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Abstract. The motion of an hydrogenoϊd atom in a laser field is usually given by the time-dependent
hamiltonian H(t) = [p — A(t)~]2/2 + V(r) where V(r) is the atomic potential while A(t) is to be connected
with the laser field. The existence and unicity for the Cauchy problem of the solutions of the correspond-
ing Schrδdinger equation are established under mild conditions on A(t) and V(r). The existence of
Moller operators is investigated in two cases, namely, when the laser field is a function of time only
and when it vanishes asymptotically in time. Special attention is paid for the Coulomb case for which
a "distorted" Moller operator is derived. Finally, when the laser field vanishes as r-»oo, the photo-
ionisation probability is properly defined by means of the Moller operator

where U(t) is the evolution operator for the system while UAt(ή is the evolution operator for the atom.

I. Introduction

The multiphotoionisation of hydrogenoϊd or rare gaz atoms by a laser beam
has received special attention both experimentally [1] and theoretically [2]. The
availability of higher and higher intense beams leads us to abandon the per-
turbative expansion approach. Other kinds of approximation have been proposed
[3] in the framework of a semi-classical treatment in which the photon beam
is regarded as a classical external field. However, the non perturbative approxima-
tions are motivated by arguments based on pure classical mechanics. We then
feel it necessary to have a global analysis of the Schrodinger equation used to
describe the multiphotoionisation process. This is the aim of this note.

It is physically reasonable to assume that the system under consideration
can be reduced to the interaction of an electron with a central potential (the
atomic potential seen by the electron) and with the external radiation field. More
precisely the hamiltonian to be considered will be written as

when expressed in atomic units, where V denotes the central potential while A(t)
is the electromagnetic potential for the radiation field.

In Section II, one proves the existence of solutions of the Schrodinger equation
and their unicity for the Cauchy problem [4], under rather mild conditions on V
and A(t).
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The following two sections are concerned with two different aspects. In
Section III, we are dealing with the scattering problem that is, with the existence
of the Moller operator

ί2(H, HE) = s-lim U(t) ~ * UE(t),
f->oo

where U{t) denotes the unitary evolution operator of the system under the hamil-
tonian H(ί) while UE(t) is the evolution operator for an electron in the external
field.

The Moller operator Ω(H, H£) is shown to exist in the case of a pure time-
dependent electric field without any assumption on its behaviour as t tends to
infinity. The central potential V is assumed to be square-integrable or of Hack's
type. Also special attention has been paid to the Coulomb case and distorted
Moller operators have been defined in a way to be connected with Dollard's
approach [5] to Coulomb scattering.

In Section IV, the ionisation problem is considered. We define the photo-
ionisation probability when the laser beam vanishes asymptotically in time, by
investigating the existence of the Moller operator

β(H, HA ί) = s-lim U(t) ~ ̂ xpί - iίHA f)
ί-> + GO

and

Ω(H A ί , H ) = s-lim expz'fHAf [/(£),
ί-* + 00

where H A ί is defined to be the atomic system hamiltonian.

II. The Evolution

We intend to investigate the evolution of a system governed by the time-
dependent hamiltonian

H(t)=ilp-A(ή-]2 + V (1)

to be defined in J2?2(IR3). We denote by pi9 ΐ = l , 2 , 3 , the differential operator
d

— i-r- W e shall assume that

(i) Vei? 2(Il
(ii) Af(ί, x), ί= 1,2,3 are real functions, differentiable relative to x.

(iii) Af(ί) and diA^t) are bounded operators, uniformly in t.

(iv) the maps ί->Af(ί) and ί->δfAf(ί) are strongly differentiable and —
όt

d
and — δΛXt) are bounded.

ot

Under assumptions (i)-(iii), the operator

B(ί)=il> A{t) + A(t) p] +jA{t)2 + V (2)
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is symmetric and Kato-tiny [6] relative to Ho, the self adjoint extension of — A.
Then from the Kato-Rellich theorem [7], one can assert that H(ί) is a self-adjoint
operator with domain ^(H o ). We see in particular that the domain of H(ί) is
independent of t.

