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Abstract. Euclidean Field Theory techniques are used to study the Schwinger functions and
characteristic function of the :¢% field in even P(¢), models. The infinite volume limit is obtained for
Half-Dirichlet boundary conditions by means of correlation inequalities. Analytic continuation yields
Lorentz invariant Wightman functions. It is shown that, in the infinite volume limit, {(:p(x)%:> =0
for both the Half and the Full-Dirichlet (1$*), model. This result also holds for a finite volume with
periodic boundary conditions.

1. Introduction

The path space approach to the self-interacting scalar Bose field in two space-
time dimensions involves the introduction of the free Euclidean field ¢ which
can be viewed (Nelson [17) as the generalized Gaussian stochastic process ¢(x)
with mean zero and covariance

Pp) e
2n)?* p*+m?’
The Schwinger functions associated with the P(¢) interaction in the open bounded
region A C R? are given by

Sx=y)=<d(x) p()> =] 1)

= [ :P(¢(x)):d%(x)

1)-o(f)e 4 dpo
Gy = TOU e 2 dio @
e dpo

where supp f;C A, ¢(f) = d*(x) p(x) f(x), and p, is the free Gaussian measure,
i.e. the Gaussian measure associated with the free Euclidean field ¢. One is then
interested in the Schwinger functions in the infinite volume limit 4 — R?. In the
case of small coupling constant, the Glimm-Jaffe-Spencer [2] cluster expansion
is a powerful tool for studying this infinite volume limit. If, however, it is desired to
obtain results independent of the magnitude of the coupling constant, then
correlation inequalities of Griffiths’ type become the primary tool (Guerra, Rosen,
and Simon [3], see also Simon [4]). This method is essentially restricted to even
polynomial interactions and we assume this in the following.

Little is known about correlation inequalities for Wick powers (see [3]; for
small coupling Wick powers have been studied by Schrader [12]) so it is of some
interest to explore the properties of even the simplest Wick power, :¢?:. Indeed,
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:¢?: differs from ¢? only by an “infinite constant” and thus it is reasonable to
expect that methods useful for studying the field ¢ should also be applicable to
:¢?:. Higher Wick powers involve polynomials in ¢ containing infinite negative
coefficients and the application of correlation inequalities in these cases appears to
be considerably more difficult.

We briefly summarize here the Dirichlet boundary conditions and the lattice
approximation. For details we refer to Refs. [3] and [4]. The covariance S(x — y)
given by Eq. (1) satisfies

(=4 +m?) S(x—y)=6(x ). 3)

Let S, p(x,y) be the solution to (3), for x, y € 4, that vanishes on the boundary
of A. The Euclidean field with Dirichlet boundary conditions on A is the generalized
Gaussian stochastic process with mean zero and covariance S, p(x,y). Let
du . p be the corresponding Gaussian measure, called the Dirichlet measure for the
region A. The Dirichlet boundary condition decouples regions, hence its usefulness
in the investigation of the infinite volume limit. The Half-Dirichlet Schwinger
functions {¢(f;)...¢(f,)i" are defined as in Eq.(2) with du, , in place of du,.
For the Full-Dirichlet Schwinger functions {¢(f;)...¢(f,)>2, the Wick ordering : :
defined with respect to the free covariance S(x—y) is replaced by the Wick
ordering : :j defined with respect to the Dirichlet covariance S, p,(x, y) (see [3]).
We shall always assume A to be sufficiently smooth (regular and log-normal [3]).

In deriving and applying the Griffiths inequalities the lattice approximation
is used. For each 6 >0 one considers the lattice {nd} in R?, where n=(n,, n,),
né=(n;0,n,0) and n;=0, +1, +2,...; let [n|=|n,| + |n,|. For each lattice point
there is a lattice field ¢°(nd). The lattice fields are Gaussian random variables
with mean zero and covariance S°(n, n') = {¢°(n) $°(n')) in the free boundary
condition case, and S% ,(n, ') for Dirichlet boundary conditions on A, where

44+ m?6% if n=wn
[S%,0] ™" (n,n')= A%, n') =1 —1 if n—n|=1
0 otherwise .

