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Abstract. As part of a possible constructive approach to a gauge invariant
P(¢), theory, we consider massive, scalar, polynomially selfcoupled fields ¢ in
a fixed external Yang-Mills potential A in two-dimensional euclidean space.
For a large class of A’s we show that the corresponding euclidean Green’s
functions for the fields ¢ have a lower mass gap for weak coupling which is
uniform in A. The result is obtained by adapting the Glimm-Jaffe-Spencer
cluster expansion to the present situation through Kato’s inequality, which
reflects the diamagnetic effect of the Yang-Mills potential. A discussion of the
corresponding gauge covariance is included.

1. Motivation and Outline of Results

There is an increasing belief that Yang-Mills field theories should play an
important role in the description of elementary particles. Now the recent attempts
to get a rigorous mathematical grip on the problems related to Yang-Mills fields
mostly start with a lattice formulation (see e.g. the contributions to the Rome
conference on Mathematical Physics and the references quoted there). However,
there is one aspect which directly allows a continuum discussion and which is the
object of the present analysis. For definiteness, we consider a gauge invariant
P(¢), theory, but we expect that our arguments may be extended to gauge
invariant Y, (Yukawa) and ¢3 theories.

In our case the euclidean Green’s functions should formally be given as the
moments of a normalized measure u, with

dp(¢*, ¢, )=Z; " [To(f(Ax)exp— [GF*F,,+ P($*, $))x)dx
-exp—[(@*(— 4, +m)p)x)dx [] dpF(x)dg(x)dA,(x)  (L.1)

x, i1

with
A,=Y(0,+ied,)? (1.2)

n

(see e.g. Faddeev and Popov [4, 13], Abers and Lee [1]).
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f specifies the gauge and F is the field strength tensor for given 4. Each ¢(x) is
formally an element of a finite dimensional complex Hilbert space V with
components ¢x) (for a fixed orthonormal basis in V) and complex conjugate
euclidean fields ¢f(x). Each 4,(x) is formally a hermitean operator in V. As a
sideremark we note that our discussion may also be carried over to the case where
V' is a real Hilbert space, the fields ¢,(x) being real and i4,(x) being skew
symmetric.

Furthermore

P(¢* ) i (13)

with g, real, a, >0 and (¢*, ¢)(x):z¢;“(x)¢i(x).

We rewrite yi, as

dug(¢*, ¢, A)=Z(A) Z; du (A)dp,(¢*, $) (1.4)
with
dp(A)=[To(f(Ax))exp — [GF"F ,,)x)dx [ | d4,(x) (L.5)
and ) "
duy(¢*, ) =Z(A)" "exp— A [ P(¢*, $)(x)dx
— [ ¢*(— 4,4+ m))pdx E dpf(x)dp(x). (1.6)

Z(A) is chosen so as to make u, a normalized measure. In particular,
Z,=[Z(A)du/A). 1.7

The problem consists in giving these expressions a precise meaning, in particular
to find nuclear spaces on the duals of which these measures live. In this note we
will construct u, (or more precisely its moments, since we do not yet know
whether u, is a measure) and discuss some properties. We leave the problem of the
more difficult construction of u, aside. u, will be given for all small [4] (Re 1=0)
and all 4 in a class < 2’ which will be specified in Section 2. We expect this class
to be sufficiently large to be close to the support of a would-be measure u,.
Furthermore we will show that the euclidean Green’s functions for a fixed Yang-
Mills potential

(PE0x1) . DRI 4= 1P (x ) .. §1(x ) .. $E(x, )i (H*, ) (1.8)

define tempered distributions with cluster properties which are uniform in 4. In
particular, the exponential decay for large separations is (uniformly in A) at least
as strong as the one obtained by Glimm et al. [7] (which is the 4=0 case). This
indicates that the full euclidean Green’s function

(4)

(B 0xs) - G0 =[PP ) D0 s —— z dﬂf(A) (1.9)

in the gauge f also should have the same cluster propertles.
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Our results conform with those already obtained on the one-particle level:
Combining the discussion of e.g., Combes et al. [2] with the results obtained in
Hess et al. [9], the presence of a Yang-Mills potentials has a diamagnetic effect in
the sense that it tends to push the spectrum of the Hamiltonian upwards. In multi-
particle boson theory the same has also been shown for the case of the ground
state energy (Simon [19]).