Under the assumptions (i)-(iv), we get

Lemma 1. a) The operator B(ί) is Kato-tiny relative to H o uniformly in ί, i.e.,
given a arbitrarily small, there exists b>0 such that

for all φ

on any finite interval of time. And there exists Eo such that H(ί)^ — Eo + 1 .

b) [H(ί) + E 0] 1 is strongly differentiable and
ιdt

is bounded.

Statement a) is easily derived using assumption (iii). The existence of an Eo

such that H(ί) + Eo ^ 1 is a direct consequence of the uniform Kato-tiny property
of B(ί). Note also that the solvent

R(ί) = [H(ί) + E 0 ] - 1 (3)

exists and has norm less than 1.
Statement b) is a direct consequence of assumptions (iii) and (iv).
Yoshida's theorem [8] applies and one then proves the existence of a unitary

evolution operator defined by

ψ{t)=U{t,to)ψ, t^t0 (4)

which can be extended to all of 5£2(1R3). The family of the strongly continuous
unitary operators U(t, ί0) has the following properties

U(tj) = l

U{t9s)U{s9t0)=U{t9t0) for to£s£t. (5)

Moreover L/(ί, ί0) is strongly differentiable on ^(H o ) and such that for any t ̂  ί0

jtU(t,t0)ψ=-iH(t)U(t9t0)ψ. (6)

III. Existence of the Moller Operator in the Case of a Uniform Electric Field

We now restrict ourselves to the case of an electric field depending only on
time. The vector potential in (1) is chosen to be a differentiable real function of t
and therefore Af(ί) is the multiplication by a real number for every t.

Let us recall that the "free" motion of the particle is governed by the
hamiltonian

(7)
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And one can see that the corresponding unitary propagator is then

where

(8)

(9)

(10)

We use a well known lemma [9] essentially based on the existence of the integral

with initial conditions taken at f = 0.
We want to investigate the existence of the Moller operator defined as

, HE) = s-lim U(t) ~x UE(t).
ί> +

-U'ι(t)UE(t)ψ at (11)

when ψ belongs to some dense set of JS?2(IR3).
As it has been done when UE(t) is the actual free motion [9], one can derive

an estimate on — U(r)~1UE(r)ip
ot

from the representation

for UJt) given in (8). This estimate follows

)$d3yei[ x+*(t)-y]2/2t xp{y), ί > 0 (12)

for all ψ e ^ n JS?2(IR3).

Theorem l.If V e ^ 2 (IR 3 ) ? then Ω(H, HE) = s-limU(ty ιUE{ή exists.
t-* + oo

Note that one could as well use gaussian functions, the finite sums of which
are dense in if2(lR3), to get the existence of Ω(H, HE) for potentials of Hack's type,
i.e., such that (l + | x | Γ 1 / 2 + εVe J^2(1R3).

Note also that the proof for the strong limit of U(t)~1UE(t) as t tends to — oo
can be derived along the lines developed by Prugovecki and Tip [10].

When the central potential V corresponds to Coulomb forces it is well known
[5] that one cannot construct the Moller operators in the usual sense. Dollard
however has introduced a substitute which in our case has to be modified. We
propose to define a unitary "distorted free" propagator UEC(t) according to

UEC(t)=UE(ήexp-iΌ(ή, (13)

where the operator D(ί) is assumed to be defined on the set ^ c of functions
belonging to ^(IR3) whose Fourier transform vanishes in some neighbourhood of
the axis of the electric field E assuming that E has a fixed direction. The action
of D(ί) is given by

[Ό(t)f] (fc) = J{o
(14)
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where / denotes the Fourier transform of feS?c. On one hand, ^ c is dense in
i?2(IR3), on the other hand, exp — ϊD{t) can be defined as the multiplication
operator on i f 2(1R3) by a function defined almost everywhere in IR3 and of modulus
one.

The expression of D(ί) is suggested by an heuristic argument similar to the
argument by Buslaev and Matveev [12] for Coulomb like scattering.