The restriction of S$° to lattice points in the region A satisfies [S°}A]7 ! (n, )
= A°(n,n) — B%(n, ') where B is a positive definite matrix with non-negative
elements (see [3]). In the lattice approximation ¢ (h) is replaced by )" 6% ¢°(nd) h(nd),

and [:P(¢(x)):d*(x) by Y 6%:P(¢°nd)), the Wick ordering here being with
A noeA
respect to the lattice covariance S%. The lattice fields suitably approximate the

corresponding continuum fields as 6 —0 in the sense that the lattice Schwinger
functions converge to the continuum Schwinger functions. Given an open bounded
region A, let q,, ..., gy be the lattice fields ¢°(nd); né € A. With the P(¢) interaction,
the joint distribution of the lattice fields has the form

N
Y (Bij—A4i))qiq5

N
dPj=neii=t n F(q)dq;...dqy,
i=1

where F, = e~ %*?@) and y is a normalization constant. The Half-Dirichlet lattice
measure d P{ 4, is obtained from d P by setting the matrix B=0, and in addition
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for the Full-Dirichlet measure dP§ ;, the Wick ordering in :P(g,): is with respect
to the Dirichlet covariance S% ,. The measures dPj, dP] ,p, and dP] , are
even ferromagnetic measures and expectations of ¢*=g{'...q% with respect to
these measures satisfy the Griffiths inequalities [3]

G <g*> =0,
(G1D) <g*q"> Z2<g"> <a*>.
It follows by an argument of Nelson [5] that
(Px1) ... LA = P(xy)... p(x,)) 4

and {¢(x;)...p(x,)>4P is monotone increasing in A. The Half-Dirichlet Schwinger
functions are uniformly bounded (Frohlich [6]) independently of A and thus the
limit 4— R? can be taken. The resulting Schwinger functions satisfy the Oster-
walder-Schrader axioms and thus yield Wightman functions by analytic conti-
nuation (see [6,4]). This also holds for the Full-Dirichlet Schwinger functions,
in the case of a ¢* interaction ([3, 4]). In the following sections we obtain similar
results for the Wick square :¢(x)*:, and in the last section we prove that, in the
infinite volume limit, {(:¢(x)%:> =0 for both the Half and the Full-Dirichlet
(A¢p*), model. This result also holds for a finite volume with periodic boundary
conditions.

2. Basic Inequalities

Let :¢?: (g) denote [:¢(x)* g(x)d*(x) where :¢p(x)* is Wick ordered with
respect to the free covariance S(x — y). Let 2 denote the set of infinitely differentiable
functions with compact support, 2(A) the functions in & with support in the
open set A, and let & denote the set of infinitely differentiable functions which
decrease faster than any inverse power at infinity.

The Griffiths’ inequalities yield the following theorems:

Theorem 1. Let g e Z(A). Then
(DY <0y, if 920
(ePHONVEP > (2@ if  g=<0.
Proof. Take g =0. In the lattice approximation {e®¢*@)HP is given by
C E L PP
where S?= S°(n, n). It suffices to show that
ferzainerzbonndpy )
AP

is increasing in y if ¢ >0 and decreasing in y if 0 <0.

! Here and throughout this paper we assume P has degree =4. The results are still true in case P
is of second degree but one must then be careful about the integrability of ", it suffices to notice
(*9%@y < oo for |/ sufficiently small.
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The derivative of this expression with respect to vy is

9 Biqi d
J’ean ngijqiqjevE 24 q’dPA,HD
B.jd:4; ]

J"eyZ i4i4j dPA,HD

2 N «a: . N .
JerxaioietXBuadig Pl ) [ 3 B, jq,q;€" 2P0 APy
- B.jqi 1 2
(Jer2Butitrd Py 4y p)

and this is positive or negative according to whether the following expression is
positive or negative:
Z BijQqu'>a —<Z Bijqiqj>y (%)
where { >, is the expectation with respect to the measure
P — eVZBquiQJdPi’HD
v j‘eVZBiJ‘thde,HD
and { ), is the expectation with respect to the measure
2
e’ Lai9igp
AP, = —— <.
j‘e i 'dPy

The derivative of the quantity () with respect to ¢ is
(Z giQiZ) Z Bij‘]iqj'»o —<(Z giqiz>a (Z Bijqiqj>a
which is non-negative by (G II) for the measure dP,. Taking the limit 6—0

completes the proof of the theorem. []
Precisely the same sort of argument (with ¥ B;;q;q; replaced by — Y, A4, ,-q,-qj)
ied

jedA\4
leads to the following result:
Theorem 2. Let g€ D(A). Thenif ACA'
(PHOEP < (HONEP i 920
(#HOYED S (4D if <0,
Thus the Half-Dirichlet expectation is monotone increasing if g =0 and monotone
decreasing if g < 0.
We consider now the Full-Dirichlet expectation (e**?@y2 in the case

