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Abstract. Let Z be a suitable Banach space of interactions for a lattice spin
system. If w+1 thermodynamic phases coexist for Φ0eZ, it is shown that a
manifold of codimension n of coexistence of (at least) n +1 phases passes
through Φ0. There are also n +1 manifolds of codimension n — 1 of coexistence
of (at least) n phases; these have a common boundary along the manifold of
coexistence of n +1 phases. And so on for coexistence of fewer phases. This
theorem is proved under a technical condition (jR) which says that the pressure
is a differentiable function of the interaction at Φ0 when restricted to some
codimension n affine subspace of Z. The condition (R) has not been checked
in any specific instance, and it is possible that our theorem is useless or vacuous.
We believe however that the method of proof is physically correct and con-
stitutes at least a heuristic proof of the Gibbs phase rule.

0. Introduction

The aim of this article is to try to explain the Gibbs phase rule in statistical
mechanics. We shall for definiteness consider the statistical mechanics of a
lattice spin system. Let 77 +1 phases (labelled 0,1,..., n) coexist for an interaction
Φ0. If Φ0 lies in a suitable space Z of interactions, the Gibbs phase rule can be
expressed as follows.

a) There passes through Φ0 a manifold K of codimension n, of coexistence
of at least n +1 phases.

b) For every non-empty subset K = { ί 0 , il9..., ik} of {0,1,..., n} there is near
Φ0 a manifold-with-boundary Vκ of coexistence of at least k+1 phases; Vκ has
codimension k and its boundary is the union of the V3 with J D K, Jή=K.

c) There is a homeomorphism h of a neighborhood (9 of Φ0 to a neighborhood
of Φ0 such that h is tangent to the identity at Φ0, and h~1 Vκ is (locally) a convex
polyhedral cone.

We shall prove that the Gibbs phase rule holds in the above sense if a certain
condition (R) of regular behavior of the pressure near Φ0 is .satisfied. Unfortunately,
as this is written, (R) has not been verified in any example, and it is thus conceivable
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that this condition is never satisfied. In any case we feel that the method of proof
of (a-c) described in this article is basically correct, and thus constitutes at least
a heuristic theory of phase transitions.

It is known that the phases which coexist for an interaction Φ are given by
the invariant states σ which maximize s(σ) + σ(^φ); here s(σ) is the mean entropy,
σ(Aφ) is the expectation value of Aφ in σ and — Aφ is the contribution of one
lattice site to the energy. From this and the Gibbs phase rule one might infer the
following picture of phase coexistence. There should exist real continuous func-
tions /j, with i = 0,1,...,«, defined in a neighborhood of Φ0, such that /0(Φ0)
==/ι(Φo)= =:/«(ΦoX and tnat k + 1 phases coexist for the interaction Φ if fe+1
of the ft are equal to max/f(Φ). There would also exist n — k metastable phases

corresponding to the non-maximum /). We want to stress that our proof of a)-c)
does not make use of such a picture. The usefulness of this picture is in fact doubtful
because on one hand it suggests an incorrect critical behavior, on the other hand
it does not seem that metastable phases can be given meaning for short range
interactions1.

The present article has been motivated by the beautiful results of Israel [3],
and of Pirogov and Sinai [6, 7]. Israel's methods imply the presence, near any
point Φ0 of coexistence of n 4-1 phases, of an infinite dimensional set V of co-
existence of n +1 phases (see Ruelle [8]). The discussion of one-dimensional
systems in Section 5 shows however that V need not be a n-codimensional manifold.
A further assumption, like our regularity condition (R), is thus necessary to obtain
the Gibbs phase rule. The work of Pirogov and Sinai establishes the structure of
regions of phase coexistence for some specific systems at low temperature.

1. Notation and Assumptions

We shall discuss the case of a v-dimensional classical lattice system (quantum
lattice systems can be treated similarly). We shall not describe explicitly the
configuration space Ω of the system, nor the space Z of interactions, but we assume
that the properties (l)-(4) stated (quite redundantly) below are satisfied; they
are easily checked in specific situations.