In classical mechanics, the Lagrange equations are

d x . Λ/ .
JtP = r5 a n d P = x + A(ty

These equations show that for large r the motion of the particle is approximately
given by

Substituting JC by its approximate expression in the Hamiltonian of the particle,
one gets

-1/2

which will give in quantum mechanics the asymptotic motion of the particle
by means of the evolution operator (13).

We want to show that the lemma given in [9] can be applied to the distorted
operator

Ωc(ή=U(tΓ1UEC(ή.

One sees that

dt 0(0/

(15)

(16)

where now V is the Coulomb potential, V(*)= - 1/|JC|.

Following Dollard, we expect UEC(t)f to be decomposed into the sum of two

functions f^t) and /2(ί) for any / in <fc. Since — D(ί)/belongs to ^ Q for/

in y o we shall have a similar decomposition which will be written as

~ ' " Λ ' / x • ' Ό . (17)

This decomposition is required to fulfill the following two equations

and

forsome τ > 0 .

(18)

(19)
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This is precisely stated in the following

Lemma 2. a) Let ge£fc. Then, UEC(t)g can be decomposed into

^EC(O0 = 0iW + 02(O (20)

wzί/i

and

»2w l */— \<£i7iΐ) e e iXg^x -r ot\i), i), \^^)

where

T> (γ f \ _ C J3>p-ixx'/trpix'2/2t Λ -j r - ΐD{t) -Λ / /\ / o ^

b) For any fe <fQ with h = — D(ί)/, £gs. (18) flnd (19) hold with the decomposi-
ot

tion (21), (23) given above.

The proof of Lemma 2, Part a), is essentially based on the representation (12).
Part b) is derived in a way similar to Dollard's proof given in Ref. [5]. For

more details, the reader is referred to [14].
Hence, one can state the

Theorem 1'.Let the "distorted free" evolution operator UEC(t) be defined as in
(13) and let V(JC) be the Coulomb potential. Then, the distorted Moiler operator

ΩC(H, HE) = s-lim U(t)"x UEC(t) (25)
t-> + oo

15 seen to exist on all of <£2(1R3).

Finally, let us note that the range of the wave operator Ω(H, HE) has an interest-
ing physical meaning in the problem of ionisation. Indeed, let ψ be a vector in
the range of this wave operator. Then, there exists a vector φ such that
ψ = Ω(H, HE)φ with the property that

lim \\U(t)ψ-UE(t)φ\\=0. (26)
ί-> + oo

That is, for large time the state U(t)ψ behaves as the "free state" UE(t)φ and there-
fore corresponds to the ionisation of the atom.

IV. The Multiphotoionisation Problem

In the photoionisation of atoms by a laser beam, the experiment consists in
measuring the number of ions which one gets during the time of interaction of
the laser beam with the atoms. In this section, we therefore assume that the laser
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beam vanishes as t tends to infinity. Then, asymptotically in time, we are left
with the atomic system alone and we have to define the corresponding hamiltonian
which we denote by H A ί . In order to have a gauge independent formalism, we
formally define H A ί to be

(27)

where A^oo) denotes the multiplication operator

lAi{ao)ψ]{x) = Ai{ao9x)ψ{x)9 ψ e S£2(1R3) z = l,2,3 (28)

with

Af(oo, x) = lim Af(i, *) . (29)
ί-> + oo

In order for this limit to exist, it is enough to assume that v) the electric field
E^ί, x) is such that for t large enough there exists C and C for which

(a) | |E l(i) | |= :Sup|E /(i, jc) |^crA with λ>l; i = l , 2 , 3 .
AcelR3

d
(b) WdβjiήW = Sup — E/ί, JC) ^ C ί " Λ with /17> 1 i = 1,2, 3 .

jceIR 3 ^ i

With assumption v) (a), H A ί is a well-defined self-adjoint operator with domain
^ ( H o ) according to Section I assuming that A^oo) is a bounded operator.