P(¢)=L¢*, where :¢?:, denotes Wick ordering with respect to the Dirichlet
covariance S, ;. As

P*p(g) = :9%:(9) + /fl [S(x— x) = S, p(x, )] g(x) d*(x),
S(x —x)— 8, p(x,x) € L,(A,d*(x)) forall p<oco,
S(x—x)— S, p(x,x)0 as A/R*[3],

i 2D @ND — lim (@®H@\D
R TS i, A

and

it follows that

if the limits exist (and if one exists, so does the other). It suffices therefore to
consider (e#* @)D,
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Theorem 1'. Let P(¢p) = A¢*, and suppose g € D(A). Then
(PRSP ONMIP< (99 if g20
(¥R 2 (e OYIP > (@) if g<0.
Proof. To prove the inequalities < >33 Y use
AP = S LR -Sh oGl gps

where §°— S% >0 and « is a normalization constant. The proof then proceeds
exactly as in Theorem 1. The remaining inequalities are a restatement of Theorem 1.

O
Theorem 2'. Let P(¢)= A¢*, and suppose ge D(A). Then if ACA

(ePHDRZ (PR if 920
(PR (P8 if g=0.

Proof. As in the discussion of the Schwinger functions for the ¢ field given
in Ref. [3], one proceeds in two stages. In the first stage one does not change the
region A but the Wick ordering is changed to that appropriate to A’

&, _go L2
de,A,’DzaeélZ(sA'.D SA.D)(l,l)lthj’D

and notice S%. ,> S p. In the second stage one turns on the couplings to the
region A\A. In each of these stages the required inequalities follow as in Theo-
rems 1 and 2. [J

Remark. By a limiting argument Theorem 1 implies that if ge L, nL,

(eHOYIPS (@400, i 920
(2) 9=0),

where g, is the restriction of g to the set A. ((e*@YHD — (pi¢%@VHD gince the
Dirichlet field vanishes outside A.)
Similarly, in Theorem 2, if ge L, nL,

<e:¢2:(g)>§D é <e:¢2:(g")>ffD if g g 0
(2) (9=0)

and likewise for the other inequalities.

3. Uniform Bounds

According to Theorem 2, {e**@YHD (and (e**@)D for a ¢* interaction)
are monotone increasing (decreasing) in A for g = 0(g £ 0) if A contains the support
of g. A study of the infinite volume limit is completed by obtaining bounds uniform
in A.

Theorem 3. Let g€ 9 and suppg C A, where Ay is a finite union of unit squares,
and let AD A,. There exists a norm | |, defined on & such that |g||,<c<oo
implies [{e** @YD) < ¢’ <0 where ¢ depends only on ¢ and is independent of
A and A,.
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Proof.
(P @YD < (e CamIVED)E (20 D)S

where g, g_ are the positive and negative parts of Reg, the real part of g. The
first term can be estimated by an argument of Frohlich [6] (see also Simon [7]).
Let f=2g,. By Theorems 1 and 2,

<h2. ch2 chH2- .
(DD < (PP < (@D, i ACxt,

where [xt denotes the rectangle with sides of length [ and ¢ centered at the origin.
Thus

(e NYVHD < ,122 (Y, < e TEHI—: 9Nt
where E[A] denotes the lowest eigenvalue of the operator A,

H=H,—E[H], H=H,+ sz :P(p(x,0)): dx

-1/2
and f,(x)= f(x, t).
By a result of Spencer [8] (see Simon [7])

—E[A - :¢*(f)]1Sd—c'E [HO +c {E:P(d)(x, 0)):dx — :q,’)Z:(f,)H

independent of [, if supp f; C [a, b]. The constants c,d depend on a, b. As shown
in Lemma 1 below, (f | f(x, £)]* dx)* £ ¢} < oo implies

~E|y+o {f PO O dx—sg (| <

where ¢, depends on ¢; and on a and b.
Defining the norm ||g||*> = sup [|g(x, t)|* dx we have shown
t

b2 .
(e?n@e P <c, if gl Scy,

where ¢, depends on ¢; and on A,.