Since the true exponential decay for (1.9) is determined by the physical mass,
our result indicates that the gap between the ground state and the first excited
state for the Bose field (the one-particle state at rest) does not decrease in the
presence of a Yang-Mills potential.

In Section 2, as a preparation for the construction of u ,, we consider the “free”
case A=0. It is given by a Gaussian measure with covariance (—4,+mj)~'. We
discuss the Wick ordering : :, with respect to this measure and show its gauge
invariance. This will allow us to perform the only necessary renormalization of
P(¢p*, ¢)(x) by taking :P(¢*, ¢)(x):, instead. Then the euclidean action and its
exponential in a finite volume are well defined. The construction of u,, the
discussion of its gauge covariance, and the proof of the cluster properties follow by
adapting the Glimm-Jaffe-Spencer cluster expansion to the present situation and
will be given in Section 3. The clue is provided by Kato’s inequality for Yang-Mills
potentials (Hess et al. [9]) and related inequalities. They are extensions of Kato’s
inequality for electromagnetic potentials (Kato [11], Simon [16-18]). In parti-
cular, the kernel of the covariance (— 4 ,+m3)~! may be estimated by the kernel
of the covariance (—4 +m2)™ 1.

Since Section 2 is an adaption of Dimock and Glimm [3] and Section 3 is an
adaption of Glimm et al. [7], we will stay as close as possible to the notation used
there. Also we will assume the reader familiar with the material and line of
arguments presented there.

2. Gaussian Processes with External Yang-Mills Potentials

To fix the notation we start with some definitions. Let V be a finite dimensional
complex Hilbert space and let {, ) denote the scalar product in V. #, denotes the
real linear space of hermitean operators in V. For any measurable subset BCRR”",
LP(B, V) is the space of measurable functions f on B with values in V such that

171,=(] nf<x>upd"x)%< ®.

Similarly LP(B, #,) is the space of all measurable functions g on B with values in
M, such that

1
ugup=( i ug(x)usd"x)koo.

|1l is the operator norm on V. L¥, (R", V) and Lf, (IR", 5#,,) are defined similarly.
We have feLf,,(R" V) if and only if fi(x)=<e,f(x))>eLf,,(R") for all i where
e,cV(1<i=dimV) is a fixed orthonormal basis. By 2(R", V)=CZ(R",V) and
S(R", V) we denote the nuclear spaces consisting of all fe(|LP(R", V) such that

p

fieIR") or L(R"), respectively. We have [()LE (R",V)CZ'(R%V). Also
p
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LR, V)CHL' (R, V) if to each f'eL(R", V) we associate the continuous linear
form on L(R", V):

S N=L 0 =[x, fx)d".

Furthermore, every gelLf,,(R", #,) has a matrix representation g,,(x)
={e, g(x)eye LY, (R"). We define Z(R", #7,) to be the nuclear space consisting of
all g with g,,e D(R") for all k, I. These definitions obviously do not depend on the
particular choice of the basis {¢;}. We will need the following:

Theorem 2.1. Let A={A,}, ., <, be measurable functions on R* with values in H#,
such that

(1) A, Ly (R #,)(u=1,2)

loc

2
. 0
(2) diva=) o ALy (R ,);  x=(x;,x,)eR?.

loc

2 d 2
Then A,= Y <g +ieAﬂ(x)) (e real, fixed) is a nonpositive operator on L>
=1

123
(R%, V) which is essentially selfadjoint on C®(R2, V). For my>0, the kernel of the
resolvent D ,=(—A4,+m3)~ ! satisfies Kato’s inequality for resolvents

ID (e, M)y < Cylx, y)=(— A+ mg) " (x, ). 2.1)