(1) The configuration space Ω is a compact metrizable space, on which
Έ acts by homeomorphisms τ*. The space of real continuous functions on Ω,
with the sup norm, is denoted by #.

The space Z of interactions is a real Banach space, with a bounded linear
map φ:Zh>^.

(2) The dual ^* of ̂  consists of the real measures on Ω we use on Ή* the
w*-topology (or vague topology). The set of τ-invariant probability measures on
Ω will be denoted by /; it is convex, compact, and metrizable.

Every ρe/ is the resultant of a unique probability measure μ carried by the
extremal points of/ . For every AeΉ, μ satisfies

μ(A2}= lim ρ \A -ί Y A °τ*/card A

See Lanford and Ruelle [4]
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where v4:/h>]R is defined by A(σ} = σ(A\ A is a finite subset of ZΓ, and Λ/oo may
be taken to mean that Λ is a parallelepiped with all sides going to infinity.

(3) The entropy s:/H>IR is an affine and upper semi-continuous function.
The pressure P:^V>R satisfies

P(A)=
σe/

In particular P is convex and continuous (in fact \P(A) — P(B)\^ \\A-B\\). We
have

(B) for all

and we denote this set by IA, it is convex and compact. The elements of IA are
called equilibrium states (for A).

(4) IA is a Choquet simplex and a face of /. We shall mostly be interested in
the case where 1A is finite dimensional; IA is then a simplex in the usual sense.
That IA is a face of / means that if ρ eIA, the measure μ introduced in (2) has its
support in IA. Notice that μ decomposes ρ into extremal points of /. The latter
are by definition the τ-ergodic measures on Ω, and can be interpreted as pure
thermodynamic phases. To say that n + ί phases coexist for the interaction Φ
translates into the statement that Iφφ is a ^-dimensional simplex.

We shall need various differentiability concepts for a function /from the Banach
space Z to the Banach space Zf.

a) We say that /:Zπ>Z' is differ entiable at ΦeZ if there exists a continuous
linear map α:Z— »Z' such that

II -Ml

α is called the derivative of/ at Φ.
b) We say that /:Zκ>Z' is strictly differ entiable at Φ if it is differentiable and

\\f(Φ'}-f(Φ")-*(Φ'-Φ")\\
Φ ' , Φ " - Φ ' Φ Φ " ||Φ'-ΦΊ|

Strict differentiability at Φ implies uniform continuity in a neighborhood of Φ.
If /:Zπ>IR is convex in a neighborhood of Φ and differentiable at Φ, then it is

strictly differentiable at Φ. We may assume Φ = 0, /(Φ) = 0, α = 0. Then, given

ε>0, there is δ>0 such that 0^f(Ψ)^^\\Ψ\\ if 11^11^25. If ||Φ'||, | |ΦΊI<^

convexity of / and the above bounds on / yield δ"1 ( --- 2δ ^

• , Λ . l/<*<>-/<« ' 2 ' "*'-*""

c) Let /:Zπ>]R be convex and continuous. We say that α is a tangent to /
at Φ if α : Zκ>IR is a linear functional and if

for all ΨzZ.
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It follows that α is continuous (i.e. αe Z*). By Hahn-Banach / always has at least
one tangent at Φ. If / is differentiable at Φ, it has a unique tangent (equal to the
derivative).

2. Statement of the Main Result

Under the general assumptions of Section 1 we now give a precise formulation
of the result announced in the introduction.

Theorem. Let Φ0e Z, and Iφφo be a n-dίmensίonal simplex with vertices ρ0, ρί , . . ., ρn.
Write tti = φ*Qi, where φ* '.Ή* \->Z* is the adjoint of φ. We suppose that oq — α0, ...,
αn — α0 are linearly independent, and let X be the linear space

X is of codimension n. We make the assumption

ρ °φ|(Φ0 + X) is differentiable at Φ0 . (R)

We suppose that there is a n-dimensional subspace Y of Z, with X@Y = Z, and
/lg:0 such that, ίfΩε Y and xeZv, there exists ΦxeZ with

σ((φΩ) ((φΩ °τ*)) = σ(φΦx) for all σe /

. (1)

For every non-empty subset K= {z'0, iί9 ..., ik} of {0, 1, ..., 77}, let Xκ={ΦeZ
:αίo(Φ) = α / 1(Φ)=... = α/k(Φ)^α7 (Φ) for jφK}. There is a homeomorphism h of a
neighborhood (9 of Φ0 to a neighborhood of Φ0 such that h is strictly differentiable
at Φ0, with derivative the identity, and for every Φeh((ΦQ + X κ ) π ( 9 ) , at least fe+1
phases coexist.

