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Abstract.We shall try to define local field products under assumptions imposed only on the four-
point-function. This idea is based on the work of Schlieder and Seiler [1].

In our framework we shall prove that the two-point-function carries the strongest singularity
whenever two arguments in a Wightman function coincide. This will be generalized to the case when
more arguments coincide. We shall define “regulated” n-point-functions and study their properties in
detail. This will lead us to the definition of arbitrarily high powers of the field-operators as operator-
valued distributions over 2(R*) in the center coordinate with a dense domain of definition.

1. Introduction and Some Results Stated in [1]

Field products at the same space-time point lead to great difficulties in quan-
tum theories because of the distributional character of the field operators.

Schlieder and Seiler [1] define local products of two field operators under
assumptions imposed only on the four-point-function. We want to extend their
approach such that it includes local products of three or more field operators.
Our investigation is based on axiomatic quantum field theory [2] described in
terms of Wightman functions.

Let us first introduce some notations:

z:= (2 ..., 2,) eCH"*Y
L=, () e with (=z,—z_,
7y = {{ eC*"|Im{;e V,*}

(“forward/backward tube”)

1= {{eC*|I4e L, (C): AL et}
(“extended tube”)

where L, (C) denotes the proper complex Lorentz group. For n€ S, (group of
permutations of {0, 1, ..., n}) we define

(ri= (20— Zr(0)s +++» Za(n) _Zn(n—-l))
(1) 7(0) n(n) n(n—1)
=(ch— Zép--»ZCj— Z C,~>
=1 = j=1 =1
= {{eC*", et}

(“permuted forward/backward/extended tube”).

* Based in part on the author’s thesis, University of Munich, Germany, October 1974.
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Sometimes we shall decompose { in three parts:

(=40

defined by

-

£:=(C15""Cj—1)7 C::(Cj+1"">Cn)-

The real scalar field A(x) and the Hilbert space # are assumed to fulfill Wight-
man’s axioms [2].
D(zg. ..., 2,) 1= [exp (i Y pkzk)fi(po) ... A(p,) dp, ... dp,Q

k=0
is a vector-valued holomorphic function for

Z0»Z1 —Z0» o Zn—Zn—1 €74 (cf. Jost’s book [2]).

We shall call @(z) a ,,Jost-state”. The span of all Jost-states will be denoted by #
and is a dense subspace of the basic Hilbert space .

The assumptions made in [1] are:

(A1) There exists a function r({) with the properties

a) r is holomorphic in 11

b) r()=r(=0).

c) r is invariant under the homogeneous, real Lorentz group £1.

d) r(&) e 2'(%,(0)), where %,(0) is a real neighborhood of the point 0 € C* with
respect to the Euclidean norm.

(A2) W, (L4, L5, C5) (C3) has an analytic continutation to the points ©; x %,(0).

We shall call r a regulating function.

Remarks. (1) A theorem of Hall and Wightman [3] states that r is even in-
variant under the group L, (C). Further there is a function #(¢) holomorphic for
o € C\[0, o0), such that

Property (d) implies
F(o)e Z'((— o0,0)) forsome ¢>0.
(2) Condition (d) is equivalent to (e) formulated in [1] by the virtue of a
theorem given in the Appendix 1.

The crucial result on which we shall rely is the following theorem proved by
Schlieder and Seiler.

Theorem 0. Under the assumptions (A1) and (A2) all the Wightman functions
W, +1(€) 7)) have analytic continuations to the points {; =0,

(ga Z)= (Cls (RS} Cj—lszj+1’ "'9(;})61:-'1 .

First we want to strengthen this Theorem O.

Theorem 1. Under the assumptions (A1) and (A2) all the Wightman functions
W,+1(0) r({;) have analytic continuations to the points

(e, (0)={¢e R &2 <1}, (Q,f)etj_l for some r>0.
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Proof. a) For real, spacelike {; and (, e 1, the point { = s {) is in the
extended tube 7, (cf. Jost [2], p. 84).

b) The case {;e IR {7 =0 is contained in the Theorem 0 because for every
0 >0 there exists a real Lorentz transformation A such that |4{;| < 6. (|{| denotes
the Euclidean norm!)

c) By Lorentz invariance and because #(0)e P'((— c0,r)) it is clear that
W, (L1, (5, {5) 7(¢5) has an analytic continuation to {;,{, € 17, {5 € %,(0) (see also
[10]). This implies that the vector-valued holomorphic function A(z) A(z+ ) ()2
has an analytic continuation to { € %,(0) for every ze 7, [1].

d) Now choose ;€ R* with 0 < (? <r* Without any restriction we can assume

Zj= (g»)

Consider the n-tuple { =({;, ..., {,) and the permuted one

n—1 n
_Cn:z({la"" j—2 Z Ckv Cn’_ ZCk:Cj"‘wCrr-Z)'

— k=j—1 “ k=j
é"‘ ,j Z‘n
We are looking for a point {=((,...,{,) in the analyticity domain of

