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Abstract. We derive Frohlich’s condition as the KMS condition on a suitable
algebra and time translation. Next we consider Frohlich’s condition and its
variance and prove their equivalence in a general setting. Finally we mention
some results which follow from the latter condition.

§ 1. Introduction

In the P(¢), Euclidean field theory there are some “equilibrium equations” of
probability measures on (Q, X) where Q may be realized as &' =9, (R?) or
F'=..(R?*) and ¥ as the o-algebra generated by cylinder sets. They are ex-
pected to completely characterize infinite volume theories with given interaction
and bare mass. One of them is given by Guerra, Rosen and Simon [5], which is
a version of the DLR equations in classical statistical mechanics. Recently
Frohlich [3] observed that such measures are quasi-invariant and obtained
another characterization which is expressed by Radon-Nikodym derivatives: Let

v be a probability measure and satisfy

PR — exp (= 44g)~ g~ [ -+0)~ U] (L1
for any g in 2(R?) where p? denotes — 4+m? and
[9(6 +6)~ U= | £PBE)+9(): ~ PHIP (12

for an interaction polynomial P bounded below and a bare mass m,. In this case v
should be called an “equilibrium measure” if it further satisfies the physical con-
ditions (e.g. Osterwalder-Schrader-Nakano positivity). Frohlich showed that the
two characterizations are equivalent.

In the present note our first purpose is to show the equivalence of the con-
dition (1.1) with the KMS condition relative to suitable time translation auto-
morphisms as Brascamp [2] did in the case of classical lattice gas (see Theorem 3).
In this way the similarity of the P(¢), Euclidean theory with classical statistical
mechanics becomes more complete.
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Frohlich [3] also gave a “differential form” of his original condition in terms
of Euclidean field operators and proved their equivalence. Our second purpose
is to prove the equivalence in a general measure theoretic setting. Finally we
mention some results which follow from the differential form of Frohlich’s
condition.

In concluding this section we remark that the following three sections are
rather independent of each other.

§ 2. Algebras and the KMS Condition

Let v, be the Gaussian measure on &’ with mean zero and covariance
pi=(=A+my)

where m, is a positive number and is fixed throughout this note. Let ¢(f)=<{¢, /)

for pe 2’ and for feP. U(f)=e"Y) is a multiplication operator in I*(Z’, v,) and
V(g)=e™ is a translation operator defined by

_ dV 0(¢ + g) 2 ’
(V(g)F)(¢)= v d) Flg+g), Fel (Z',v,). 2.1
U(f) and V(g) are unitaries and satisfy the canonical commutation relation (CCR)
V(g)U(f)=eV2U(f)V(g) 2.2

where (f,g) is the inner product of the real Hilbert space L*(R?). If ACR?, let
2 , be the g-algebra generated by the set of ¢(f) with fin & and supp f CA.

Definition 1. For ACR?* compact, we define “local algebras” 9i(A) and A(A):
MA)={U(f); feCT(A)}" (2.3)

WA)=2{4V(g); AeM(A), ge CF(A)} (2.4)

both on L*(%Z,v,| X,) where 2{ -} means the norm closure of linear span of
{---}. Let 9 and A be “quasi-local algebras” defined by

M=u{P(A); A compact}™ (2.5)

WA=u0{A(A); A compact}™ . (2.6)

We remark that 9¥(A)’s are von Neuman algebras and that the others are
C*-algebras. The “classical algebras” 9 A) (respectively 9t) are abelian and are
embedded into the “quantum algebras” A(A) (respectively A). We now define one
parameter groups of automorphisms which act on 9 trivially.

Definition' 2. Let {o; te R} and {«,; te R} be one parameter groups of *-auto-
morphisms on 2 such that for all f and g in &,

W (U(f)=U(f) 2.7)
2 (V(g)=V(g)-exp(—it{p(u’g)— % lugl*}) (2.8)
w(U(f)=U(f) (29)

a(V(g))=V(g) expitG (¢ —g)= expitG (¢)- V(9g) (2.10)

where G,(¢)=—(u*9)— 3 | ug|* — [U(¢ +9)— U($)].
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o) may be interpreted as free time automorphisms because it is formally
implemented by the “free Hamiltonian”

Ho=5[:(V§)(x)+mgd? (x):d*x =5 (u¢p, ugp) (2.11)
where we use “commutation relations”
[Ho ¢(f)]=0 2.12)

[Ho, n(g)]=ip(u*g).
We note here that the “Bogoliubov transformations’