More precisely, let J\r§, Jf^..^Jfn be neighborhoods of ρ0,ρ1,...,ρn in %?*.
One can choose (9 such that, if Φeh((Φ0 + Xκ)n(9), then there are ^e/^nyί^-
forallieK.
Conversely if

P oφ(Φ +Ψ)^P oφ(φ) + β.(ψ) (all ΨE Z)

for some β( sufficiently close to αf in Z*, all ieK, and if Φ is sufficiently close to Φ0,

Notice that the set of tangents to P°φ at Φ is φ*Iφφ because

P(φΦ + φΨ)^P(φΦ) + a(Ψ) (all ΨεZ)

implies |α(!F)|^ ||φ^|| and therefore, by Hahn-Banach, there is ρe^* such that

P(φΦ + A)^P(φΦ) + ρ(A) (all A^}

and ρ(φΨ) = a(Ψ) for all ΨeZ. Thus, in particular, P°φ\(Φ0 + X) has only one
tangent, namely the restriction w of α0 to X. The condition (R) of the theorem
strengthens the requirement of uniqueness of tangent to a requirement of dif-
ferentiability. As remarked in Section 1, this implies in fact strict differentiability
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To simplify notation we shall from now on take Φ0 = 0 and P(φΦ0) = Q. This
is no restriction of the generality since it amounts to replacing the entropy s(σ)
by s(σ) + σ(φΦ0) — P(φΦo) which has, as far as we are concerned, the same prop-
erties.

The following result will be useful in visualizing the geometry of our problem.

Lemma 0. Given ε>0 there exists δ>Q such that, if \\Φ\\ <<5, then

The first inequality is trivial.
Restricting the second inequality to Φe Y simply says that every tangent to

P°φ\Y at 0 is in the convex hull of α 0 |Y, αj^ ..., un\Y. That this is the case follows
(using Hahn-Banach) from the fact that φ*/0 *s a ^-dimensional simplex with
vertices α0, α 1 ? ..., αw. The second inequality restricted to Φe X becomes precisely
the assumption (R). Since the second inequality holds for ΦeX and Φe Y, it
follows for Φe Z by convexity.

3. Definition of h on X

To avoid facing right away the full complication of the definition of h and proof
of the theorem, we start here with an easier problem. We define and study h
in this section only on the subspace X. Our definition will be such that

h(Φ)~Φ=ΨεY for ΦeX

Lemma 1. Given ε>0, there exists δ>Q such that if ΦεX, \\Φ\\ <δ, one can find
ΨE Y with the following properties.

a) | |y | |^fi | |Φ| | .
b) There is a tangent oc to P °φ at Φ + Ψ such that II α — (n + 1) 1 ̂  α f <ε.

Let us write p(') = P°φ(') — (n + I)"1 ]Γ α f( ). Given ΦεX we choose ΨE Y

such that p(Φ + Ψ) is minimum. Then p(Φ +Ψ)^ p(Φ) ̂  ε (| Φ || by the second inequa-
lity of Lemma 0. But, by the first inequality of Lemma 0, p(Φ+Ψ}^ supα^ίP)

-(n+lΓ^M^Π^II^
i

a) (up to replacement of ε/C by ε). To prove b), we have to show that p has a
tangent with small norm at Φ-\-Ψ. The tangent restricted to Y can be taken to
vanish since p(Φ + Ψ) is minimum. The norm of the tangent restricted to X has,
because p is convex ^0, a bound

sup p(Φ+Ψ+Φf)/δ^(2δT sup
Φ'εX\\\Φ'\\<δ [φ 'eX; | |ΦΊ |<4<5

which is small because of Lemma 0 and

Lemma 2. We use the notation of Lemma 1.
a) One can assume that, when | |Φ||<<5, there are Qr

i^lφ(Φ+ψ}rΛ^ϊ for / = 0,
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b) Conversely, let P°φ have tangents β{ at Φ*eZ. If the β{ are sufficiently close
to the α f, i = 0,1,..., n, and if ||Φ*|| is sufficiently small, then Φ* is of the form Φ + Ψ
withΦeX, \\Φ\\<δ.