We must now estimate (e~ *#*29-)%HD_Aq the first Griffiths’ inequality does
not apply to :¢? we cannot estimate this in terms of (¢'#*29-)%HD We proceed
instead using the monotone decrease of (e *¢*@9-)%HD with A for AD A,
(Theorem 2). Let f=2g_

fe 0 WeVaody,
feVodp,,
Sc(fem " Nduy, ),
where V, denotes the Half-Dirichlet interaction associated with A4,, and ¢

depends on A,.
But

2. —.h2.
<€ ¢ ~(f)>ﬁiD§<e P -(f)>£‘11;-7=

[em9%@Ndy, [ =(e PNy o560 ~Sao.n0D12f (9426)
As S(x, x) = S 4, p(x, X) € L, (A4, d*(x)) for all p <o [3] we have
FIS(% X) = S 4o, 006 )] 2f (x) 2 () [l f - 4)
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By an application of Jensen’s inequality for conditional expectations [3]

je_:“’z”’(zf)du/io Déje—:q&zt(lf)d‘uo <l

for some constant o> 0. Since || /||, <b|lgll, b depending on the support of g,
WERRESIONR ez, it gl e,
where ¢, depends on ¢; and on A,. Thus, for 4> 4,

[(e?*@OMIP <’ <o if lgllSc<oo,

where ¢’ depends on ¢ and the support of g but is independent of A. To complete
the proof of the theorem the dependence of the constants on the support of g
must be eliminated. This is accomplished using a technique due to Glimm and
Jaffe. Decompose R? into (closed) unit squares A, ; j» ij€Z, such that (x, y)e 4;;
implies |x| 2 |il, [yl = ljl. Let p;;= A(i* + 1) (j* + 1) where A is chosen so  1/p;;=1.
Let g;; denote the restriction of g to A;; and let [lgll;=X;; p;;llg;;ll. By Holders’
inequality, 1

|(e ™ @YD < T (¢ Pu Regiy): \HDpi;

J

As suppg;;C A;;C A, we can use our uniform estimate for 4> A,, and replace
Ao by A;;. If [|glls S ¢y then |[p;;g;lll ¢, for all i,j and thus

<e ¢Z (Px)Reg|J)>HD < c2 s

U =
where ¢, depends only on ¢;. Thus
1
b2 Z_
[Ke " @YD < e, " Pu=c,

and the theorem is proved. []
We now prove Lemma 1.

Lemma 1. Ho—i-f P(P(x,0):dx — [ :p(x, 0% g(x)dx=c, if |g|,<c,, where
suppg C [a, b] and ¢, depends on ¢,, a, and b.
Proof.

b b
—E[Ho+ §:P(¢(x,0)):dx—[:d(x,0)2: g(x)dx ~§:P(¢(x,0)):dx+J:¢(x,0)2: g(x)dx
. Slle - 12/m,

e

where m is the mass associated with the ¢ field (see Segal [9], Guerra-Rosen-
Simon [10], Klein-Landau [11]). This L, norm is estimated by Nelson’s method
(e.g. [4]). Undoing the Wick ordering (with a momentum cutoff k, and dropping
the x variable temporarily),

P(pi):— 190 9= g " + oy "2+ ag— PEg+Sig
where P(z) = Z a,;z*" and the 4 include the change in the coefficients due to

the Wick orderlng This is equal to
[302,98" + aoy 25"+ + ap] + [302,68" — dg + Sid]
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The first term is estimated as usual to be = — ¢, (Ink)” and the second = —c,g"" 1.
Thus

P(dp(x, 0): dx — f :pi(x, 0)%: g(x) dx = —c; (Inky' — ¢, f g(x)" "' dx.

S e—

Also
b
[f P(¢y(x, 0): dx — [ :¢hy(x, 0)*: g (x) dx

Sb(1+gla) k™

for some constants b, o« as usual. It follows that if ||g|, =<c¢ Nelson’s estimate
shows that the L,,, norm is bounded uniformly in g and thus the lemma is
proved. [J

Theorem 3 requires that g have compact support and that A be sufficiently
large, containing the support of g. In order to handle g e & we consider those
regions A which are a finite union of unit squares A;;. Then

b
- [j :P(p(x, 0): dx — [ :(x, 0)*: g(x) dx

2

1 1
[{e ™ @YHD| = |( 4@ HD| < T ((e 9 2Pug i) HDY by ((o=:6%(2pug- 1) HDY Py
ij
where g, g_ are the positive and negative parts of Reg ,, and g, is the restriction
of g to A. The first term is estimated as in Theorem 3, the second term satisfies

<e-:¢2:(2pug-u)>ﬂw < <e—:¢2=(2pf,g-.j)>§9 )
= iy

This holds because, due to the special form assumed for A, A D A;;. The right hand
side is estimated uniformly as in Theorem 3. Thus we have
Theorem 3'. Let ge &. If Ais of the form ) A;; then
finite
lgl,Sc<oco implies [Ke®@YP|<c <oo,
where ¢’ depends only on ¢ and is independent of A.

