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Some Remarks on Frohlich's Condition
in P(φ)2 Euclidean Field Theory
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Abstract. We derive Frohlich's condition as the KMS condition on a suitable
algebra and time translation. Next we consider Frohlich's condition and its
variance and prove their equivalence in a general setting. Finally we mention
some results which follow from the latter condition.

§ 1. Introduction

In the P(φ)2 Euclidean field theory there are some "equilibrium equations" of
probability measures on (β, Σ) where Q may be realized as & = &reaι(R2) or
&" = <yr

f

eal(R2) and Σ as the σ-algebra generated by cylinder sets. They are ex-
pected to completely characterize infinite volume theories with given interaction
and bare mass. One of them is given by Guerra, Rosen and Simon [5], which is
a version of the DLR equations in classical statistical mechanics. Recently
Frohlich [3] observed that such measures are quasi-invariant and obtained
another characterization which is expressed by Radon-Nikodym derivatives: Let
v be a probability measure and satisfy

d ^ ^ = QXp{-φ(μ

2g)-^\\μg\\l2-Wφ+g)-%(φ)^ (1.1)

dv(φ)

for any g in Q)(R2) where μ2 denotes —A+rnl and
mΦ + g)-®(Φ)] = i {:P(Φ(x) + g(x)):-:P(Φ(x)):}d2x (1.2)

for an interaction polynomial P bounded below and a bare mass m0. In this case v
should be called an "equilibrium measure" if it further satisfies the physical con-
ditions (e.g. Osterwalder-Schrader-Nakano positivity). Frohlich showed that the
two characterizations are equivalent.

In the present note our first purpose is to show the equivalence of the con-
dition (1.1) with the KMS condition relative to suitable time translation auto-
morphisms as Brascamp [2] did in the case of classical lattice gas (see Theorem 3).
In this way the similarity of the P(φ)2 Euclidean theory with classical statistical
mechanics becomes more complete.
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Frόhlich [3] also gave a "differential form" of his original condition in terms
of Euclidean field operators and proved their equivalence. Our second purpose
is to prove the equivalence in a general measure theoretic setting. Finally we
mention some results which follow from the differential form of Frohlich's
condition.

In concluding this section we remark that the following three sections are
rather independent of each other.

§ 2. Algebras and the KMS Condition

Let v0 be the Gaussian measure on Θ' with mean zero and covariance

where m0 is a positive number and is fixed throughout this note. Let φ(f) = (φ,f}
for φe& and for feS). U(f)=eiφ{f) is a multiplication operator in L2(&, v0) and
V(g) = eiπ{9) is a translation operator defined by

(V(g)F)(φ)= l / ^ y ^ + g ) . FeL2(®',v0). (2.1)

U(f) and V(g) are unitaries and satisfy the canonical commutation relation (CCR)

V(g)U(f) = e^f^U(f)V(g) (2.2)

where (f9g) is the inner product of the real Hubert space L2(R2). If ΛcR2, let
ΣΛ be the σ-algebra generated by the set of φ(f) with / in 3) and supp fcΛ.

Definition 1. For ΛcR2 compact, we define "local algebras" W(A) and 2l(τl):

(2.3)

), ge C%(Λ)} (2.4)

both on L2(Θ\yQ\ ΣΛ) where £{•••} means the norm closure of linear span of
{• •}. Let SCR and 2ί be "quasi-local algebras" defined by

compact}" (2.5)

compact}" . (2.6)

We remark that 9JΪ(yl)'s are von Neuman algebras and that the others are
C*-algebras. The "classical algebras" 9Jl(/l) (respectively 501) are abelian and are
embedded into the "quantum algebras" Sl(yl) (respectively 2t). We now define one
parameter groups of automorphisms which act on 9Jί trivially.

Definition2. Let {αf°; teR} and {at; teR} be one parameter groups of ̂ auto-
morphisms on 91 such that for all / and g in <3,

a?(U(f))=U(f) (2.7)

a?(V(g))=V(g)-Qχp(-it{φ(μ2g)-±\\μg\\2}) (2.8)

(2.9)

)= V(g) exp itGg(φ-g)= exp itGg{φ) V{g) (2.10)

where G g ( φ ) = 2 h 2
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αf° may be interpreted as free time automorphisms because it is formally
implemented by the "free Hamiltonian"

H0 = Ί$ :(Vφ)2(x) + m2

0φ
2(x):d2x = HμΦ,μΦ) (2.11)

where we use "commutation relations"

= 0

) .

