finite limits as \β\-+0 within the sector. Hence
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the singularity at zero of E(β2) must be a branch point, so that E(β) will have a
branch cut along the real axis. Now it is easy to see that E(β) = E(β), so that

2ί lim ImE(β) yields the discontinuity across the cut. Hence ImE(β), which is

analytic along the real axis, can vanish only on a discrete set of points, since
otherwise E(β) would be single valued. This proves the theorem.

Remark. Let βeIR\{0}. Then the series (3.1) is real since ak is real for any fc. Hence
lmE(β) has zero asymptotic expansion as β-+0, i.e. lmE(β) = o(βn) for all n as jδ-»O,
and ReE(β) has an asymptotic expansion to all orders in β given by the
perturbation series (3.1).

Let us now verify that, given any eigenvalue E(β), Imβ>0, the real part of its
analytical continuation to Imβ = 0 is a pseudoeigenvalue of any self-adjoint
extension of H(β).

Lemma 3.4. Let /?eIR\{0}, and Ha(β) be an arbitrary self-adjoint extension of H(β).
Then Ha(β) converges strongly in the generalized sense to H0=p2-\-x2, D(H0)
= D(p2)nD(x2), as β^O.

Proof Let ue C£(R). Then Ha(β)u-+Hou as j8->0. Since C%(R) is a core of Ho, and
Ho and Ha are both self-adjoint, the assertion is true by Corollary VIII. 1.6 of [11].

As a consequence we have:

Theorem 3.5. Let /JeIR\{0}. Then as yf?—>0 the spectrum of any self-adjoint
extension Ha(β) of H(β) is asymptotically concentrated to all orders in β near the
eigenvalues of Ho. If E(β) is an eigenvalue of H(β), Imβ>0, the real part of its
analytic continuation to Imβ = 0 is a pseudoeigenvalue (to all orders in β) of any
self-adjoint extension Ha(β), and the imaginary part yields the width of the spectral
concentration.

Proof. By Lemma 3.4 and the well known spectral decomposition of Ho, the
conditions of Theorem VIII.5.4 and Remark VIΠ.5.6 of [11] are trivially verified
in the present case. Hence (see also [16], XII.5) if Eo is an arbitrary eigenvalue of
Ho and/ClRany open interval such that σ ( H 0 ) n I = { £ 0 } , for all n = 0,1,2,... there
is a function /(/?), with the property /(fI)(jβ)|/ίΓπ-»O a s β^°> s u c n t n a t t n e P a r t o f

the spectrum of Ha(β) in / is asymptotically concentrated in

0 k=0

where Σa2kβ
2k is the Rayleigh-Schrodinger expansion (3.1). Since for Im/? = 0

Re£(β) admits this series as an asymptotic expansion to all orders in β as /?->0, it is
by definition a pseudoeigenvalue (to all orders) of any self-adjoint extension Ha. In
addition ImE(β) has zero asymptotic expansion as /?—>0, βelR. Hence we can take
lmE(β) = f(n)(β) for all n and the theorem is proved.

Let us now proceed to prove a second characterization of the analytic
continuation to Im/? = 0 of any eigenvalue of H(β), Imβ>0. If, instead of imposing
a boundary condition at infinity in order to get a self-adjoint operator out of the
differential expression p2 + x2 + βx2n+1, /?eIR\{0}, one imposes the Gamow-
Siegert "resonance" boundary condition (see e.g. [18]), the resulting complex
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eigenvalues are nothing else than the above analytically continued eigenvalues. To
this end, and also for later purposes, use will be made of the dilation analyticity
technique, so that let us first state some notation.