Moreover, using Maxwell equations and assumption v) (b) one can show
that there exists a function Λ(x) such that

Aj(oo, x) = — Λ(x). (30)

Writing then symbolically the operator A^oo) as dtA one can check that the
hamiltonian (27) of the atom is unitarily equivalent to the usual hamiltonian

(31)

the unitary transformation being given simply by

(32)

Clearly this transformation is to be connected with a gauge transformation.
As a direct consequence, the spectrum of H A ί is the same as the spectrum

of H so that it is meaningful to ask for the atomic system to be found asymptotically
in time in a bound state or in a scattering state.

We are then led to the

Theorem 2. Under assumptions i)... iv) and if in assumption v) λ > 2, then the
Mδller operators

or
1e-iv-">)li^ (33a)
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and

Ωt0(HAt, H)= s-limei(t-t0>H^l7(ί, ί0) (33b)
ί-» + oo

exist on all of i f 2(IR3). Moreover

U{t9 io) = «t(H, HA ί) e- ί ( t - ί o ) H A t Ω ί o (H A ί , H). (34)

These Mδller operators have to be distinguished from the one we defined
in Section III. Indeed, no assumption was made about the behaviour in time
of the external field. On the contrary, assumption v) indicates that the external
field vanishes asymptotically so that we are left with the atomic system alone.
It is then meaningful to ask for the existence of the Mδller operators Ωto(H, HA ί)
andΩ ί 0 (H A ί ,H).

We are then in position to define the ionisation probability which is the
physical quantity to be measured. Let ψ be the initial state of the system, then
after the interaction of the atom with the laser beam has taken place, the state
of the system is seen to be Ω ίo(HAί, H)ψ in the so-called interaction picture. If we
denote by P c the spectral projection on the absolute continuous subspace relative
to H A ί , the ionisation probability will be given by

wψ(t0)=\\J>cΩto(HAt,U)ψ\\2. (35)

The first statement of Theorem 2 is quite easily derived, and based on the
lemma of Ref. [9]. The existence of the integral

— U(t)~1e~mAttψ dt (36)

ar

is established once one has noticed that

||p.e~ιίHAtφ|| <g Hp^H^ + i ] " 1 ! ! | | [H A f + i]i/?|| , φ e ^ ( H o ) . (37)

In Section II, we have shown that the Mδller operator Ώ(H, HE) exists under
assumptions i)-iv) when the electric field is a function of time only. Clearly, if we
add assumption v) of Section IV, one can show that Ω(H, Ho) exists as well.
Indeed, one sees that for the integral

to exist we can use the estimate

+ Σ?=Jt+00Λ||Ai(ί)||

remembering that we had chosen a gauge for which At(t) is a function of time
only. The first integral is seen to exist for square integrable potentials V (to be
connected with Theorem 1) and for Coulomb like potentials when H o is replaced
by the distorted free hamiltonian (Dollard [5]). The second and third integrals
are also finite due to assumption v), the choice of the gauge and the estimate

||p£β- i ί H o

Vll ^ IIP/CHo + Cl"1 V
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Therefore, the integral I0(ψ, τ) exists and so for the Moller operator

Ωt0(H, H 0) = s-limϊ/(ί, toΓ'e-*-*^.
ί-> + oo

By Theorem 2, we proved the existence of ί2 ίo(HAί, H) and Ωto(H, HA ί) so that one
might think that by the chain rule theorem [13], one would derive the existence
of the Moller operator Ώ ί o(H0, H). This is true only if

α (Ho, H A f ) = s-li
ί-> + oo

exists in which case

Ω ίo(H0, H) = £>ίo(H0, H A ί )β f 0 (H A ί , H).

However, in general, it is only the generalized wave operator

Ω'(H0, HA f) = s 4 W ί H o έ Γ i ί H A Φ c

which exists and then one would have the existence of Ω(H0, H) only if the range
of Ω fo(HAί, H) is contained in the domain of P c . But since Ώίo(H, HA ί) exists on all
of i f 2(1R3) the range of Ωto(UAt, H) is i f 2(1R3) so that the chain rule theorem
applies only if P C = H, that is, if H A ί has no bound states!
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