We note here that the "Bogoliubov transformations"

0(/)->e

itHW)e-"Ho = W)

π(g)-+e"H'>π{g)e-"B°=π{g)-φ(μ2g)t

are not unitarily implementable. On the other hand αr is formally induced by

H = H0+\:P{φ{x)):d2x (2.14)

where : : denotes the Wick product with respect to v0. In fact α, may be defined by

α,(Q)= ϋm e' ^αPίβJβ-'*^1 ', βe2I (2.15)
/I ~* R

where °UA=\A\P{φ{x))'-d2x for compact A For βe2I(Λ) we need not take the limit
since

for Λ'DΛ. Finally we note that 0̂ (21(̂ 4)) = 2I(Λ) and that oct is continuous in the
weak operator topology but not in the strong topology, i.e. limllαiβ) —Oil = 0

ί->0

does not necessarily hold.
Let us consider states of 91. A state is a positive linear functional of norm 1

on the algebra. A locally Fock state on 2X is a state on 21 such that the restriction
to any local algebra is Fock, i.e. it can be extended to a normal state on 2t(Λ)"
in L}{β', vo\ΣΛ). A locally normal state on 9Jί is a state on 9JΪ such that the re-
striction to SOί(yl) is normal, i.e. a locally normal state on 9Jί is given by a prob-
ability measure on (β', Σ) which is locally absolutely continuous with respect to v0.

Proposition 1. Let ω be an oct-KMS state on 21 such that ω ϊ 9JΪ is locally normal
Let v = ωf9Jl be a measure on Θ1. Then v is quasi-invariant and

Proof. By the KMS condition (see, for example [1]), for any Qx and Q2 in 21,
there exists a function F(z) of a complex number z, which is holomorphic for
Imze(0,1), continuous for Imze[0,1] and satisfies

= ω{Q10Lt(Q2))9 F(t + i) = ω(at(Q2)Q1), -co<t<+cc. (2.17)
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Let Qy = V{g)A and Q2 = V{-g) for ge®, AeWl. Then

(2.18)

(2.19)

where we have used

Gg(φ)=-G_g(φ + g). (2.20)

Now we have: for any AeL°°(v), there exists a continous function F(z) for
Imze[0,1] which is holomorphic for Imze(0,1) and satisfies (G(φ) = Gg(φ))

F(t)= j A(φ)e'itG^dv{φ) (2.21)

F(t + i)= I A(φ)e-"GWdv(φ + g). (2.22)

If v(Δ) = 0 for ΔeΣ, let A = χΔ. Then we have F(ί)=0 and so v(zl+ #)=(). Hence v
is quasi-invariant. Let SN={φ:G{φ)SN} and let v4 = χSN .B, BeL°°(v). Then
F(t + i) is

yNB(φ)e-itG^eG^dv(φ) [by (2.21)]

[by (2.22)]. (2.23)

From the case B = l and ί = 0, we have §SNeG{φ)dv(φ)^l and by the monotone
convergence theorem j eG{φ)dv(φ)^ 1. We obtain the desired result (2.16) by letting
N->oo in the equality (2.23).

A state on 91 is called a classical state if it vanishes on ΛV(g) for any A in
SCR and g in 2) with g=t=O. A classical state is not locally Fock because seR-^
ω(V(sg)) is not continuous at 5 = 0 for any non zero ge2.

Hence the GNS representation space J*fω associated with a classical state ω
is not l}(β\ v) even if v = ωϊ$R exists as a measure on 3)'. In fact J>fω is non-
separable as easily shown: The uncountable set {πω(V(g))Ωω;ge@} is an ortho-
normal family of vectors of J4?ω. [Here (jΊ?ω, πω, Ωω) is the GNS triple associated
with ω.]

Proposition 2. If ω is an oct-KMS state on 21, then ω is classical

Proof. Let Q = ΛV(g) for ^ G 9 J Ϊ and ge^.We can calculate ω(U(h)QU(-h))
by using the commutation relations and by using the KMS condition, i.e.