Consider in L2(R) the formal differential operator

(ϊψήθ

(2n + 3 ) o

— p-θ(—d2/r]γ24-P2θΎ2-l-Rp\ 2 Γ γ 2n+1\ /o y\

(Notice that this amounts to set the scaling parameter λ equal to e~θ.) By the
results of Sect. 2 we know that H(β,θ\ when defined on D(p2)nD{x2n+1\ is a
holomorphic family of type A with compact resolvents for Re(e 2 θ)>0,

lm(βe\ 2 Λ)>0. In addition the eigenvalues of H(β, θ) (which exist for \β\ small
enough) do not depend on θ by the Symanzik scaling property, and when lmβ>0
coincide with the eigenvalues oΐH(β), Im/?>0, because for θ real the scaling by e~θ

is a unitary operation. Hence from now on we shall always take βeIR+, so that
H(β,θ) will be a holomorphic family in θ for all θ in the open strip O<Im0

<minI—, ). (If βeIR_ the modification of the argument is obvious.) For
\4 2n + 3/

\β\<B H(β,θ) has eigenvalues, which are given by the analytic continuation to
Imβ = 0 of the eigenvalues of H(β), Imβ>0.

Let us now state some additional notations. Ha(β) will denote an arbitrary self-
adjoint extension of H(β\ the closure of the symmetric operator p 2 + x 2 + β x 2 " + 1

defined on D(p 2 )nD(x 2 n + 1 ). Let θ be complex, 0 = 01 + i02. By Ha(β,θx) we shall
mean the unitary image of Ha(β) under the real dilation transformation
\LJyji j j )\X)== e j [e xj, j € J-i , i.e. i

Ha(β,θ1)=U(θ1)Ha(β)U(θίΓ
1.

Let furthermore H(β,θ1)=U(θ1)H(β)U{θί)~1 denote the unitary image of H(β)

under U(βγ\ and let H{β,θί)=U{θί)H(β)U{θiy
1 be its closure. Of course on

(3.3)

Let us finally specify what we mean by the Gamow-Siegert boundary condition in
this context. Since all solutions of the differential equations (p2 + x2 + βx2n+Λ)ψ
= Eψ are of course entire functions of x, considered as a complex variable, the
following definition is allowed.

Definition 3.6. Let βeIR+. We say that E(β) is a Gamow-Siegert eigenvalue of H(β)
if there is a φ(x, β) such that:

(i) (p2 + x2 + βx2n+ί)xp = E(β)ψ, xeIR;
(ii) for any ε > 0 there is τ(ε) such that eτ'x'|φ(x)| is bounded as |x|-+oo in any

direction within the sector 0^arg(x)<π — ε. The results of Sect. II allow a
characterization of all such Gamow-Siegert eigenvalues. More precisely, we have:

Theorem 3.7. Let /?eIR+. Then E(β) is a Gamow-Siegert eigenvalue of H(β) in the

above sense if and only if it is an eigenvalue of H(β,θ\ O<Im0<min(—, -I .
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Proof. Let xeR. The Symanzik scaling immediately implies that ψ(x) solves
(p2 + x2 + βx2n+ 1)ψ = E(β)ψ if and only if ψ{(eΘI2x) solves

2n+3

e-θ(p2 + e2Θx2+βe 2 Θx2n+ 1)ψ{eθ/2x) = E(β)ψ(eθ/2x).

If we take β complex with arbitrarily small positive imaginary part the
assertion is a consequence of the known spectral properties of H(β, θ\
since by a standard WKB type estimate any eigenvector of H(β, θ) is

2«+l , 2n+3
| |0 \x\ 4 e 4 as |:x|->oo in any direction contained in O^arg(x)

Let us finally come to a third characterization of the eigenvalues of H(β,θ\
. We will see that there is a unique generalized resolvent M(E) of the

symmetric operator H(β) and a dense set S of dilation analytic vectors such that if
ψeS any function <tp,^(E)φ) has a meromorphic continuation from the upper
half-plane I m £ > 0 through the cut along the real axis. The poles of the
meromorphic continuation coincide with the eigenvalues of H(β9θ).

To this purpose, let us briefly recall the notions of generalized resolvent and of
spectral function of a symmetric operator (for a detailed account see e.g. [1,2] the
reader is referred to [1] also for the connection between these notions and the
classical moment problem, to be exploited later on).