A(f)—e™op(fe” "Ho=¢(f)
n(g)—e"Mon(g)e o =n(g)— p(u’g)t

I}

(2.13)

are not unitarily implementable. On the other hand ¢, is formally induced by
H=H,+ [:P($p(x)):d*x (2.14)
where : : denotes the Wick product with respect to v In fact o, may be defined by

%(Q)= lim e"'op(Q)e™ ", Qe (2.15)

where %, = | ,: P(¢(x)): d*x for compact A. For Qe (A) we need not take the limit
since

ei@(Ara:)(Q)e—i@/At: ei%A'tOCtO(Q)e_WA'l

for A'> A. Finally we note that o,(2(A4))=(A) and that ¢, is continuous in the
weak operator topology but not in the strong topology, i.e. ling e (Q)—0Q] =0
P,

does not necessarily hold.

Let us consider states of 2. A state is a positive linear functional of norm 1
on the algebra. A locally Fock state on 2 is a state on A such that the restriction
to any local algebra is Fock, i.e. it can be extended to a normal state on (A)”
in L*(2',v,}2,). A locally normal state on 9t is a state on 9 such that the re-
striction to 9i(A) is normal, i.e. a locally normal state on 9t is given by a prob-
ability measure on (2, 2) which is locally absolutely continuous with respect to v,

Proposition 1. Let o be an o,-KMS state on U such that o M is locally normal.
Let v=w MM be a measure on &'. Then v is quasi-invariant and

dv(¢ +9)
dv(¢)

Proof. By the KMS condition (see, for example [1]), for any @, and Q, in ¥,
there exists a function F(z) of a complex number z, which is holomorphic for
Imze(0, 1), ¢continuous for Imze[0, 1] and satisfies

F(t)=w(Q,2(Q5)), Flt+i)=w(®(Q2)Q,), —0o<t<+00. (2.17)

=expG,(¢). [ (2.16)
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Let Q,=V(g)Ad and Q,=V(—g) for ge @, AcIM. Then
F)=o(V(g)AV(—g)e"?-+79)
= [ (V(g)AV(=g))(p)e™ "o P dv(¢p)

= [ A(¢+g)e™ "V dv(g), (2.18)
F(t+i)=w(e" -4 4)
= [ A(P+g)e "5 Ddv(¢p+g) (2.19)
where we have used
Gyd)=—G_y(9+9). (2.20)

Now we have: for any AeL”®(v), there exists a continous function F(z) for
Imze [0, 1] which is holomorphic for Imze(0, 1) and satisfies (G(¢) = G,(¢))

F(t)= [ A(p)e™ " P dv(¢) (2.21)
Ft+i)=[ A(p)e " Pdv(p+g). (2.22)
If W(4)=0 for 4e X, let A=y, Then we have F(t)=0 and so v(4+¢g)=0. Hence v

is quasi-invariant. Let Sy={¢:G(¢)<N} and let A=ys -B, BeL*(v). Then
F(t+i)is ‘

Jsy Bl)e™ 0 dr(g) [by (221)]
= s Bl o0 D i) oy 2221, 02

From the case B=1 and t=0, we have [5, e%?dv(¢)<1 and by the monotone
convergence theorem | e dv(¢) < 1. We obtain the desired result (2.16) by letting
N—o0 in the equality (2.23).

A state on U is called a classical state if it vanishes on 4V(g) for any A4 in
M and g in @ with g=+0. A classical state is not locally Fock because se R—
w(V(sg)) is not continuous at s=0 for any non zero ge 2.

Hence the GNS representation space #,, associated with a classical state
is not L2(2',v) even if v=w! I exists as a measure on &'. In fact #, is non-
separable as easily shown: The uncountable set {n,(V(9))2,;ge 2} is an ortho-
normal family of vectors of 5#,. [Here (#,, 1., 2,,) is the GNS triple associated
with w.]

Proposition 2. If w is an o,-KMS state on U, then w is classical.
Proof. Let Q=AV(g) for AeIM and geP. We can calculate w(U(h)QU(— h))
by using the commutation relations and by using the KMS condition, i.e.
o(UhQU(=h)=e""?w(Q)  (by CCR)
=w(Q) (by KMS).
If g=0, there is h in 2 such that (h, g)¢2nZ, and hence w(Q)=0.

