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Analyticity of the Pressure for Heisenberg
and Plane Rotator Models
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Abstract. We use complex rotations and convex completion to extend the
analyticity region of the pressure for the Heisenberg and plane rotator models.

1. Introduction

We consider partition functions for 2 or 3 component ferromagnets in a complex
external field (HJ)j=ίs_>iV, where N is the number of sites (eventually JV-»oo).
Previous results [1,4] on the location of zeros are unsatisfactory, either because
the region which is free of zeros has only N complex dimensions (instead of 2N or
3N according to the number of components), or because the real points inside this
region are too restricted (external fields in a quadrant instead of a half space). An
exception is Frohlich's result [3] which however relies on the analyticity for large
external fields: extra (but standard) assumptions are required, and the resulting
region is a very small neighborhood of the real points.

In the first part of this paper, we consider rotation invariant models and extend
the analyticity region (for the pressure) from N to 3iV complex dimensions by the
use of complex rotations (as in axiomatic field theory). If H ; = (Hz

j9 iH
x

p iHJ), the
resulting analyticity region contains the forward tube {ReH/ e F + :j=l, ...,N}
together with all its transforms under the real rotations of the original variables.

In the second part, we consider the anisotropic plane rotator model, for which
both unsatisfactory results mentioned above are available. Analytic completion
again gives analyticity in the forward tube.

2. Complex Rotation of the Heisenberg Model

We formulate the result for the quantum spinf Heisenberg model which is more
basic: it has a natural Ising spin approximation, and it has many descendents:
arbitrary quantum spin, 3 and 2 component classical spins (rotators).

Theorem 1. For j=ί, ...,iV, let Sz

p S*9 S
yj denote Paulί matrices acting on the fth

factor of the tensor product (g) <C2, and let Hj = (Hz

p H*9 ί ί p e C 3 . Given positive
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numbers {J^O :i,j=ί, ...,iV}, consider the partition function

ZWj)J=1 JV)=Trexp{ £ J^-S^ Σ H ^ s l (1)
U,j=ί 1=1 J

Then, for any real unit vector u, the partition function does not vanish in the
region

u | : ; = l , . . . 9 Λ / r . ( 2 )

Proof By rotation invariance, it is enough to consider u along the positive z axis.
Letting H^ = (Hz

j9 iH
x, iΉJ), the desired region reads

7 7 + : j = l , . . . ,N, (3)

where V+ is the open forward cone :

V+ = {{v\vx,vy)eWL3\vz2 -vχ2 -vy2

Our starting point is the theorem proven by Suzuki and Fisher, extending a
previous result of Asano: with our hypotheses (and more generally: see Theorem 2
below), Z((Hj)j=ίfN) does not vanish when Reίΐy is along the positive z axis for
all/ Let then yd be a complex rotation Z((ΛHj)j=1 N) is an analytic function of
the Cayley parameters of Λ, which is constant for real rotations and therefore also
for complex rotations. In particular, we may apply a real Lorentz transformation
to (Hj)j=ίtm^tN, so that Z({Hj)j) does not vanish when ReH, is along any given
direction v in V+9 the same for allj. The pressure N~1 l o g Z ^ H ^ ) is then analytic in
a neighborhood of a tube:

ί(λJy)j=u...Jλj>O:j=ί,...,N}. (4)

In order to apply the (flat) tube theorem, we verify that the basis (4) may be
connected by piecewise linear curves: (λj\)j=1 N and (λ'jY)j=ί N are endpoints
(t = 0 and t = 2 respectively) of:

which lies inside (4). It follows that the pressure extends analytically to the convex
hull of this tube, i.e., to (3). Indeed, given a point (H ;)J = 1 N'm (3), there will exist ε
such that

X j c = l,...,iV (6)
jφfe

and

λ<*) = ε + ( l - ε ( i V - l ) ) δ M > O : Λ f c = l , . . . , N . (7)

The sum

Σ (λ?v*Vi.....*
k=ί
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is then proportional to (HJ)J.= 1 N and the desired result follows from the scale
in variance of the domain. This concludes the proof of Theorem 1.