An operator-valued function F(t)M->B(X) [X a complex Hubert space, B(X)
the space of all bounded operators on X~\ is a spectral function of a closed
symmetric operator A: X^X of deficiency indicies (m,ή) (m< oo,τt< oo) if:

(a)F(-oo) = 0;F(+oo) = J. (b)

(c) If s > ί, F(s) - F(t) ^ 0 . (d) If ueD(A), veX,
+00 + OO

(Au,v}= J td(F(t)u,v}, \\Au\\2= j t2d(F(t)u,u). (3.4)

An operator-valued function M(E) :C\IR—• B(X) is a generalized resolvent of a
closed symmetric operator A \X-*X if and only if it can be represented in the form

Λ{E)=+f(t-E)'1dF(t)9 (3.5)
— oo

where F(t) is a spectral function of A, and the integral is intended in the weak sense.
If F(t) is an orthogonal spectral family then $(E) is the resolvent of a self-adjoint
extension of A.

The exact statement of the above mentioned result is expressed by the
following theorem and its corollaries.

Theorem 3.8. There is a dense set of dilation analytic vectors \for

—,- -I) and a unique spectral function F(t) of the closed symmetric

T" ^n ι~ 5/1

operator H(β) such that ίfψeS any function

+ 00

= J (t-E)-1<Kφ,F(t}ψ> (3-6)
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which is a priori defined as an analytic function ofE in the upper half-plane Im£ >0,
has a meromorphic continuation to the lower half plane ImE^O. The set of
singularities {E\fψ has a pole at E for some ψeS} coincides with σ(H(β,θ)).

The proof of this theorem is to be obtained through the following two lemmas.
For the sake of simplicity let us take for S the linear hull of the Hermite functions,
which are dilation analytic for |Im0|<π/2.

Lemma 3.9. Let 0<Imθ< min —, 1, ψe S, and F(t) be any spectral function of

H(β). For n = 0,1,... define

μn(ψ) = <ψΦUH(β>θ)Yψ(θ)>, (3.7)

where as usual ψ(θ) = U(θ)ψ. Then :

tΦ) = <Ψ>lH(β)Yψ>= T tnd(ψ,F(t)ψ} (3.8)
— oo

and the sequence {μn(ψ)}^ gives rise to an indeterminate Hamburger moment
problem, i.e. there are infinitely many distinct positive measures ρ on JR. such that

μn(ψ) = fx"dρ(x), » = 0,l , . . . (3.9)
— 00

00 00

Proof. lϊipeS, xpe f] D(H(β)% and ψ(θ)e f] D(H(/?,β)Π). Hence the first equality

in (3.8) is an immediate consequence of the scaling since H(β,θ) is represented by
the differential expression e~θ{p2 + e2θx2

+βe1/2(2n + 3)θx2n+1) on S, which is an
invariant domain for H(β,θ\ Im#>0. Furthermore the second equality follows by
(3.4) again because S is an invariant domain for H(β). Finally, let ρa(t) = (ψ,Ea(t)Ψ}
where Ea(t) is the spectral family of a self-adjoint extension Ha(β) of H(β). Then any
measure ρa(t\ as well as any convex combination of them, solves the moment
problem (3.9). This proves the lemma.

Lemma 3.10. Let ψeS, and L2 be the subspace of L2 defined as the closure of the
linear hull Mψ of all vectors H(βfψ, n = 0,1,.... Let Hψ(β) be the closure of
H{β)\Mψ. Then (a) Hψ(β) is a closed symmetric operator with deficiency indices
indices (1,1) (b) There is a spectral function F (t) of Hψ(β) such that

fψ(E) = (ψ(θ), [_H(β, Θ)-EΓ1 Ψ(θ))

= <ψ,̂ (£)φ>= +f ( ί - E Γ ^ F ^ ) , (3-10)
— oo

where &ψ(E) is the generalized resolvent of Hψ(β) generated by the spectral function

Proof. By the well known connection between symmetric operators cyclically
generated and the classical moment problem (see e.g. [1], Chap. 4) Hψ(β) cannot be
self-adjoint, because in this case the moment problem (3.9) would be determinate,
and hence its deficiency indices must be (1,1). To see (b), let us first remark that, by
standard dilation analyticity arguments (see e.g. [9] for an analogous situation)
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fψ{E) does not depend on θ, so that it has a limit as Θ2 = lmθ^θ. Furthermore/v(£)
00

admits the series ^ μn(ψ)E~n as an asymtotic expansion near £ = αo, μn(ψ) being
n=0

defined by (3.7) for any n. Since the Hamburger moment problem (3.9) has
solutions, by a well known result (see e.g. [1], Chap. 3) there is a positive measure

+ 00

ρ(ί) on IR, whose moments are given by (3.9), such that/ ψ (£)= J (t — E)~1dρ(t).
— 00

On the other hand, since Hψ(β) is cyclically generated, it is also well known ([1],
Chap. 4) that all such measures are given by ρ(t) = (ψ,Fxp(t)ψ}, where Fψ(t) ranges
over the set of all spectral functions of Hψ(β). This concludes the proof of Lemma
3.10.