Let Z9Φ*-»0 and suppose that σ*e/φφ* has a w*-limit σ, then σe/ 0. Therefore
given ε>0 there exists (5*>0 such that if ||Φ*|| <<5*, the distance of /φφ* to /0 is
less than ε for some metric on / compatible with the w* -topology. Let α be as in
Lemma Ib), and ρElφ(φ + Ψ) be such that a = φ*ρ. We denote by μ and μ0 the
measures carried by the extremal points of/ and with resultants ρ and (n +1)~1 Σ ρt

[see Sect. 1(2)]. Since Iφ(Φ+Ψ} is a face of/ [see Sect. 1(4)], we have suppμ C Iφ(Φ + ψr

Therefore, if \\Φ+Ψ\\<δ*, suppμ is contained in a ε-neighborhood of /0. By
assumption /0 is the simplex with vertices ρ0,ρ1 ? ...,ρn.

Let now ΩE Y. We have

μ((φΩ)2)= lim ρ\(φΩ) l(caτdΛ) 1 Σ (ψΩ)°τx

By assumption there is Φxe Z such that

Therefore

μ((φΩ)2) = lim(cardΛ)~1ρlΣ φΦx\=tim(c2irdΛ)~1(x.lΣ q

Λ./OO \xey l / Λ./OO \xeΛ

Using Lemma Ib) and (1) this yields

\μ((φΩ)2) — μ0 ((φΩ)2)\ ^ ελ \\ Ω \\2 . (2)

We have also

|μ(φΩ) —μ0(φΩ)|:gε||Ω|| . (3)

Using (2), (3), we see that there are points in suppμ which have images in 7*

(under the adjoint of the map Y ^Z^>^) arbitrarily close to the images of ρ0,
ρι,...,ρn, when ε is sufficiently small /remember that μ0 = (n-\-l)~l^δρ\.

But since suppμ is in an ε-neighborhood of/ 0 , there are points ρje suppμ close
to ρ0,ρι, . . . 5 ρ w . This proves a).

To prove b) notice that Φ* is the unique minimum of p= P°φ— Σ ocf restricted

to Φ* + Y

Lemma 3. The function g:Xh>Y, defined by gΦ=Ψ is strictly differentiable at 0,
with derivative 0.

Let Ψf = gΦ'. As noted in the proof of Lemma 1, we can assume that the norm
of the tangent to p restricted to X is <ε. Thus

\p(Φ + Ψ'} - p(Φ' + Ψ'}\ ^ ε || Φ - Φ' ||

Ψ)-p(Φ' + Ψ)\^ε\\Φ-Φ'\\ .
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We have in particular

We have also, using Lemma 2a),

p(Φ + Ψ)- p(Φ' + r ) = p(Φ + Ψ)- p(Φ' + Ψ} + p(Φ' +Ψ}- p(Φ' + Ψ')

^-£\\Φ-Φ'\\+C\\Ψ-Ψ!\\

for some C>0 independent of ε. Therefore

where 2ε/C is arbitrarily small when ||Φ||, ||Φ'|| are sufficiently small. This proves
the lemma.

The above lemmas define a map hn:Φ-+Φ + Ψ with all the properties stated
in the theorem for the restriction of h to X n (9.

4. Proof of the Theorem

We shall successively define

for k=n — 1, ..., 1,0 so that, for each /c, the following properties hold
a) hk is an extension of hk+1.
b) hk(Φ}-ΦeY.
c) hk has the properties stated in the theorem for the restriction of h to

We can then take h = hQ.
Choose some Euclidean metric on Y. Supposing that hk+ί has been con-

structed, we construct now hk. Let cardK^/c+ 1, it suffices to indicate the con-
struction of the restriction hκ of hk to Xκ n (9.