(by CCR)

= ω(β) (by KMS).

there is h in 3) such that (/ι, g)φ2πZ, and hence ω(Q) = 0.
Let us consider the converse of Proposition 1. When we have a measure

satisfying (2.16), we want to construct a state on 21 satisfying the KMS condition.
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Let 2ΪO be the *-algebra algebraically generated by

If v is a locally normal state on 9JI, we can define a state on 2I0 by

ω(Q) = v(A0) for Q = A0+Y»=1 VigUi (2-24)

where A^^R and g/s are mutually different non-zero elements in Q). In fact ω is
a state: for Q above

ω(Q*Q) = Σ"=oΛAΐA^O

ω(l) = v ( l ) = l .

If v is a quasi-invariant measure, there is a natural representation π v of 9ί0 similar
to (2.1). If we define a vector state ωΨ for ΨeL2{Θ', v) with \\Ψ\\ = 1 by αv(β) =
(Ψ,πv(Q)Ψ)> βe9 l 0 , then for β in (2.24),

ω{Q)= \imi βT\lτdtωmf)Ω{Q)
I —• o o

with Ω Ξ I and with / in 3) such that (/, #i)φθ for i = l , . . . r n . Hence we have
|ω(β) |^ ||πv(Q)||. Since v is locally absolutely continuous with respect to v0, we
haveJ|πv(Q)|| ^ | |πV o(β)|| = | |g| | for βe2I 0 , and so we can extend ω to a state on
21 = 210 by the continuity. And by the construction it is clear that such extension
to classical states on 2ί is unique.

We have made a classical state ω on 21 for a given measure v satisfying (2.16).
Now we want to show that ω satisfies the KMS condition. It is easy to show that
for any g, heQ) and A, J3e9JΪ, there exists a bounded continuous function F(z) for
Imze [0,1] which is holomorphic for Imze(0,1) and satisfies (2.17) with Qx = V(g)A
and Q2 = V(h)B [cf. (2.18) and (2.19)]. Note that if g + hή=O, F = 0. Hence for any
Qι and Q2 in 2I0 we have F(z) satisfying (2.17). Since 2ί is the norm closure of 2I0,
we obtain, for any Q± and Q2 in 2Ϊ, F(z) satisfying (2.17) by a limiting procedure.

Now we summarize:

Theorem 3. There is a one-one correspondence between
(i) the set of KMS states ω on 21 whose restriction to SCR are locally normal and

(ii) the set of probability measures v on Q)1 satisfying (2.16),
the correspondence being given by ωΪ9W = v. •

§ 3. Differential Form of Frohlich's Equation

In this section we are concerned with the following differential form of Frohlich's
equation

f A(φ) {- μ2φ(x) - Ψ(φ(x))}dv(φ) = - j | H dv(φ) (3.1)

where ύiί'{φ{x))=\P'(φ(x))\ and δ/δφ(x) is a functional derivative. More precisely,
for any integer n^O, for any bounded C1 function A of n variables with bounded
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derivatives and for n + ί elements fv...,fn,g in 3),

$A(φ(f1),...,φ(fn)){-φ(μ2g)-Ψ(φ,g)}dv(φ)

Σ?= 1 (Λ θ) ί W ( Λ ) , • ;Φ(fn))dv(φ) (3.1')

where δ ^ is a derivative of/I by the i'th variable &πάΰll'(φ,g)= j* \F(φ(x)):g(x)dx.
In the following, we will show the equivalence of (3.1) with (1.1) under some

assumptions. Since the original proof of Frohlich [3] uses some detailed estimates
of the P(φ)2 theory, we think it is worthwhile to give a sufficient condition under
which the equivalence holds in a general setting.

Before doing it, we give below the formal derivation of (3.1) from (1.1) and
a simple example where (3.1) can be "solved".

The formal derivation is as follows: Starting from the identity

J A(φ) - {dv(φ + sg) - dv(φ)} = - f - {A(φ) - A(φ - sg)}dv(φ) (3.2)
S S

we let s tend to zero. If (1.1) holds, then

- * 1 ^
 a s

at least pointwise and we obtain (3.1).
As an example we consider the free case, i.e. P = 0. In this case we can im-

mediately find the unique measure satisfying (3.1). Equation (3.1) with A = eisφ(f)

yields

\eisφ{f)φ{f)dv = is\\μ~1f | | 2 j eisφif)dv

after being smeared out by μ~2f. Therefore the characteristic function J(sf) =
§eιsφ{f)dv satisfies the following differential equation

jsJ(sf)=-s\\μ-1f\\2J(sf).