As we shall see in the next section, rotation invariance is probably not
necessary for the pressure to be analytic in some fixed forward tube in ( H ^ , with a
suitable choice of the z axis. In order to discuss briefly the anisotropic Heisenberg
model, we need to state the theorem of Suzuki and Fisher in its generality (for
quantum spin^):

Theorem 2 [4]. Let {J0 } u = !,...,* be 3 x 3 matrices such that J%, Jf/, Jy], Jf/, J\*
are real and J?*, Jfj, Jz

tj, JyJ are pure imaginary. Suppose that, for all ij

f2 + \Jφ112 + 2(|Jf/|2 + μf/l2)1'2. (8)
Then the partition function,

(9)

does not vanish when

"'N,r (10)

Notice that the reality conditions in the hypotheses of Theorem 2 are stable
under the Lorentz transformations used in the proof of Theorem 1 (i.e., under
Jijh+ΛJijΛ7). On the other hand, the bounds (8) will restrict the applicability of the
previous method. For the sake of simplicity, we shall assume J*j — Jy

t* = 0.

Theorem 3. Let {J^i J = 1 > N be 3 x 3 diagonal matrices such that

and

Let

ocx = inf sup{thl| ηj + Jxx ^ (J*j - J**) Sh 21 and J» - \JJj\ ^ (J» - Jf*) Sh 2λ}

(11)

α,= infsup{thA|Jf/ +Jf/ ^(J%-Jφ Sh2A and Jff-1Jff\^{J™- JJj) Sh21}.
'J λ

Then the partition function (9) does not vanish when

l f . . . f n . (12)

Proof The idea is to use Lorentz covariance to bring the external field from
(12) back to (10). The attention will be concentrated on the couplings Jip which we
now write explicitly as arguments of the partition function Z({J ί y}- J = 1 Λ ;
(tlj)j=! . >Λr) defined in (9). For any complex rotation Λ, analytic continuation from
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the real rotations implies

Z({Jij}ij=i....,sΛ^j)j=i,.^ (13)

Let us assume Jtj diagonal and ReH7 along the positive z axis, for all ij. We
first take for A a Lorentz rotation in the z, x plane. Dropping the indices z J , we
have:

• (14)

The right hand side of (13) will satisfy Theorem 2 if and only if:

f(Jzz- Jxx)Ch2λ + Jzz + JXX^\-(Jzz- Jxx)Ch2λ + Jzz + JXX\ + 2\JZZ- Jxx\ ISh2λ\

\(JZZ - Jxx) Ch 2λ + J z z + Jxx ̂  2| J yη + 2\JZZ - Jxx\ I Sh 2λ\

(15)
which we replace by the stronger conditions:

ΛΓ - .

\

Ch2Λ +

2 k

0

5h2

2

J z z

-z

- J

2

7 Z Z _ TXX

Ch~>jί 1
L/llZΛ i

0

h2/I

2

o\

0

Jyy

Comparing with (11) we see that the pressure will be analytic in a neigh-
borhood of the tube

U « % =i,..jvlReH* = αReH z and ReHJ = 0 : ; = l, ...,ΛΓ}. (17)
\ot\<ax

The union of this set with the set obtained by exchanging the roles of x and y is

{ J i ί ϊ ί λjy,λj>O:j=l,...,N}, (18)
veC

where

{ | | i ; * | < a x i ; z and v* = 0}u{veIR31 \υy\«x.yυ
z and υx = 0}.

The same reasoning as in the proof of Theorem 1 shows that the convex hull of
(18) is given by

UίίH^^JReH^C:^!,...,^}. (19)
veC

C being the convex hull of C:

^1 + J^<

This concludes the proof of Theorem 3.

MveIR3
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3. Anisotropic Plane Rotators

We shall now consider ίwocomponent "classical spins", for which a non zero
lowerbound on the modulus of the complex partition function is available by the
method of correlation inequalities:

Theorem 4 [1]. Given 2 x 2 matrices {Jij}ij=i)...tN such that J*f, JyJ are real, JfJ, J\*
are pure imaginary (ij = 1, ...,N) and

Let n} = (H*, H!)e£2J=l,...,N and

Z((H.)J.= 1>..,iV)= ί f[ (<5(S?-l)d2S,)exp{ Σ S r ^ S , + £ H s i (21)
7 = 1 l i , 7 = l 7 = 1 >

Suppose that

p^ | Im(HJ + iH})|

( i/J-ϊΉJ)^ |Im(iϊJ-iJΪJ) | J ' " ' ' κ }

Then

(23)

Remark. Imaginary couplings were not considered in [1], but the conditions (20)
fit easily in the framework.

Our aim is to make an analytic completion of the union of the domains given
by Theorem 4 and by the analog of Theorem 2 for plane rotators:

Theorem 5 [2]. Given 2 x 2 matrices {Jij}ij=li.^N such that J*/, JyJ are real, Jff, J\f
are pure imaginary and

J** ̂  \Jϊj\ + μ^Ί + \J\f\: iJ = 1, ., N. (24)

Suppose that

ImHJ-O J = 1'"•>"• ( 2 5 )

Then the partition function (21) is different from zero.