Let us consider the converse of Proposition 1. When we have a measure
satisfying (2.16), we want to construct a state on U satisfying the KMS condition.
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Let A, be the *-algebra algebraically generated by
{AV(g):AeIM, ge D} .
If v is a locally normal state on I, we can define a state on 2, by
w(Q)=v(d,) for Q=A,+)" V(g)A4; (2.24)

where 4;e 9 and g;s are mutually different non-zero elements in &. In fact w is
a state: for Q above

*0)=S"_ WA*¥A4)>0
CO(Q Q) ZL—O V( i l)— (225)
o(l)=v(1)=1.
If v is a quasi-invariant measure, there is a natural representation z, of 2, similar
to (2.1). If we define a vector state wy for YeL?(Z',v) with || =1 by we(Q)=
(¥, n,(Q)¥P), QeU,, then for Q in (2.24),

Q)= lim 1/2T {71 dteoye1,a(Q)

with Q=1 and with f in & such that (f,g;)+0 for i=1,...,n. Hence we have
(@) < |7 ,(Q)]. Since v is locally absolutely continuous with respect to v,, we
have ||z(Q)] = In, (Q)|=/Q] for QeWU,, and so we can extend  to a state on
A=A, by the continuity. And by the construction it is clear that such extension
to classical states on 2 is unique.

We have made a classical state w on U for a given measure v satisfying (2.16).
Now we want to show that w satisfies the KMS condition. It is easy to show that
for any g, he 2 and A4, Be I, there exists a bounded continuous function F(z) for
Im ze [0, 1] which is holomorphic for Im ze (0, 1) and satisfies (2.17) with Q, =V (g)A4
and Q,=V(h)B [cf. (2.18) and (2.19)]. Note that if g+h=+0, F=0. Hence for any
Q, and Q, in N, we have F(z) satisfying (2.17). Since U is the norm closure of A,
we obtain, for any Q, and Q, in U, F(z) satisfying (2.17) by a limiting procedure.

Now we summarize:

Theorem 3. There is a one-one correspondence between
(1) the set of KMS states w on U whose restriction to MM are locally normal and
(i1) the set of probability measures v on &' satisfying (2.16),

the correspondence being given by w! M=v. [J

§ 3. Differential Form of Frohlich’s Equation

In this section we are concerned with the following differential form of Frohlich’s
equation

2 ’ _ 5A(¢)
JA@ = 129()~ U BN dd)=— | T3
where %' (p(x))=:P'(¢(x)): and 6/6¢(x) is a functional derivative. More precisely,

for any integer n=0, for any bounded C* function A of n variables with bounded

av(¢) (3.1)
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derivatives and for n+1 elements fi,...,f,,g in 2,

JA@DU D, N = P> g)— U (. g)}dV()
=== (/o 9) [ GAG(fD), ... ¢(£))dV() (3.1)

where 0,4 is a derivative of 4 by the i'th variable and%'(¢,g)= | : P'(¢(x)): g(x)dx.

In the following, we will show the equivalence of (3.1) with (1.1) under some
assumptions. Since the original proof of Frohlich [3] uses some detailed estimates
of the P(¢), theory, we think it is worthwhile to give a sufficient condition under
which the equivalence holds in a general setting.

Before doing it, we give below the formal derivation of (3.1) from (1.1) and
a simple example where (3.1) can be “solved”.

The formal derivation is as follows: Starting from the identity

J A) - v +59)— (@)} = — [ A1)~ A9 —59) () 62
we let s tend to zero. If (1.1) holds, then

1{dv(¢+sg) _1} UG — U (b, g) as s—0 (3.3)

S Mdv((f)) Hg g :

at least pointwise and we obtain (3.1).

As an example we consider the free case, i.e. P=0. In this case we can im-
mediately find the unique measure satisfying (3.1). Equation (3.1) with 4 =¢'s?/)
yields

J e f)dv=islpt | e ay

after being smeared out by u~2f. Therefore the characteristic function J(sf)=
[ eV dy satisfies the following differential equation

Jts)= —slu 1),

2
We have J(sf)=exp{— 57 [u='f1?}. The measure is the Gaussian measure v,

which satisfies (3.1) with %' =0 as is easily seen. The case P(¢)=a¢?+b¢ can be
treated similarly.

Now we turn to the main problem. First let us explain some definitions. We
have two random fields over 2 whose common underlying probability space is
(2,2, v). One field is the usual ¢ and the other is denoted by K(x)=K(p(x))
which might not be defined everywhere on 2’ but v almost everywhere. If v is
quasi-invariant, let {f,:geZ} be *-automorphisms on L*(%’,v) defined by
(B,Q)(@)=Q(¢+g) for Q in L*. B, is also defined for any measurable function on
(2, v).