(IR?, ##,) and also the

loc

2
We only sketch the proof: By assumption ) (A,(x))*e L],
n=1
local Stummel norm

MJA4)= [ 14,6l
fx—yl<1
is finite. These are Schechter’s conditions [14], originally stated for electromag-
netic potentials. However, using Kato’s inequality for Yang-Mills potentials (Hess
et al. [9]) the proof in [14] may easily be taken over to the present situation.
The class of all A4 satisfying the conditions of Theorem 2.1 will be denoted by
2. 2 is euclidean invariant, i.e. with Ae ' we also have 4, €% where

A r¥)=(R™1 A Rx +a)(Re O(2), acR?).

We now discuss gauge transformations: Let xG(x) be a measurable map from
IR? into the Lie group U(V) of unitaries on V, i.e. Ge L°(R?, U(V)). This set has a
group structure defined by (G, G,)(x)=G,(x)G(x). Any such G defines a unitary
map, also denoted by G, on L*(IR?, V) by (Gf)(x)=G(x)f(x). We have, formally,

Af=GAg-,G™'f 2.2)
with the distributional definition

(G™14),(x) =G (x)4,(x)G(x) + —ilz G~ (x) ;x—— G(x). (2.3)

"

More precisely, whenever Ae 2’ relation (2.2) may be used to define 4;.., as a
selfadjoint operator which is essentially selfadjoint on G~ 'C®(R?, V) LA (R%, V).
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Due to relation (2.2) the resolvents are related by
G 'D,G=Dg-1, 24)

such that Kato’s inequality for resolvents (2.1) also holds when A is replaced by
G~ 1A. If we set

2= |J G &

GeL®(R2,U(V))
then & is also euclidean invariant and trivially
G '?=2 for GeC R*U(V)).

In what follows 4 will always be in . Since D ,(x, y) is measurable, we have in
particular D (-,-)e () L& (R* ) and for fixed y D,(-,y)e () D?R? )
<p<w 1

loc
1=p Sp<w
(see e.g. Dimock and Glimm [3]) ’

We need a further generalization of the present discussion. As in Glimm et al.
[7], let T be a subset of (Z?)* CIR?, i.e. a set of line segments b in IR? connecting
neighbouring points with integer coordinates. For AeG™'2’ let 4, , be the
Friedrichs extension of the quadratic form obtained by restricting 4, to
G™!CP(R*\I,V) (Dirichlet boundary conditions). Then 4, ,=4, and
Dy 4=(—4y 4+m)~ " satisfies an estimate similar to (2.3)

IDr, 406 Yy S Cplx, y)=(—Ap+mg) ™" (2.5)
where the notation is as in Glimm et al. [7]. Also relation (2.4) extends to
G 'Dp ,G=Dp G-1,. (2.6)

We denote by 2(A4) the convex set of all convex combinations D of covariances of
the form D ,. Then the kernel of D satisfies an estimate of the form

I1D(x, Yy = Clx, y) (2.6a)

where C is formed in the same way from the C as D is formed with the Dy 4.
We now consider euclidean fields ¢(f) to be the complex valued, linear
functions on &'(IR?, V) given by

o) :f'= (1), [feSR:LY)
¢(f) is additive in f. ¢p*(f) is the complex conjugate field, i.e. the map
o*(f): (1.0
We will write
()= (P(x), f(x)yd>x
and define ¢,(x) and ¢}(x) through
dih) = ple;h) =j ¢i(x)h(X)d2x
o (W)* = P(e;h)* =§ (f)?‘(x)]’TX)dzx .
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To simplify notation, we write
¢r if

¢_i = :
¢; if

For given De 9(A) let v;, be the Gaussian measure over &'(R?, V) with mean zero
and covariance D. For D=D, , we will also write v,. Measurability will be
considered with respect to the cylinder sets in &'(R?, V). Thus ¢(f) and @(f)*
become random variables with expectations

F#(g)* ... g * $(f1).. (f)dv
> ﬁ G Doy il n=n

__JmeSpk=1
0 otherwise.

We note that the Markov property holds for v,. This follows as in Nelson [12],
since 4, is a local operator.