Remark. Theorems 3 and 3 are also true for (e**@>D for a ¢* interaction.
The proof is the same, using Theorems 1', 2’ in place of Theorems 1, 2.

Theorem 3 implies that (e****@>HD i5 an entire analytic function of z, since no
restriction on the magnitude of the norm |g||; was imposed. For the purpose of
studying the existence of the time-zero field [ :¢(x, 0)* f(x)dx it is useful to have
a norm || ||, which remains bounded as f®w,— f®J. Lemma 2 gives such a
norm (see the discussion in Section 4) although in this case a restriction on the
magnitude of the norm | g|; is imposed.

Lemma 2. Let g(x) e 2(RY) be real. Then

i) Hy—[:¢(x,0)% g(x)dx = —a uniformly in g if | g||; £b where b is sufficiently
small.

ii) As a consequence, if f(x,t)€ D is real,

J‘e_[:d)(x,s)z:f(x,s)dxdsd”o é A
if WA < B where B is sufficiently small and ||| f]||' = 31t1pj"|f(x, 1) dx, A depending
only on B and the support of f.
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Proof.

1
fdsfdxg(x):d(x,s)2:

i) e~ ElHo=§:6(x,02:g)dx] <[l 50

2

l1—-e—m

(see [7] or [11]). Using Jensen’s inequality the right hand side is

1
llglls fds:¢(0,5)2:
< |le o

1—-e m

which is <c, if ||g||, = ¢, for ¢, sufficiently small.
ii) Follows immediately from

[ e N dy, < e IEHo— 0% (olt
Corollary 1. Let g€ Z(R?), suppg C A, where the distance from the support
of g to the boundary of Ay is 2€>0. Let A> A,. Then
K @Y IR < A <o
if lgl.< B for B sufficiently small, where
lglls=Z pijllgi s MA = sup [ 1h(x, O dx.

Proof. The proof proceeds as in Theorem 3, using Lemma 2 in appropriate
places. Note that because of the assumptions on A, and suppg, S(x, x) — S 4, p(X, x)
is continuous on the support of g, so that in Eq. (4) the norm | |, can be replaced
by | ;. O

4. The Infinite Volume Limit

Theorems 1-3 lead to the infinite volume Schwinger functions via Vitali’s
theorem, as discussed by Frohlich [6] (see also [4]).

Theorem 4. Let ji,....ju, 915 --s G € L. Then
(BG1).. dU) D% (91) % (gm)f°

converges as A 7 R*, and there exists a norm || ||, on & such that the infinite volume
Schwinger functions satisfy the bound

Ko (). 1% (gD P = " ™+ m)! [y lls--- gl

for some constant c. Moreover they satisfy the Osterwalder-Schrader axioms and
thus can be analytically continued to Lorentz invariant Wightman functions.

Proof. The proof is as in Frohlich [6]. Take the norm | ||, as defined on p. 149
It is known [6, 7] that |(e?WYHP| < ¢ if ||j|| , < d. We may conclude by the Schwartz
inequality and Theorem 3, that

PO oH @D <o if ]+ gl ¢,

where ¢ depends only on ¢’. Let jy...j, g1...Gm = 0.

<e11¢(j1)+"'+ An®(n) +21:¢%: (yl)"'+zm:¢21(9m)>HD
A
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is an entire function of 44, ..., z,, which is bounded on any ball, and monotone
increasing in A if all 4;, z; are non-negative and jy, ..., g,, € 2(A). By Vitali’s theorem
the limit as A .~ R? exists and is an entire function. The bounds on the Schwinger
functions come from the Cauchy integral formula. See [6] for details. []

Remark. Theorem 4 is also true for the full Dirichlet Schwinger functions
for a ¢* interaction.

The Schwinger functions obtained in Theorem 4 can be extended by continuity
to functions j,...g,, € %. On the other hand Theorem 3’ enables us to take the
limit A~ R? for j,, g;j€ ¥ in case A is a union of unit squares, and we obtain the
same sort of bounds as in Theorem 4. A 3ec argument shows that the Schwinger
functions for j;, g; obtained either by extension by continuity or by taking the
limit A/ R? for A a union of unit squares coincide.