From the definitions, it follows that Y n Xκ is a n-/c-dimensional simplicial
cone. Choose an interior point aκ of this cone (considered as a subset of the
linear space it spans). Define

πκ:YnXκ^Ynu{Xj:J^K and JΦK}

to be the projection of the cone onto its boundary along the direction of aκ.
If ΦΈ X and Φ"e 7 n Xκ, we write

hl(Φ' + Φ") = hk+ ί (Φ' + πκ(Φ")) + (Φ" - πκ(Φ")) . (4)

We write also

PK( )=P°<P(')- Σ α i ( )/(fc+i).
ieK

Let Yκ be the /c-dimensional linear subspace of Y orthogonal to the subspace
spanned by YnXK. Given ΦeXκ, with sufficiently small ||Φ||, choose ΨE Yκ

such that pκ(h$(Φ) i- Ψ) is minimum. We define

. (5)
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It will be seen that Ψ is unique [see Lemma 5a)], and that a) holds when hκ is de-
fined by (4), (5) [see Lemma 4a)]. Since b) is obvious, we are left with checking that hk

has the properties stated in the theorem for the restriction of h to [u {Xκ:caΐdK
= fc+l}]n$. This will result from the following lemmas which are [except for
Part b) of Lemma 5] proved by a general induction on decreasing fe.

Lemma 4. Given ε > 0, there exists δ>0 such that if ΦE Xκ and \\ Φ \\ < δ, the following
hold.

a) \\Ψ\\^ε\\Φ\\ where Ψ is defined as above, and \\Ψ\\^ε\\Φ"-πκ(Φ")\\ when
Φ = Φ' + Φ" with Φ'e X and Φ"e Y n Xκ. In particular, hk is an extension of hk+ j_ .

b) There is a tangent α to P°φ at hκ(Φ) such that

"1 Σ αi | |< f i

ieK ||

c) Let Φ belong to the interior of Xκ, considered as a subset of the linear
space Zκ it spans in Z, and let α be any tangent to P°φ at hκ(Φ). The restriction
of a — (/c + 1)"1 Σ αΐ t° Zκ has norm <ε.

ieK

We first prove ||!F||^ε||Φ|| [note that Lemma la) provides the statement
corresponding to k = n\. Choose ε1>0. Using (4) and the induction assumption
we find by induction on k

\\h^κ(Φ)-Φ\\^ε1\\Φ\\ (6)

for H Φ I I <δ. For sufficiently small ε l 9 δ, the second inequality of Lemma 0 gives
then

By the first inequality of Lemma 0, this implies H ^ H <Ξε| |Φ| | if ε2 has been chosen
small enough. We note that, using (6), we have also

The second part of a) is proved by a similar argument. By induction, it follows
from Lemma 2a) above or 5a) below that P°φ restricted to Φ' + Y has tangent
planes at hk+ί(Φ' + πκ(Φ")) close to the oct\Y for ieK. Using this fact, and an
upper bound on pκ(h%(Φ)) obtained from convexity and Lemma 0, one readily

In particular, if Φ" = πκ(Φ"), we have ^ = 0 and hκ(Φ) = h^(Φ) = hk+1(Φ)
proving that hk is an extension of hk+ 1 .

To prove b) we have to show that there is α* tangent to pκ at hκ(Φ] with small
|| α* || . If Φ belongs to the boundary of Xκ (considered as subset of Zκ), the smallness
of ||α*|| follows from a limit argument (using the w* -compactness of {α*eZ*
: ||α*|| ^ε}). We assume therefore that Φ does not belong to the boundary oϊXκ.

By construction of Ψ, we can choose α* such that the restriction α*| Yκ vanishes.
Write /ίκ(Φ) = Φ' + Φ* where Φ'eX, Φ*eY. The restriction α*|JΓ has a norm

bounded (because pκ is convex and positive) by

sup pκ(Ω + Φ*)/\\Φ'\\.
ΩeX \\Ω\\ϊ2\\Φ'\\
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This expression is <ε when ||Φ|| <δ for a suitable <5>0, as follows from (7) and
Lemma 0.