Theorem 4. Let ¢, K, and v as above. Suppose that

(a) v is quasi-invariant and for some p>1

dv(p+9)
dv(¢)

is continuous,

geg— el?
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(b) fe@—-K(f)=K(¢, f)eL! is linear for some q>0;p ' +q <1
() ge2—B,K(f)e L is continuous for any f in &.
Then the following are equivalent

(i) [ e?VK(p, g)dv(p)=—i(f, g) | €V awv(¢) for any [ and g in @ (3.4)
L Pty 1 .

(i1) “d) exp [§ By, K(g)ds forany gin D . (3.5)
Proof. First we assume (ii). We note that

d

%@ — exp [, ,,K(g)ds (3.6)

We use (3.2) with 4 =¢"") and so we have to compute

1 1
1 (exp [ i Klg)ds —1)= — [ dspy,K(g)-exp [ dup,,K(g) (3.7

Since s— f,,K(g)-exp 3 dup,,K(g)e L' is continuous by the assumption, (3.7) tends
to K(g) in L' as t—0. Hence we have (i).

Next we assume (i). From (3.4) we can get the equation of type (3.1") with
AeF(R"). For let us rewrite (3.4) as follows:

j'ei(ZTs’d)(fJ)}K(qs, g)dv((}')): -y iSj(fj: g)j ei{z?squ(fj))dv((p).

Then we multiply both sides by A (S5...,5,) and integrate them by s;, j=1,...,n.
By Fubini’s theorem we can interchange the order of integrations and obtain

FA@f1)s- . S(LIK (@, ghdv= =373 (fis ) | GAS(f1):-... p(f)dv . (3.8)

For a set MC9Z, let (M) be the g-algebra generated by ¢(f) with f in M.
Let {f,...,f,} be a linearly independent subset of 2 and M be a linear span of
them. Then (3.8) can be written as

JA(sy . 85) D01 AK(S15-. 80 dv(sys...s8,)
==Y YA A ) GAs s 8)dvy(sy,.us,) for g= )1 A f; 39

where K(s;,...,s,) is the conditional expectation E(K(f;)|Z(M)) of K(f;) with
respect to X(M) and vy(sy,...,s,) is the restriction of v to X(M). Here M* is iden-
tified with R" relative to the dual base of the base (f},...,f,) in M and s=(s;,...,s,)
is the point in R" so identified with M*. We assume (f;, f;)=0,; which can always
be attained by a linear transformation. Then we have for i=1,...,n

[ AS)K (s)dvpy(s)=— [ ,A(s)dv(s) . (3.10)

Since dv,, is equivalent to the Lebesgue measure ds on R" by the assumption of
quasi-invariance, there is an a.e. (almost everywhere) positive function g(s) on
R" such that dv,,=g(s)ds. Equation (3.10) with dv,,=pds implies by the formal
calculation

0
o, loge(s)=K(s) (3.11)
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which we justify later. In the following let i =1. The meaning of (3.11) is as follows:
for a.a. (almost all) fixed (s,,...,s,), 0>0 for every s;,logo is absolutely con-
tinuous in s, and (3.11) holds for a.a. s,. If we assume (3.11),
o081+ Sp,...58,)
0(Sgs---5S,)

for a.a. (sq,...,8,). We can rewrite it as follows:

dv(¢+o f) 12(M)
av(¢)1 Z(M)

=exp 3! T K (t, Sp5...,8,)dL (3.12)

= exp [§ dtp, E(K(f})| 2(M)). (3.13)

Since & is separable, there is an increasing sequence {M,} of finite dimensional
subspaces such that ¥(M,)1 2. By Doob’s theorem

dp+af) 5M,)  (dlb+af) _dwgraf)
() [Z(0M,) ‘E( e Z(M")) P (3.14)
E(K(®. /)| Z(M,) > K($.fy),  as n—soo

where the convergence are in L! norm.
Hence we know that

{5 dtB,; E(K(f)IZ(M,)~ [ dt B, ; K(f1)
in ! norm. Therefore

av(p+af)
dv(¢)

Since af; is arbitrary, we have the theorem.
In order to prove (3.11), we give some lemmas.

= €xp % dtp,; K(f1)= exp jé dif,... K(@fy). (3.15)

Lemma 5. Under the assumption of the theorem,

geD— B, EyK(f)eLl! (3.16)
is continuous where E,, is the conditional expectation E(-|X(M)).