Proof of Theorem 3.8. Let us first remark that, given any single eigenvalue E(β) of
H(β,θ), there is at least a ψeS such that/ψ(£) has a pole at £(/?). This is because the
corresponding eigenprojection is one dimensional, and {ψ(θ)} is of course dense in
L2 as well as {ψ(θ)}. Then the theorem will be proved if we can show the existence
of a unique spectral function F(t) of H(β) such that

fψ{E)= f ( ί-£)-^<φ,F(ί)φ>. (3.11)
— 00

As a matter of fact given (3.11) the assertion is true because, by the known spectral
properties ofH(β,θ), the l.h.s. is a meromorphic function of £ in the whole complex
plane, while the r.h.s. is a priori analytic for I m £ > 0 . Now given ψ and a spectral
function Fψ(t) oϊHψ(β) in L2, one can always find a spectral function F(t) oΐH(β) in
L2 such that F(t) t L2

ψ = Fψ(t). Hence, by (3.10):

fψ(E)= [(t-EΓ'd^Fiήψ}.
— oo

Letting ψ range over S, by the linearity oϊfψ(E) the spectral function F(t) cannot
depend on ψ. Hence (3.11) holds and the theorem is proved.

Corollary 3.11. Let βeIR+, and E(β) be an eigenvalue of H(β,θ),

—, . Then, except for a discrete set of points on R + ,

T" ZJίϊ "I J J

ImE{β)<0.

Proof. By Theorem 3.3 we have lmE(β) + 0 except for a discrete set of values of/?.
Hence ImE(β)<0 whenever Im£(/?)ΦO by the above result.

Corollary 3.12. Let /?eIR+, and fψ(E) be such that its meromorphic continuation to
I m £ ^ O has at least a pole for I m £ < 0 . Then the analytic continuation offψ(E) along
any path crossing the real axis is not single valued.

Proof As is well known, formula (3.6) a priori defines two analytic functions of £,
for I m £ > 0 and for I m £ < 0 respectively. If these functions are the analytic
continuation of one another, this continuation has to be many valued since we
know by Theorem 3.8 that there is an analytic continuation of fψ(E), I m £ > 0 ,
which has at least a pole for I m £ < 0 . This proves the corollary.
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Remark. The above Corollary represents the exact statement of the above
mentioned notion of second sheet pole of a unique generalized resolvent.
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Appendix

To prove Theorem 2.13 for all n^l, we need two preliminary propositions.
Let δ>0, Rey>0, and H(γ,δ,\β\\ H(y,δ) be defined as operators in L2 by

H(y,δ)u = (p2 + yx2 + δx2n)u, ( A > 1 }

= D{p2)nD(x2n+1)9

= {p2 + yx2 + δx2n + i\β\x2n+ί)u,

respectively. Then we have:

Lemma A.I. Let <5>0, Re iy>0. Then there is a b>0 such that

1)u\
2n + i\β\x2n+1)u\\2 + b\\u\\2 (A3)

for any ueD{p2)c\D(x2n+ *). The positive constant b can be chosen independent of\β\,
δ and y for O^\β\<βo, O^δ<δ0, yeΩ, respectively. Here β0 and δ0 are fixed
positive numbers, and Ω is an arbitrary compact of the half-plane Rey>0.