LεtjφK. In the simplicial cone Y r^XK, let Φ' be the projection of Φ" on the
face Y r\XK^{J} along the direction of the edge of the simplicial cone which is
opposite to this face. To complete our proof that the norm of α* is small, we shall
show that the norm of the restriction of α* to the directions

is small. This is sufficient because the direction of Hj is close to the fixed direction

(8)
of Φ" — Φ' . We can indeed write

with arbitrarily small ε* > 0 because

and we have the estimates

[by Part a) of this lemma] and

l |Λ*+ι(Φ' + πκ(ΦΊ)-'^

(by induction, using Lemma 6 below, for k<n— 1; for k = n — \ there is nothing
to prove). We have thus to estimate the derivative of the restriction of pκ to
the line passing through hκ(Φ' + Φ' ) and hκ(Φ' + Φ"\ By convexity of pκ, the
derivative increase on this line, and therefore the right derivative at hκ(Φ' + Φf )
is a lower bound, which is larger than — ε by induction [use Lemma 2a) above
or 5a) below]. Convexity also gives the upper bound

which is small in view of Lemma 0 and the inequalities (7), (8).
This completes the proof of b), and yields at the same time a proof of c).

Lemma 5. Let δ>0 be sufficiently small
a) // ΦeXκ and \\Φ\\ <δ, there are ρίe /φhκ(Φ)n J7^ for all ieK. In particular,

hκ is uniquely defined, and continuous on Xκ.
b) Conversely let P«φ have tangents βi at Φ*eZ. If the βt are sufficiently

close to the α t , for all ieK, and if ||Φ*|| is sufficiently small, then Φ* is of the form
hκ(Φ) with ΦeXκ and \\Φ\\ <δ.

The proof of a) is obtained by obvious changes in the proof of Lemma 2a),
to which we refer the reader. Since P°φ is convex and has tangents close to the α f,
it is clear that there is only one ΨeYκ making pκ(h^(Φ)-{- Ψ) minimum; hκ is
thus uniquely defined. Furthermore Ψ depends continuously on 7ι|(Φ), hence
on Φ, by (4) and induction.

The proof of the statement b) of the present lemma will, exceptionally, not
be by induction on k. Notice that this statement is not used elsewhere in the
induction procedure. We may thus assume, in proving it, that the other lemmas
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hold for all values of k. In particular, Lemma 6 gives

Thus h0 is strictly differentiable at 0 with derivative the identity map Zh>Z.
Therefore by the implicit function theorem (see Bourbaki [1], 1.5.1), there are
open neighborhoods C/0, U of 0 in Z such that h0 maps U0 homeomorphically
onto [/. In particular, if ||Φ*|| is sufficiently small we may write Φ* = h0Φ with
|| Φ || < δ. Then Φe Xj for some J which we may choose such that card J is maximum.
We have then to show that JDK, and this follows from Lemma 4c) applied to X j .

Lemma 6. Given ε>0, there exists δ>0 such that if Φ^ Φ2eu{Xκ:cardjf<: = /c+l},
||ΦJ«5, \\Φ2\\<δ,then \\Δ2-ΔΛ\<B\\Φ2-Φι\\ where Δ^h^Φ^-Φ,.

We first fix K and take Φ 1 ? Φ2eXκ. By continuity [Lemma 5a)], we may
assume that Φ 1 ? Φ2 belong to the interior of Xκ. Write

Using (4) and induction we obtain, for suitable <5,

| |(Ω2-Φ2)-(βι-Φι)ll^(e/2)l|Φ2-Φιll. (9)

It suffices therefore to prove that

From the convexity of pκ and the estimate on the derivative given by Lemma 4b)
we have

Using also (9) and assuming ε < 2 this gives

Φί\\ + \\Ψ2-Ψl\\}. (11)

On the other hand, by the convexity of pκ and Lemma 5a) there exists C>0 such
that

«P1 | | (12)

also, by continuity of P and φ, there is C' > 0 such that

|pκ(φ+r)-Pjt(Φ)|^2CΊ|r||. (13)
We claim that

pκ(Ω2 + 'P2)-pJ,(Ω1 + 'P1)^-ε(l + C')||Φ2-Φ1 1 | + €11^ -Ψ,\\. (14)