We turn to a discussion of Wick ordering::,w.rt. the measure v,. The
generating functional is given by

:exp ¢(f) + Pg)* : y=exp (B(f) + d(g)*)Jexp (p(f) + Plg)*)dv,)~*
(see e.g. Schrader [15]) from which by polarization we may obtain terms like

11 ¢,(f):4(1 =i, <dim V). We are interested in expressions of the form
k=1 =

R W= T+ 11 6000, ), oy,
(1< <dim V) @.7)

where We L?(IR?") has compact support.

These expressions may be obtained as in Dimock and Glimm [3] and Glimm
et al. [7] by regularizing the fields with a function y,(y)=x?x(ky) (x > 1) where y is
nonnegative in C*(R?) with [y=1 and supported in |y|<1.

Thus we set
G, )= 1l = Y)(x)dx
=, —¥)
and

Ran (i), M= 1 H B 30 AWy .y )y, . dy,.

The reason that this works is roughly as follows: Although the covariance D in
2(A) do not have regularity properties in general, they may be bounded through
Kato’s inequality by expressions with the right properties. We only need the
following additional lemma which extends and allows to make use of Proposition
7.51n [7]:
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Lemma 2.2. For any covariance De P(A), the quantity

d(x)=lim Dy, ,(x,y)~D(x,5)
yox

satisfies the estimate

0ol = clx) = 113:1‘ (Cylx,y)— Clx, y)) (2.8)

where C is constructed in the same way from the C;’s as D is from the Dy ’s.

Proof. 1t is sufficient to consider the case D=D,. ,for some I" 4. Assume first the
A, tobe CZ. Asin [7] let dZ | be the conditional Wiener density on paths Z(t) in
lR2 which start at x at =0 and end at y at t=t. Let J} be the function

0 if Z(r)eb, 0=1=t
1 otherwise

Jy2)= {

defined on Wiener paths. For the kernel of the semigroup exp—(— 4 ,+m3) we
have the relation

exp—t— A4 +md)x,y)

={e” ’"O‘T(exp ie Z jA (Z())dZ ( )H J(2)dZ:, , 29)
bell
Here T(exp-) is the time ordered exponential and
2t
G, (2)= T(exp +ie ) (A (Z(x)dz M(T)) eU(V) (2.9a)
n=10

is a stochastic integral. Relation (2.9) is well known to physicists in the case of
electromagnetic potentials 4 (see e.g. Feynman and Hibbs [5]). Mathematically it
follows from a generalization of Ito’s integral formula in magnetic fields and is a
consequence of Trotters product formula. Thus we have

D, (%, y)=Dy 4(x,y)= j je-mm <Z)(1— I]J')dZ;,ydt

bell

which gives the estimate

||D¢,A(X» y)—DI",A(Xa My =

g (1 11 J;,) dz' dt

bel
#(%,¥)—Cr(x,y).

This proves the lemma for A4, being C?. For general AeZ?' let
A, )={8,(x—y)(»)A(y)dy be regularlzatlons of A, where the §,e C*(R?) are
approx1mat1ve §-functions and the {,e CX(IR?) are approximation to 1 such that
d,—~d and {,—1in Z'(R?) as ¢—0. Then the 4, , tend to 4, , on the common core
C°°(]R2\F V). Therefore, we have strong convergence of Dy 4 to Dy , (see e.g.
Kato [10], Chap. VIII). Thus estimate (2.8) also holds for Ae #'. The general case
A€ then follows from relation (2.6), concluding the proof of Lemma 2.2.
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Proposition 2.3. For any De2(A), the R, ({i;},W) are elements in
L' (R, V),dv,)(1 <p < o0) and converge there as k— o0 to an element denoted by
R ({i;}, W) and written as in expression (2.7).

The proof follows along the lines of [7] making use of the estimates given
above. We omit the details.

Next we introduce the euclidean action, which will be well defined due to
Proposition 2.3. For any measurable function h on IR? with compact support and
0=h=1 we set

m dimV k
P% 0= 3 afi( 3 610080)] o).