Finally, we remark that the time zero Wick square is well-defined in the infinite
volume limit: Let fe 2(R') and let ¢o(f) denote [ @(x,0) f(x)dx. Likewise
195 (f) =1 :¢(x, 00 f(x) dx.

Theorem 5. Let fe (R"). The time zero field :p3(f): is well-defined in the
infinite volume limit. Let fi, ... f,, hy, ... h,€ D(RY). Then

{Po(f1) .- Po(fy) :05: (hy)...:0F: () 5"
converges as A/ R?.

Proof. The proof follows from the fact that, according to Corollary 1, the
norm || ||, may be replaced by the norm || ||; which is bounded as w,@ F >0 F
and from Euclidean covariance: As we have defined the norm || | it is clear
that [ :(0, t)*: f(t) dt is well-defined. A rotation brings this to the form :¢3: (f). [

5. Positivity of (:p(x)%:)>
Theorem 6. For a ).¢* interaction, in the infinite volume limit
CHXPHIP 20, Ch(x)*HP=0.

Proof. The proof follows from the existence of the above infinite volume
limits, as discussed in Section 4, plus integration by parts. If ¢;, i=1,...,n are
Gaussian random variables with covariance C;;=<{q;q;>, and F=F(q,,...q,)

then [2] " P
{q;F)= j;l Cij<a—qj’ F> .

For the Half-Dirichlet theory in the Lattice approximation the above formula
(used twice) gives

< — 2623 :g8%:\ HD —102% g\ HD
qie x4 12267 S o)) \igie  * /4
J
4

=164%6* s e, CUTENAR a0 sy HD
(ZLSA,D(I,J)-qj.) e + [8% i, i) — 8°(, i)] <e SHD.
J

Dividing through by (e~ #¥*Z:4&%HD and taking the lattice spacing 6—0 gives
GO+ 124§ d2(9) S 4,p(%, y)* GO DAL Z S 4 p(x, X) = S(x,x) . (5)
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By the results of Section 4 we can take the limit A/ R*> where the A are finite
unions of unit squares:

Let 0< fe 2. Define g(x)= 124§ S(x — y)* f(y)d*(y),
h(x) =124 § [S4,p(x, »)* = S(x = y)*1 f(») d*(y), and
Fy=J[S4p(x,x)=S(x, x)] f(x) d*(x).
Then Eq. (5) becomes
GO (AP + CP% @ AP + ()P = Fy

The first two terms converge as A ~R? and F,—0. By Theorem 4 and Lemma 3
below, (:¢p%: (h)>iP—>0 as 4—R%

Thus in the infinite volume limit

CH NP+ 2 (9)yP 2 0.

Using the translation invariance of the infinite volume Schwinger functions gives

[F(f +9)d> ()] Cop(x)*HP20.
Thus (:p(x)*>HP>0.
A similar discussion for the Full-Dirichlet theory leads to

GOV ipy R +124F d(y) S 4 p(x, ¥)* Cp(»)1p 520
and to (:p(x)*:>P =0 as before. [

Lemma 3. Let h(x)= [ [S(x—y)> =S4 p(x, )1 f(y) *(v).
Then ||h 4| ,—0 as A 7 R?.

Proof. Consider points x =(z, t) € A;; for some unit square 4, ;.
hy(x)NO0 as AZR* since S, p(x,y)7Sx—y) [3].

Also, h, e & so that | dz|h(z, t)]* is continuous in ¢ and monotone decreases
to zero. Therefore, by Dini’s theorem,
sup [ dzlhy(z,0)> 0.

ted,, A
Thus [|h,, I %0. Finally {[A4]/;x 0 follows from
ha il = IH Il and X p;jllHijlll <o,

where H(x)= [ S(x— y)* f(y) d*(y) and H;; is the restriction of H to 4,;. [J

Remarks. 1. Our proof that {:¢(x)*:> =0 depends crucially on the translation
invariance of the infinite volume expectation. The same proof gives the result
for a finite volume theory with full periodic boundary conditions (i.e. the Wick
ordering is with respect to the periodic measure) since one again has the required
“translation invariance”. This has been obtained by Baumel [13] by a different
method.

2. Theorem 6 applies also for free boundary conditions and small coupling.
The required infinite volume limits are in Schrader [12].
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