If this inequality can be proved then, together with (11) it yields

which is what we wanted to establish [viz. (10), up to the replacement of ε/2 by
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To prove (14) let us suppose that this inequality does not hold. There is then
0>ε(l + C) such that

Starting from the interval [Φ1? Φ2] we obtain by successive divisions into halves,
at the q-th step, at least one interval [Φ(f\ Φjf }] such that

(15)

where we have written

Ωjβ) = fc* ($<«>) , hκ(φW) = Ω\q} + Ψ\q) .

From (15) we obtain, in view of (12),

or

pκ(Ω(q} + Ψ($} + Ω^ - Ω(

2

β)) - px(Ω(

2

g) + «P(

2

β)) ̂  θ || Φψ - Φ(q} ||

hence, by (9) and (13)

^(Ω^+^ + Φ^-Φ^
or, with α — 2~g

pκ(ί^> + Ψφ + α(Φ ! - Φ2)) - pκ(Ω£> + F(

2

9)) ̂  (θ - C'e)α || Φ2 - Φ t || .

By convexity this remains true for α^2~". Let Φψ-^ Φ when q-^co; we have thus

for all α ̂  0. But since Φ is an interior point o f X K , and Φj — Φ2e Zκ, and θ — C'ε > ε,
we have a contradiction with Lemma 4c). The present lemma is thus proved
when Φ 1 ? Φ2eXκ.

In the general case, Φ1eXJ and Φ2eXκ with cardJ= cardK = fc+l. There
is then Φe Xj n Zx such that

C Jκl |Φ 2-Φ 1 | |^ | |Φ 2-Φ| | + | |Φ1-Φ|| (16)

for some constant CJX>0. (This is an easy geometric result: use the fact that
XJ9 Xκ are polyhedral cones.) In view of the inequality (16) our lemma holds in
general.

Conclusion of the Proof of the Theorem

We write h = h0. Lemma 6 (for fc = 0) shows that h is strictly differentiable at 0,
with derivative the identity, and this implies that h is a homeomorphism of a
neighborhood of 0 in Z to a neighborhood of 0 in Z [as already noted in the
proof of Lemma 5b)]. The remaining statements of the theorem are given by
Lemma 5a) and 5b).
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5. Discussion and Comments

The present section lists various remarks relevant to the theorem of Section 2.
For definiteness we shall [in (l)-(3) below] take Q = FπV where F is a finite set
(more generally one could take for Q a closed subset of F^ invariant under
translations). Let j/ be the set of functions

Φ\\j{FΛ\Λ is a finite subset of ZV}^IR

satisfying the conditions
a) Φ vanishes on F6 .
b) Φ is invariant under lattice translations.
c) IIΦH Σ (cardXΓ1sup{\Φ(ξ)\:ξeFx}<+ao.

With respect to the above norm (sometimes noted | |). j/ is a Banach space.
If Φe jaf, we define ^4φe ̂  by

AΦ((ξx)xeIJ= - Σ (cardXΓ^αOce*).
AΓsO

Clearly μφ ||^ || Φ ||.

1) Checking the Conditions of the Theorem

Let Z be a Banach subspace of j/ and φΦ = >4Φ then φ is bounded linear as required.
Let Ωe&tf be such that Ω vanishes on Fx unless cardA'=l, then we may write
^Ω((£Jjcezv)= /(£o) Let ΦXES/ be such that Φx vanishes on F* unless X is a
translate of {0, x} if xφO (unless card^Γ = 1 if x = 0), and

-ΦMo,ξx)) = f ( ξ o } f ( ξ x ) if X Φ O

-Φx(ξ0)=f(ξo)2 'if * = 0.