The next proposition is the analogue of Theorem 9.5 in [7].

Proposition 2.4. Let ReA=0. Then exp—AP (¢* ¢)h) is in
LP(S'(R?,V),dvp)(1 £p< 0, De D(A)) and there is a constant K independent of h, A,
and DeD(A) such that

IZh,D(A)l — ”‘_e—lPA(zb*,d))(h)dvDI < eK measure(supph)
Corollary 2.5. For any . with Relz0, R e *Pa0nab 5
LA (R?, V), dv,)(1 <p< o0, De D(A)).

Remark 2.6. Proposition 2.3 and Corollary 2.5 may be sharpened to analogues of
Theorem 9.4 and Corollary 9.6 in Glimm et al. [7] with the same estimates
uniformly in A and De 2(A).

We turn to a discussion of the gauge invariance of the euclidean action. Let
Ge 0,(R?, U(V)), such that G maps #(R?, V) homeomorphically onto itself. Thus
the field G¢ with (G@)(f)= (G 1f) is well defined such that G,(G,¢)=(G,G,)¢
and formally

(G)(x)=2. G (x)$(x)
! (2.10)
(Go)}(x) Z G {()$F(x).
We first discuss the gauge covariance of the measures v,. Note that if De 2(A4),
then GDG ™ 'e 2(GA). Hence, by definition of v, we have
J(GO)P(S))... (GO)H(f,)dvy,
=[¢*GTI1))... "AG ™ f)dvy
= .f ¢H(fD) - dF(f)dVgpg-1 -

This may easily be extended to smooth, polynomially bounded cylinder functions
F=F(™(f)),... 6*¥(f,)) on &' (R?, V) in the sense that

FE(GO) (S, ... (GHY(f,)dvy,
=[F@*(f), ... ¥ ([ )dvgpg-1 -
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Finally it may be extended in L?(&(IR?, V), dv,) to limits of such functions. We will
write this as

Bvgpg-1(9*, @) =dvp(GP)*, Go) = :dvi ™ '(¢*,¢)
such that

Vepg-1="Yp (2.11)
which expresses the gauge covariance of the Gaussian measures under con-
sideration. In particular we have

(2.12)

Ve =V,
The Wick ordering is compatible with this structure in the following sense:
Consider

R0l )=] TT TT (67 00 al0): W 30y, oy

for De 2(A), where we note that (G¢),<,i(J’)=Z¢ (G Y- =)

Integrating over vgpe-: we obtain a sum of products of elements of the form
(XK*(D);',, i;*Xx)(yw YIvEV, i eli}y <ksm,> D€ {il:,}l §k§nv,)
or
(XK*(D)il, iz*X;c)(yva yv)
—(06e*G™ IDGAG*XK)(yw VWi e {ig} <ksn,
multiplied by W(y;,... y,) and integrated over. Thus we have
jRGA A Wdvgpg-1= fRA,x({ilch W)dv), (2.13)
and Proposition 2.3 therefore gives:

Lemma 2.7. The R, ({i;}, W) converge in LP(F'(R* V), dvgpg-1) (1Sp<oo,
De 9P(A)) as k— 0 to an element written as

RE 453, )= 1+ [T (67 0100)ca WO 5)y -, 214
such that

§RELE} s Wdvgpg-1= [ R ({52}, W)dvy, (2.15)
for De D(A).

We will call RS, the gauge transform of R,. Thus, from the class of
(measurable) functions on '(IR%, V) considered, we conclude a gauge transfor-
mation G maps L(&'(R?,V),dvy) onto L& (R?, V)dvgpe-:)- In particular it is
isometric if p is even and hence for all p=2 by the Riesz-Thorin interpolation
theorem.
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Now the formal relations (2.10) and the multilinearity of the Wick ordering
(over €) suggest the following:

Lemma 2.8. In L(&'(R% V), dvgp-1) (1Sp<oo,DeP(A)) the following re-
lations holds

RgA({.il‘c'L W)= Z! l_ll :kl—ll d’j,:(yv) ‘GA Gj;g,z(yv)
Rov=1 k=1T i
W(yy,...3,)dy, ... dy, (2.16)
with the notational convention
Jv:{(ii,*) i iy=(.%)
G i =G,

r n,y,

v=1k=

and

o _[Ga i J=G0d=(\%)

YOGy if d=0)0=(,).