ί s2 )
We have J(sf)= exp< — — \\μ~1f\\2\. The measure is the Gaussian measure v0

which satisfies (3.1) with W = 0 as is easily seen. The case P(φ) = aφ2 + bφ can be
treated similarly.

Now we turn to the main problem. First let us explain some definitions. We
have two random fields over 3) whose common underlying probability space is
(β\ Σ, v). One field is the usual φ and the other is denoted by K(x) = K(φ(x))
which might not be defined everywhere on 2' but v almost everywhere. If v is
quasi-invariant, let {βg\ge2} be ^-automorphisms on L°°(&, v) defined by
(βgQ)(φ) = Q(φ + g) for Q in L00. βg is also defined for any measurable function on
{β\ v).

Theorem 4. Let φ, K, and v as above. Suppose that
(a) v is quasi-invariant and for some p>ί

is continuous,
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(b) fe^^K(f) = K(φJ)eLq is linear for some q>0;p~1 + q~~1 ^ 1
(c) geQ)->βgK(f)eLq is continuous for any f in 3).

Then the following are equivalent

(i) J eiφif)K(φ, g)dv(φ) = - ί(f g) J eiφ{f)dv(φ) for any f and g in 3> (3.4)

(ϋ) d V f ^ , f = e x p JS βsgK(g)ds for any g i n ® . (3.5)
dv(φ)

Proof First we assume (ii). We note that

(3.6)

We use (3.2) with A = eιφif) and so we have to compute

-t (exp f0 βsgK(g)ds-l)=|f0 dsβsgK(g) exp f0 d t ^ f o ) . (3.7)

Since s-^βsgK(g) Qxp js

0 duβugK(g)el} is continuous by the assumption, (3.7) tends
to K(g) in 1} as ί->Ό. Hence we have (i).

Next we assume (i). From (3.4) we can get the equation of type (3.Γ) with
Ae£f(Rn). For let us rewrite (3.4) as follows:

j eiMsM^Kfa g)dv(φ)= - Σ'l isjtfj, g) j e^w^dviφ).

Then we multiply both sides by A(sl9...,s^} and integrate them by sj9 j=l,...,n.
By Fubini's theorem we can interchange the order of integrations and obtain

ά..., φ(fn))K(Φ, 9)dv = - Σi (fi, 9) ί diAMfά...,φ(fn))dv . (3.8)

For a set M c ^ , let Σ(M) be the σ-algebra generated by φ(f) with / in M.
Let {/i,...,/M} be a linearly independent subset of Θ and M be a linear span of
them. Then (3.8) can be written as

j A{sί9...,sn){ΣΊ λiKiiSi,.. ,sn)}dvM(sl9...,sn)

...,sn)dvM(s1,-. ,sn) for g=Σ"λifi ( 3 9)

where Ki(s1,...,sn) is the conditional expectation E(K(f)\Σ(M)) of K{f) with
respect to Σ(M) and vM(sl5...,sM) is the restriction of v to Σ{M). Here M* is iden-
tified with Rn relative to the dual base of the base (/ l 5... ,/„) in M and s = (s l 5..., s,,)
is the point in K" so identified with M*. We assume (Uf^δ^ which can always
be attained by a linear transformation. Then we have for i = l,...,n

f A(s)Ki(s)dvM(s)= — \ diA(s)dvM(s). (3.10)

Since dvM is equivalent to the Lebesgue measure ds on JR" by the assumption of
quasi-invariance, there is an a.e. (almost everywhere) positive function ρ(s) on
Rn such that dvM = ρ(s)ds. Equation (3.10) with dvM = ρds implies by the formal
calculation

— logρ(s) = Kt(s) (3.11)
OS;
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which we justify later. In the following let i = 1. The meaning of (3.11) is as follows:
for a.a. (almost all) fixed (s2,...jsj, ρ > 0 f° r every s1 ?logρ is absolutely con-
tinuous in sί and (3.11) holds for a.a. sv If we assume (3.11),

β i S + a S S ) r*K1(t,s2,...,sn)dt (3.12)

for a.a. (s l 5 . . .,sj . We can rewrite it as follows:

— , * W Λ / n — = exp JS dtβtf EiKίfJIΣiM)). (3.13)
dv(0)1Σ(M) J Jl v

Since ® is separable, there is an increasing sequence {MJ of finite dimensional
subspaces such that Σ(Mn)1Σ. By Doob's theorem

Σ(Mn)dv(φ)\Σ{Mn) \ dv(φ)

as

dv(φ) ' (3.14)

where the convergence are in L1 norm.
Hence we know that

jo dtβtfβiKifJlΣiMJ)-* Jj dtβt

in L1 norm. Therefore

V

 d * 1 = exp jo dtβtjfiif^ exp j 0 dtβt.af]K((x.fι). (3.15)

Since α/i is arbitrary, we have the theorem.
In order to prove (3.11), we give some lemmas.