Then we have

- (φΩ °τx)) = σ(φΦx) for all σe /

as required in the theorem.
In the case of a lattice gas with pair interactions, we have F= {0, 1}, and Z

is the subspace of jtf constituted of those Φ for which Φ((ζx)xeX) = Q unless cardJf
is 1 or 2, and ξχ= 1 for xeX. Suppose that, for the pair interaction Φ0, there are
exactly two pure phases ρ0, ρ^ with different densities. This means that if
Ω((ξx)xeZV) = ξQ, then ρ0(Ω)φρ1(Ω0). This condition has been checked for the
lattice gases corresponding to the 2-dimensional Ising model at low temperature
(see Messager and Miracle [5]). The conditions of the theorem are then all
verified, except (R), if Y is the 1 -dimensional space spanned by Ω.

Let Z be the subspace of Z consisting of the interactions Φ which vanish
on {0, 1}* when cardZφ2. We can write Φ0 = ΦQ — μ0Ω with Φ0eZ, and the
theorem implies the existence of a continuous real- valued function μ, defined on
a neighborhood of Φ0 in Z, such that μ(Φ0) = μ0, and that Φ — μ(Φ)Ώ has two
phases with different densities when Φ is close to Φ0.
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2) One-dimensional Systems

Dyson [2] and Israel [3] have shown that a one-dimensional lattice gas with a
pair interaction Φ0 can have two pure phases with different densities. Let us
assume that only these two pure phases are present. We shall show that (R)
cannot hold because the conclusion of the theorem is false.

Using the notation of 1), the theorem would indeed imply that for every Φ
sufficiently close to Φ0 in Z, the interaction Φ — μ(Φ)Ώ has two different phases.
One can however take Φ to have finite range, in which case it is well-known that
Φ — μ(Φ) Ω has only one equilibrium state: contradiction.

3) Refinement of the Theorem

ΐn view of the "heuristic" nature of the theorem, it seemed preferable to present
a simple version of it. Various refinements are possible. For instance, consider a
lattice gas with pair interactions Φ = Φ — μΩ, where Φ((ξQ,ξl)) = ξ0ξίφ(x)ι we
can restrict ourselves in the theorem to pair interactions which depend only on
the distance, i.e., φ(x) depends only on |x| = max |xl|.

ί= l , . . . , v

To make the theorem effective in studying phase transitions, it would probably
be necessary to have a version of (R) which can be checked in the zero temperature
limit. Notice that the existing phase-transition results of Pirogov and Sinai [6,7]
are based on properties verified at low temperature.

4) Change of the Subspace Y

The homeomorphism h of the theorem is such that h(Φ) — ΦeY where Y is a
^-dimensional subspace of Z transversal to X (i.e. such that X + Y = Z) and
satisfying other conditions. Generally, if Y' is any n-dimensional subspace of Z
transversal to X, there exists a homeomorphism h of a neighborhood & of 0 in Z
to a neighborhood of 0 in Z such that h'(Φ) — Φe Y' and that h'(Xκr\Θ'} coincides
with h(Xκr\Θ] in a neighborhood of 0; furthermore h is strictly differentiate at 0,
with derivative the identity.

To see this let p'\Z^>X be the projection along Y', and take h' = h G[id + pf °(h
— id)] ~ 1 where id is the identity map on Z.

Suppose now that Z' is a Banach space and φ':Z'\->Z a continuous map such
that X + φ'Z' = Z (i.e. φ is transversal to X). There is then a n-dimensional subspace
Y" of Z' such that Y1 = φ'Y" is transversal to X. Let ψ: Y'\->Y" be inverse to φ'\Y".
If we define h"(Φ} = Φ + \p(h °φ'(Φ) — φf(Φ}\ we see that h" is a homeomorphism
of a neighborhood Θ" of 0 in Z' to a neighborhood of 0 in Z' such that h"(Φ) — Φe Y"
and that h"((φ'~1Xκ)rιΘ")Cφ'~ίh'(Xκn(!)') 9 furthermore h is strictly dif-
ferentiable at 0, with derivative the identity.

5) Other Spaces of Interactions

The theorem states that for every Φeh(Xκr^(9) at least k - f l phases coexist. It
is not excluded that more phases coexist for points arbitrarily close to 0. One
might however hope to have manifolds of coexistence of exactly fc+1 phases,
and also more smoothness than given by the theorem, by restricting to a suf-
ficiently small space Z' of interactions, as indicated in (4).
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