Proof. First, we note that the right-hand side of relation (2.16) is well defined by
Proposition 2.3. More precisely, denote by Rg, . the regularization of the right-
hand side of (2.16) obtained from replacing ¢, by ¢, ... Then R¢, . tends to the
right-hand side of (2.16) in the desired way as k— co. By arguments similar to those
leading to relation (2.13), it is easily checked that

JRE 4 dvopg-+= [ R} dvp (2.17)

where R/, is obtained from expression (2.7) by replacing ¢(x) with its
regularization

()=, ) (2.18a)
where
25(x,9) =G~ 1 (X)x(x = »)G(Y). (2.18b)

% is also an admissible regularization: For given G there is C <o such that
1G™1(x)G(y)~1lly <C-|x—)|
for all xelR? and yesuppt W. Therefore,

-1

“XS(', V)= x(: _y)HLl(IRZ,EndV) <C'x

uniformly for yesuppt W for some C’>0.

Hence, by the arguments leading to the proof of Proposition 2.3 in Dimock and
Glimm [3] and the estimates given above, R/, tends to R, in
LA (R?, V), dv,)(1 <p< o0, DeZ(A)). Hence, by relations (2.15) and (2.17) R,
tends to RS, in LA(& (R, V),dvgpe-:) concluding the proof of the lemma.

Theorem 2.9. The euclidean action is gauge invariant in the sense that
P (G§)*,(G)(h) =P ((¢*, p)(h) (2.19)
as an equality in LP(¥'(R%, V), dvp)(1 <p< oo, De D(A)).
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The proof is immediate from the definition of the euclidean action, Lemma 2.8,
and the unitarity of the G(y).

3. Convergence of the Glimm-Jaffe-Spencer Cluster Expansion
in External Yang-Mills Potentials

In what follows h, will denote the characteristic function of a union A of lattice
squares. For Re1=>0 we set

Z J(A)=[exp— AP ((*, §)h)dv . (3.1

Below we will show that Z,(4)=+0. Therefore, we may define the complex
measures p, 4 by

duy 4=2Z4 (A)exp—AP (*, d)(h,)dv , . (3.2)
We let
G Xy Xyd) = [ By (%) .. B (X, )dp g, g€ S (R (3.3)

be the approximative euclidean Green’s functions in the external Yang-Mills
potential A. We have

jRgAd/'tA,GA = j.RAd:uA,A' (3.4
Indeed,
I RE sexp—APg ((¢*, p)dvg 4= [ RE s exp — AP ,(GP)*, Go)dv 4
= (R, exp—AP (¢*, ¢)dv,

where the first identity follows from Theorem 2.9 and the second from relation
(2.15). Thus Z ,(GA)=Z ,(A4) and relation (3.4) follows.

In particular, the euclidean Green’s functions &, , satisfy the following gauge
covariance properly:

dimV n
Z H Gik,jk(xk)efi,GA(xl,jﬁ -~~§xmjn)
k=1 k=1 ~
15ksn
=G 4(X 0y 500 X000 (3.5)

Consider now / in the half circle 0 <[4 <&, — g <argh< 1‘2- As in Glimm et al. [7]

we have the following:

Theorem 3.1. For A belonging to the half circle above and for % sufficiently small
0