Lemma 5. Under the assumption of the theorem,

is continuous where EM is the conditional expectation E( \ Σ(M)).

Proof First we prove βgEMK(f)eL1. By Jensen's inequality for q^l

\E K\q<E \K\q (3 17)

where K = K(f). We can compute by using Holder's and Jensen's inequalities,

j \(βgEMK)(φ)\dv(φ)= j \(EMk)(φ + g)\dv(φ)
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where p ~ι + p' ~~1 = 1 and p is given in (a). As the right hand side is finite, we have
βgEMK(f)GLK

Let EMK(f) = Kf(Si,...,sn) as in the proof of Theorem 4. Then we have
βgEMK(f) = KJ(s1+λl9...9sn + λJ = Kf(s + λ)=βλKf where (gJd^λ, Hence we
only have to prove that

λeRn-+βλKfeI}(dvM) (3.19)

is continuous. Now

$\βλ.Kf-βλKf\ρds

+ J \βλ.Kf(s)\ \ρ(s)-ρ(s + λ'-λ)\ds . (3.20)

As λ'^>λ9 the first term tends to zero because βλKf ρ is integrable with respect
to the Lebesgue measure. The second term is majorized by

- 1
o \1/P

ρ(s)ds\
ρ(s)

which tends to zero as λ'-^λ.

Lemma 6. Kf(s) = EMK(f) is integrable on any bounded set with respect to the
Lebesgue measure.

Proof By Lemma 5, g-+\βgEMK(f)\el} is continuous, i.e.

λeRn^>βλKfeL (dvM) (3.21)

is continuous. Hence the function

seRn-+ j / \Kf(s + λ)\dλ (3.22)

is measurable for any bounded set IcRn, because by Fubini's theorem

J, dλ J dsρ(s)\Kf{s + λ)\ = J dsρ{s) f7 d λ l ^ ί s + λ)\.

If for some point s°eRn and bounded set 7°

then

on {s;s° + I°Cs + I} whose measure is non zero for large enough I which is a
contradiction. Hence (3.22) takes finite values everywhere.

Lemma 7. Let Kx and ρ be as in the proof of Theorem 4. In particular they
satisfy for any

—i4(s1,...,sΛ)ρ(s1,...,s l l)ί/s1...dsπ. (3.23)
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Then

j ί , s 2 , . . . , s J ρ ( ί , s 2 ? . . . , s / ί ) a.e. • (3.24)

Proof. Let ρx be defined by the right hand side of (3.24). Then

ί b r A Qidsι = " ί AKiQdsi -
\as1 i

In comparison with (3.23) we know that

I —A{sv...,sn)(ρ1(sί,...,sn)-ρ{s1,...,sn))ds1 = O

for any Ae^{Rn). Hence

ρi(s 1 , . . . ,s j-ρ(s 1 , . . . ,s j = φ 2 , . . . ,s l l ) a.e.

with some ^-independent function c. By the condition at s1=— oo, c = 0 a.e.
Now we can conclude the proof of Theorem 4. We know that Kί(sί9...,sn) is

integrable on any bounded set in Rn by Lemma 6 and ρ(s lJ...,sπ) is absolutely
continuous in sί for a.a. (s2,..., s j by Lemma 7. There is a null set N in R" ~x such
that for (s2,...,sn)φN

— ρ(s l J...,sn) = JK:1(s1,...,sII)ρ(sl5...,sII) a.a. sx

K ^ s ^ . . ^ J is integrable in sx on bounded sets (3.25)

and

ρ(s l J...,sn)>0 a.a. s x .