Proof As quadratic forms on D(p2)nD{x2n+1)®D(p2)nD(x2n+1) we can write

{p2 + yx2 + δx2n-i\β\x2n+ί){p2 + yx2 +δx2n + i\β\x2n+1)

+ 2δ Rεyx2n+2 + δ[p, [p,*2"]] + 2δpx2np

yx2-i\β\x2n+1)(p2 + yx2 + i\β\x2n+

^(p2 + yx2 -i\β\x2n+ί)(p2 + yx2 + i\β\x2n+

for a suitable b > 0, which can be chosen independent of \β\ and y as it is seen at
once. To show the independence also of δ, it is enough to have
±δ2x4n-2n(2n-l)δx2n~2 + b^0 for all δ such that O^δ^δ0. This condition is a
fortiori satisfied if there is a b such that \δ2x4n

-2n{2n-\)δx2n-2n(2n-\)δ0 + b ^ for all δ, Oύδ^δo, which is trivially
verified. This proves the lemma.
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Theorem A.I. H(y,δ, \β\) is an m-accretive operator in L2. If Ry(δ,\β\,E) denotes the
resolvent of H(y, δ, \β\), and Ry(δ, E) the resolvent of H(γ, δ), we have, uniformly on
compacts in Re 7 > 0 :

\\Ry(δ,\β\,E)-RyV,E)\\->0 as |fl-*0, (A.4)

\\Rγ(δME)-Rγ(\βlE)\\->0 as <5->0. (A.5)

(A.4) holds for any fixed δ>0, and (A.5) holds uniformly with respect to \β\ for

Proof. The first assertion is a consequence of the quadratic estimate (A.3) exactly
as in Theorem 2.4. In addition, H(γ, δ) has compact resolvent as proved by Simon
[17]. To see (A.4) and (A.5), first remark that by the same argument of
Lemma 2.12 there are values of E such that ||jRy((5, |/?|,£)|| is bounded for O^δ^δ0,
Q = \β\^βo, uniformly on compacts in γ. Hence, proceeding as Lemma II. 10.1 of
[17], to prove (A.4) we need only to control the boundedness for O^\β\^βo,
uniform over γ, of

because by the second resolvent formula Ry(δ,E) — Ry(δ, \β\,E)= —\β\Λ1. Now the
boundedness of Ry(δ,E)x, with the required uniformity, is a particular case of
results of [17], Sect. IILl, and that of x2nRy(δ9\β\,E). with the required uni-
formities, is for any fixed <5>0 an immediate consequence of the quadratic
estimate (A.3). Hence (A.4) is proved. To show (A.5), remark that again by the
second resolvent formula we have Ry(\β\9E) — Ry{δ, \β\,E)= —Λ2, where

Δ2 = lRy(\β\9 £)x 2 ] Ix2n~%(δ, \β\9 E)-]δ .

Now Ry(\β\,E)x2 is bounded for Of^|/?|ig/?0, uniformly with respect to 7, by the
quadratic estimate (2.6). Furthermore, by (A.3) x2nRy(δ,\β\,E) is bounded, uni-
formly with respect to γ, for 0^(S^<50, 0^\β\Sβo- Since δ(n~1)nx2n~2<δx2n-{-l,
the same is true for δ{n~ 1)lnx2n~2Ry(δ, \β\, E). Hence Λ2 = O(δ1/n) and the Theorem is
proved.

Proof of Theorem2.13. We have:

Ry(O, E) - Ry(\βl E) = Rγ{0, E) - Ry{δ, E) + Rγ(δ, E) - Ry(δ, \β\, E)

+ Ry(δME)-Ry(\βlE).

Given ε>0, by Theorem A.2 and Theorem IILl of [17] there is δ >0, independent

of \β\, such that \\Rγ(0,E)-Ry(δ,E)\\<Φ, \\Ry(δ,\β\,E)-Rγ(\β\,E)\\<Φ' Since δ
does not depend on \β\, always by Theorem A.2 there are values of |j8| so small that
\\Ry(δ,E) — Rγ(δ, \β\,E)\\ <ε/3, again uniformly with respect to γ. Hence, given ε>0,
there are values of |jδ| so small that

IIΛy(O, £) — Λy(|jffI, £)II ̂  IIΛy(O, £) — Λy(5, J5)II + IIΛy(5, JS) — Λy(5, IjffI, ̂ )II

+ ||Λy(δ,|i8|,£)-Ry(|i8|,£

and the theorem is proved.
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