J R du, 4 converges (uniquely) as h,—1 for all R uniformly in A. In particular, the

euclidean Green’s functions Sy , converge in @ F'(R*, V) to euclidean Green’s

functions &'y which are analytic in A. They satisfy the following estimate

I @ ody e X ) (s X)X x| <CHm D2 f I3, (3.6)
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uniformly in n and feS(R*") with c=c(e,m3). Furthermore, there is a uniform
cluster property in the following sense: For some m>0 depending only on ¢ and m,
1% (it 5o faydng 39T 1 - Taodiny) — G (frads 55 frpdi)
SG o] - GinISCUS Y {ghe ™™
(f» 9;€ C2(R?), g%(x) = g(x — a)).
The €' satisfy the same gauge covariance properties as the S ,.
Due to the uniqueness of the limit, we have the following euclidean covariance
property:
Corollary 3.2. Under euclidean transformations (a, R) the €, transform like
SR —a)dy 5. RTH (X, — a),0,) = @4(X 1,0y 5o X d).
The proof of Theorem 3.1 follows by adapting the cluster expansion to the present
situation. This means effectively that the covariances C of [7] are replaced by the
corresponding covariances De 2(A). Therefore it is only necessary to repeat all
estimates involving covariances, most of which have already been done by
estimating the D’s by the C’s through Kato’s and related inequalities. Then the
quantities involved are estimated by the corresponding quantities for the 4A=0
case to which the usual cluster expansion estimates of Glimm et al. (with a dim V-
component Bose field) applies. In particular, m is exactly the lower bound for the
physical mass thus obtained. Only ¢ could become smaller than the one obtained
from [7] for the multicomponent Bose theory due to the special arguments needed

for the proof of Lemma 3.4 below (which fixes ¢). We now present the remaining
estimates. With otherwise the same notational convention as in [7] we have:

Lemma 3.3. For any De 9(A)

I1D(x, )y = Clx, ) (3.7)
and

16" D(s)(x, y)lly = 0" C(s). 3.8)

Here D and D(s) are formed in the same way from the D , as C and C(s) are from
the Cr.

Proof. Estimate (3.7) has already been stated in estimate (2.6a). Estimate (3.8)
follows along the same lines as the proof of Lemma 2.2, i.e. by using the stochastic
representation of 0”D(s) and 0"C(s).

The next lemma fixes ¢ in Theorem 3.1:

Lemma 3.4. Let ¢ be sufficiently small. Then for all m%>1 and all A(|A|<e, Re A=0)
Z, oa(A)=[exp—AP (&%, §)(h)dvyy
D'=Dyy, 4
satisfies
3512, s A S2 (3.9)

uniformly for all lattice squares A and all Ae 2.



Gauge Invariant, Massive P(¢), Theory 311

Proof. First choose 0<g, <1 so small that
|[ e #Pa@"Dhagy | <2 (3.10)

for all A with |A|<2¢;, ReA=0 uniformly in 4. This is possible due to the
arguments leading to Proposition 2.5. Next

U e~ ZPA(¢*:¢)(hA)dvD/ _ 1'
= [A] [ 0ap, 4, Y )y s
0
<|Af e 2RetsPa@n 0D gy | ds|V2([|P (¥, p)h g dvp)H (3.11)

By estimate (3.10) and by now familar arguments the right-hand side of (3.11) may
be made smaller than 3 for any A with |A] <e¢<e;, Re 420 uniformly in A. This
concludes the proof of Lemma 3.4.

Corollary 3.5. For all A, A+, all m5>1 and all 1 with |1|<¢, ReA=0 (¢ as in
Lemma 3.4)

Z (A)%0.

The proof follows from Lemma 3.4 using the arguments of Glimm et al. [7].

This concludes the proof of estimates involving covariances. They lead to the
cluster expansion of Glimm et al. which again give Theorem 3.1, except for
estimate (3.6). The additional arguments leading to (3.6) may be taken over from
e.g. Schrader [15].

Remark 3.6. In the case 4 =0, estimate (3.6) may be improved to conclude that the
euclidean Green’s functions are moments of a measure u,_, (Frohlich [6], Glimm
and Jaffe [8]). Unfortunately, neither of the methods employed there is directly
applicable to the general situation Ae 2. It would be interesting to see whether
these and other methods employed in analyzing the structure of P(¢), theories
may be adapted to the present situation.
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