We can assume that ρ(sl5...,sM) is continuous in Sj for (s2,...,sn)φN. On the set
{s1:ρ(s l J...,sn)>0} for fixed (s2,...,sn)φN, logρ is absolutely continuous in s1 and

dlogQ(sl9...,sn) _
^ — Λ i i 5 i 5 »s«; a a 5 i

If there is an interval [α, b) such that ρ > 0 on [α, b) and ρ = 0 at b as a function
in s1 then we have a contradiction:

Hence ρ(s l 5...,sM)>0 for any s1 and logρ is absolutely continuous in s1 and
satisfies

dlogρ(sl9...9sj _
^ —&i\Si,. .9sn)

which is (3.11) with i = ί.
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Let us return to the case K(φ(x))= -μ2φ(x)-Ψ(φ(x)). For g in Θ, K(φ,g) is
defined by K(φ,g) = -φ(μ2g)- J :P'(φ(x)):g(x)d2x. We compute

Hence we have the equivalence of (1.1) with (3.1) under the assumptions in
Theorem 4.

Remark 1. From Theorem 4, K(x) satisfies

βsfK(f)ds\Σ(M))

for any/in 2) and any finite dimensional space M a / Here we cannot interchange
the order of E(- \Σ(M)) and βsf in the left hand side.

Remark 2. If we consider the equation

j Λ(φ) {- μ2φ(x) - g(x)Ψ(φ(x))}dv(φ) = - j — ψ dv(φ)

where the space cutoff g is involved, we can construct the measure v as usual,

with

%=$:P(φ(x)):g(x)dx.

Remark 3. A connection between (3.1) and the relativistic field equation is seen
from the following phenomena: Let /1 ?...,/„ in 2 have mutually disjoint supports
and Fi = μ2φ(fi) or - j :P'((/>(x)):/(x)<ix. Then \F1...Fndv does not depend
whether Fi = μ2φ(fi) or Ft= — j \P'{φ(x))\fi(x)dx. In other words, we cannot
distinguish the two fields μ2φ(x) and —:P'(φ(x)): at non-coincident points.

§ 4. Additional Remarks

We now consider the case P(φ) = aφ4r + bφ2— cφ (α>0). Suppose that we have a
measure v satisfying (3.1) with some additional properties which enable us to
construct the corresponding Wightman functions. The existence of such measures
is proved for half-Dirichlet theories with P(φ)= ] ^ = i amφ2m — cφ (an>0) [3]. We
also assume the uniqueness of vacuum. This is proved for cφO or we can de-
compose the Euclidean measure into ergodic measures which correspond to
quantum field theories with unique vacuum [3].

We shall not deal with a measure v but only Schwinger type functions which
are expectation values of products of monomials and Wick powers of φ's and
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which satisfy

+ (φ(x1)...φ{xn-1)μ2φ{xn)}-c(φ(x1)...φ(xn_1)>

i)> (4.1)

where <...>= J...dv. This is obtained by substitution of A = φ{x1)...φ(xn-1)
into (3.1). We can justify it by a suitable limiting procedure, where we use the
bounded convergence theorem, if all the Schwinger type functions involved exist
as distributions. This is true, of course, for the cases we mentioned above.

We remark here that equations of type (4.1) have a rather old history in
Euclidean field theory (see e.g. [4]).

Let us recall the Kallen-Lehman representation about Si(x — y) = (φ(x)φ(y)} —
>. There is a positive measure ρ on (0, oo) with

l(x-y)= J dρ(m2)Sm(x-y)= J dρ(m2) j^\d2p ^ 4 . (4.2)

We assume §dρ(rn2) = l which holds in the cases above where the Schwinger
functions are the limits of the cutoff Schwinger functions [8]. We note that
(:φ3:(x):φ3:(y)}τ is also represented in terms of a spectral measure in the same
manner as Sl(x — y).

Now we represent some quantities in terms of ρ in (4.2):

(i) The "magnetization" M=(φ(x)) is given by

M 2 = J dρ(m2) l-^ \og(m2/m2

0) + m2/ί2a) - (m2

0 + 2b)/ί2a

(ϋ) <:</>2:>= ~Jdρ(m2)m2-(m2 + 2b)/l2a

(iii) <:0 3 :(x):0 3 :GO>Γ= ^ j d Q ( m 2 ) ( m 2 - m 2 - 2 b ) 2 S m ( x - y )

(iv) < : 0 4 : > = ^ { c - M ( m § + 2t)}.

Remark. From (i) if there is a mass gap uniformly as b-+ — oo for fixed a and c
haveM 2 ^O( |b | ) .
The proof of the above result is easv. We use (4.1) with n^4.
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