Proof. First we prove f,E,K(f)eL'. By Jensen’s inequality for g1

[ExKI*<Ey|K]* (3.17)
where K=K(f). We can compute by using Holder’s and Jensen’s inequalities,

JIBEnK) @)ldv()= [ [(ErK) (¢ +g)ldV(¢)

_ dg—g)
= JIERK @I s

< Eukp a1 220 o)

(v — tp
= (g ikp e (1260 avo) 319)

dv(¢)
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where p~1+p ~'=1 and p is given in (a). As the right hand side is finite, we have
BEnK(f)eL".

Let EyK(f)=K,(s;...,s,) as in the proof of Theorem 4. Then we have
BEUK(f)=K (s;+Ay,....8,+4,) =K, (s+A)=f,K, where (g, f;)=4, Hence we
only have to prove that

JeR"=f, K, e LM (dvy,) (3.19)
is continuous. Now
§1B:K—B:K lods
S TIBK -0 (s+ 4= 2)—(B,K ;- 0)(s)lds
+ 1B K ()l l(s) —o(s+ '~ A)lds . (3.20)

As /'—J, the first term tends to zero because f§,K 70 is integrable with respect
to the Lebesgue measure. The second term is majorized by

o5+ =)
o(s)

p

1/p
1 Q(S)dS)

(] 1K s+ 2)P a(s)ds) . (5

which tends to zero as A'—A.

Lemma 6. K ;(s)=E\K(f) is integrable on any bounded set with respect to the
Lebesgue measure.

Proof. By Lemma 5, g—|B,E\K(f)leL' is continuous, i.e.

AeR"B,K re LM (dvy) (3.21)
is continuous. Hence the function

seR"> | |K (s +A)|dA (3.22)
is measurable for any bounded set I CR", because by Fubini’s theorem

[1dA [ dso(s)IK j(s+ M) = [ dso(s) [; dAIK ;(s+ ).
If for some point s°c R"” and bounded set 1°

fro dAIK ;(s° + A)| = + 00
then

[ dAK (s + )=+ 0

on {s;s°+I1°Cs+1I} whose measure is non zero for large enough I which is a
contradiction. Hence (3.22) takes finite values everywhere.

Lemma 7. Let K, and ¢ be as in the proof of Theorem 4. In particular they
satisfy for any Ae S (R")

[A(sy,..s8)K (815 .8,)0(S1s ... S,)dsy ... ds,

0
=— j——~as A(S15-.58,)0(S15...,8,)dsy ... ds, . (3.23)
1
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Then
0(S1s--58,)= [¥,, dtK,(t, 5,,...,5,)0(t, S5,...,8,) ae. [ (3.24)

Proof. Let g, be defined by the right hand side of (3.24). Then
0
[} —aS—A 01ds,=— | AK ods, .
1

In comparison with (3.23) we know that

0
S KA(SD"'9Sn)(Q1(Sl""7Sn)_g(sl>"'>sn))dsl =0
1

for any Ae #(R"). Hence

0105155 8) — 0815+, S) =C(S3,...,8,)  ae.

with some s,-independent function ¢. By the condition at s, =—o00, ¢=0 a.e.

Now we can conclude the proof of Theorem 4. We know that K,(sy,...,S,) is
integrable on any bounded set in R* by Lemma 6 and g(s;,...,s,) is absolutely
continuous in s, for a.a. (s,,...,s,) by Lemma 7. There is a null set N in R"~! such
that for (s,,...,5,)¢ N

a—g(sl,...,sn)=K1(sl,...,s,,)Q(sl,...,s,,) a.a.s;
S1

K,(sy,-..,s,) is integrable in s; on bounded sets (3.25)
and

o(S¢---»8,)>0 aa.s;.

We can assume that o(sy,...,s,) i continuous in s, for (s,,...,s,)¢ N. On the set
{s;:0(s5...,8,)>0} for fixed (s,...,s,)¢ N, logg is absolutely continuous in s, and

8logg(sl, "'9Sn)
. 05,

If there is an interval [a, b) such that ¢>0 on [a, b) and ¢=0 at b as a function
in s; then we have a contradiction:

=K (sy,...,5,) a.a.s;.

Iirix [EK(sg,...58,)dsy = —o0.
x1
Hence o(s;,...,s,)>0 for any s, and logg is absolutely continuous in s; and

satisfies

Jlogo(sy,...»s8,)
054

which is (3.11) with i=1.