Notice that the real points satisfying (25) may vary in a half plane, whereas (22)
allows only a quadrant (Rel/J^|i/J|). On the other hand, (25) would imply that
the pressure is analytic in (H*)j= lj#>>>ΛΓ ^

u t n o t necessarily in (H3j)j=ί^mmfN. Our result
is the following:

Theorem 6. Given 2 x 2 matrices {Jίj}iJ= 1? ?iV such that J*f, Jyj are real, J*f, Jyf are
pure imaginary and

jxx , τ y y > | jχy_ pχ\
Jij •f-Jίj=\Jij Jij\

jxx _ jyy > I jxy , τyx\ ? . / ? • • • ? •

^ij J ij =\Jij ^~J ij I



86 F. Dunlop

Suppose that

7

Then the partition function (21) is different from zero.

Remark. If we write the interaction Si JijSj in terms of the "light cone" variables
(S*±iSy)j=ί^^tN, then the matrix Jtj is transformed into

~ la b
ίJ~\c d

and (26) is equivalent to a, b, c, d being positive. But (24) requires in addition

Cί (28)

We shall prove the theorem, assuming (24) [or (28)]. Using the Lorentz invariance
of the domain (27), we shall then recover the whole of (26). Indeed

and for arbitrary a, b, c, d positive, a + d φ 0, there will exist λ > 0 such that

,"2! (29)

The limit points a = d = 0 are included by uniform convergence.
The proof of Theorem 6 is now a consequence of the following lemma:

Lemma. Let /((HJ.) i/=l j >iV) be analytic in a neighborhood of the following two
regions

Then f((H.j)j=ί >iV) extends analytically to the tube

| Imf ί? |<αReH*: ; = l, . . . ,N. (30)

Remarks. The logarithm of the partition function (21) with the restriction (24)
satisfies the lemma with α = 1, αo = 0.

We can add more components satisfying the same conditions as (H^)j=1 N:
the lemma and its proof extend trivially.

Large external field expansions may be used in place of Theorem 4 to obtain
the region (II). Then α is small and a0 is large. This is the way Frohlich [3] proved
analytically in some (unspecified) complex neighborhood of {H*>0 :j=ί, ...,N}.

Proof of the Lemma. The region (II) is the union over (aj)j=lf N of the topological

products

ilia) lHl>aj / = 1 N



Analyticity of the Pressure 87

In order to apply the tube theorem to the region (I)u(IIa), we introduce the
following variables:

TJX

<p, = ArgCh—L

a\
(32)

In these new variables, we have a function analytic in a neighborhood of the
following two tubes:

I 0 ^ I m ^ . < —

(Γ) J = 1,...,N; (IΓa)

[
Therefore it extends analytically to the union over t, O ^ ί ^ l , of the regions

t ) |

j = l , . . . , N . (33)
π

t -

Consider now a point (HJ)J = 1 N in the original variables, such that

| I m H J | < ^ R e i ί J : j = l,...5JV. (34)

Its image in the variables (φpψj)j=1) >N will be in (33) for sufficiently small t
and suitable large α '̂s. Indeed, as α

so that we should take α ^ ί " 1 with

(35)

8|Imif?|

απ J π

This concludes the first step of the proof: analyticity in the region (34). Note
that the result does not depend on the value of a0. An iteration of this first step will
now eliminate the factor \ in (34). To make the procedure more clear, we start from
an even weaker form of the lemma: with the same hypotheses, there should exist
θ>0 such that / extends analytically to

\ImHy

j\<θocReHx

j:j=l,...,N. (37)

Let then

Hf1=Hy

j-iθ1(xHx (38)

with -Θ<Θ1<Θ.
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In the variables (H*)j=u ^N and (Hf1)j=lt_tN9 one sees from (37) and (II) that/
is analytic in a neighborhood of

ΓReHJ>0
1 j [imHf =0 J "•" '

( Π ( 1 ) )

JReHJ 1

so that applying our first step gives analyticity in

l l m / J ^ M l - ^ α R e t f * j = l,...,N.

We proceed inductively with
x

j i = ί N

and obtain analyticity in

\ImHy/p\<(l-θ)pθθLReHx j = l, ..,JV. (40)

If we now vary 0 l5025 •••» i n t n e allowed intervals, the resulting analyticity
region for the original variables reads:

\ImHyj\<[ Σ (l-θγ)θaιReH* = <xReH* :j=l, ...,N. (41)
\p = 0 /

This concludes the proof of the lemma.
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