=K (Sgs-.-55,)
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Let us return to the case K(¢p(x))= — p*p(x)— U (¢p(x)). For g in 2, K(¢, g) is
defined by K(¢, g)= —d(ug)— [ : P'($(x)): g(x)d*x. We compute
16 B, K(g)ds= |5 K( + s, g)ds
= — [o {p(2g) + 5 ugll* + [ : P'(¢(x) + s9(x)): g(x)dx }ds
=~ (P9 —zllugl® — | {: P(p(x) +g(x)):—: P($(x)):}dx .
Hence we have the equivalence of (1.1) with (3.1) under the assumptions in
Theorem 4.
Remark 1. From Theorem 4, K(x) satisfies

exp [o By, E(K(f)|Z(M))ds
=E (exp [§ o, K(f)ds|5(M))
for any f'in & and any finite dimensional space M f. Here we cannot interchange
the order of E(-|2(M)) and B, in the left hand side.

Remark 2. If we consider the equation

5A($)
5600 "

where the space cutoff g is involved, we can construct the measure v as usual,

dv=e~ "odv,/[e” "ody,

JA@{— p2¢(x)—g(x)2 ($(x) }dv($) = — ()

with
Uy= | : P(p(x)): g(x)dx .

Remark 3. A connection between (3.1) and the relativistic field equation is seen
from the following phenomena: Let f},..., f, in 2 have mutually disjoint supports
and F,=p*¢(f) or — [:P'(¢(x):fi(x)dx. Then [F,...F,dv does not depend
whether F;=u*¢(f;) or F iz—j" : P'(¢p(x)): fi(x)dx. In other words, we cannot
distinguish the two fields u?¢(x) and —: P'(¢(x)): at non-coincident points.

§ 4. Additional Remarks

We now consider the case P(¢)=ap*+bgp> —c¢ (a>0). Suppose that we have a
measure v satisfying (3.1) with some additional properties which enable us to
construct the corresponding Wightman functions. The existence of such measures
is proved for half-Dirichlet theories with P(¢)= Y1 _; a,¢*" —c¢ (a,>0) [3]. We
also assume the uniqueness of vacuum. This is proved for c¢+0 or we can de-
compose the Euclidean measure into ergodic measures which correspond to
quantum field theories with unique vacuum [3].

We shall not deal with a measure v but only Schwinger type functions which
are expectation values of products of monomials and Wick powers of ¢’s and
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which satisfy

4alP(x1) ... P(x, - 1):07: (%)) +2b{D(X,) ... P(x,))
+{0x1) ... PO, D P(x,)> — c{Plx) ... p(x,-1))
= Z’ll—l 0(x, = X) {P(X 1) ... (X - ) DX 4 1) - DX, - 1) 4.1

where (...»=[...dv. This is obtained by substitution of A=¢(x,)...P(x,-;)
into (3.1). We can justify it by a suitable limiting procedure, where we use the
bounded convergence theorem, if all the Schwinger type functions involved exist
as distributions. This is true, of course, for the cases we mentioned above.

We remark here that equations of type (4.1) have a rather old history in
Euclidean field theory (see e.g. [4]).

Let us recall the Kéllen-Lehman representation about ST(x — y)= {¢(x)¢( y)> —
{P(2)><P(y). There is a positive measure ¢ on (0, o0) with

lp(x y)

(27r)2j “p p* +m?

S3(x—y)= [ do(m®)S,(x — y)= | do(m?) (4.2)

We assume | do(m*)=1 which holds in the cases above where the Schwinger
functions are the limits of the cutoff Schwinger functions [8]. We note that
Goi(x):9°%:(y))T is also represented in terms of a spectral measure in the same
manner as S7(x—y).

Now we represent some quantities in terms of ¢ in (4.2):

(i) The “magnetization” M = {¢(x)) is given by

= [ do(m?) ( log(m?/m3) +m2/12a> —(m3+2b)/12a

(i) Co?y= T%E | do(m*)m* — (m3 +2b)/12a

(iii) <:¢>:(x):9>:())"= 4a )zfdQ(m )(m* —mj —2b)*S,(x—y)
(iv) CGo*d>= Z]\g— {c—M(m3+2b)}.

Remark. From (i) if there is a mass gap uniformly as b— — oo for fixed a and ¢
we have M2=0(|b)).
The proof of the above result is easv. We use (4.1) with n<4.
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