W, +1(§) r({,) and for a complex Lorentz transformation A € L, (C) such that
Aly;=48,=F and §0):= A )et,
Suppose we have found such a point {. The analyticity domain is open and there-
fore there exist complex neighborhoods %(C)C‘E‘* and 7" (C C)Ct,, 1 such that
W,+1() r({;) is analytic for ; eOZZ(C) and (Z_f, C)e "V(C C)
For g(é) € @(]R“m%({ )) let us deflne
GG 0):= [ dEg(E) (W41 ((, E+1i0,0) r(& +i0)
I/Vrl+1(§, é_ 103 C) r(f - 10)} .
Because of the spectrum condition G({, Z) is analytic for (, E) et ,.But G((, f) =0

on ¥ (C C) This implies G(¢, C) 0 on 7,_,. By the edge of the wedge theorem
,,+1(§ ) r({;) is analytic for C € IR“r\%(C ) and fixed ({, De 7,_;. By the generahzed
Hartogs theorem [1 1] we get the analytlclty in { for C eR*Nnu (C ) and (§, C) et
e) For fixed ze ], A(z) Az + &) r(£)Q is a vector-values holomorphlc func-
tion for ¢ € %,(0). Therefore there is a complex neighborhood % > %,(0) such that
A(2) A(z+ ) r(Q)Q is analytic for { € %. If we write

W1 () r(6) =(@,-1(2), A(2) Az + () () Q)
we see that W, ({) #({,) is holomorphicif{,e %,(,_, —zet{,and {;,....{,_, €1

For simplicity we fix z=i 6).
f) Now we choose 0 <a < i such that

2
cose. 0 O isino
c 0 1 0 0 c ccosa . 0
A(“)<6)" 0 01 o0 (()’)‘( ] )+l(csina>€%‘
isin. 0 0 cosa
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This is always possible because (;) € % and % open. Define

|
=[5 e
(

(2
(n J+2)cota)+l(6)

1
_Cn 2= l(é’)

A
Il

KA
|
-
Il
/_.\
O N
N~———

(o= =(,= z(é») and
=A(—a).

This choice of { and 4 fulfills the requirements of (d) by construction. This proves
our Theorem 1.

Remarks. (3) By complex Lorentz transformations we can further enlarge the
region of analyticity. Lemma 4 by Schlieder and Seiler [1] ensures the single-
valuedness of this continuation.

(4) By a trivial extension of the proof we can write {,, € S, a permutation,
instead of { in Theorem 1.

2. Connection between r and the Two-Point-Function W,

In [4] de Mottoni and Genz argue that the two-point-function has the leading
singularity in an expansion of the products of two fields. We shall prove such
a behaviour in our framework.

Theorem 2. Under the assumption (A) there is even a function r'({) with the
properties

(1) ' satisfies the condition (A).

(2) Define F5(0) := W,(0) r'({) then F3(0)=1.

Remarks. (1) Theorem 1 states the analyticity of F' for { e 7{ U%,(0). Because
of F;(0)=1

7 — ﬂ

"O=m0

behaves like W, 1({) and 10— W, (0)
G

like W, () for sufficiently small { e t;.
These two relations imply that W, !(¢) and ' ~1(¢) are elements of 2'(%,(0)).
(2) The singularities in any n-point-function W, ({) if {; goes to zero cannot
be stronger than the singularity of W,(()).
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Proof of Theorem 2. (a) F,({):= W,({) r({) is analytic for {=0. As shown in
Appendix 2 there exists a function F, (o) analytic for ¢ =0 with F,({)=F,(?).

(b) If F,(0)=c=+0 then with »:= —i—~r our theorem has been proved.

[Because of F,({)= Fz( ) the constant ¢ is real!] Therefore let us assume
F,(0)=0.

(c) Lemma 1. F,(0)=0 implies W,({)r({3)=0 for {3=in with n* =0 and
ineiV*nau(0).

Proof. Schwarz’s inequality tells us

[(A(2) A(z)) A(z,) 2, A(2) Q)| = | A(D) Q| - | A(2) A(z,) A(z2) Q] -

Written in terms of Wightman-functions this means

IWalCy, Lo )P S WR(GS) - WalCy, a0 Gy = 8y = )

if {;,{, et and {;=ineiV ™. Because r(in) is real we can multiply both sides
with r?((3) = r(C5)?

UACHENS )"(Cs)’z S WL(5) r(C3) Wellys £25 s _C-z> _51)"@3)'

For fixed {, {, e 7{ the functions W,({;, {5, {3) r({3), W, ({5) ¥(¢5), and Wi ((y, 5, (5,
—Z,, =& r(;) are holomorphic in {; within some (complex) neighborhood
U(0) of 0 C*. o

Therefore the inequality remains true even for {3eiV " n%(0). But F,((5)
=W,({3) r({3)=0for (3=0and {3€iV " n%(0). This proves Lemma 1.

(d) Lemma 2. For fixed {,,{, 1] define

F(Q):= W,(§, 6, 0r(©)
then F,(0)=0 implies
1) F(§)=0 for {*=0 and { € %(0).
) FO

is holomorphic in %(0).

Proof. (I thank E. Seiler for this proof)

3 0:=FQ=F(/3+0)

is holomorphic in ¢2,{ for {#0 and |(?| < |Z2|. This implies
J@D= 3 b £
n=0

in this domain, where b (E, +) are holomorphic functions for Z=t=0 (The + sign
in b, shall indicate that b, can depend on the choice of the branch of 2)
F(C) 0 for {*=0, (ezVWx%(O) by Lemma 1. This implies by(Z, +)=0 for
{eiR*n (% (O)\O) But the riemannian manifold of \/27 is connected and there-
fore bo(C, +)=0 for C +0. Lemma 2 follows by the continuity theorem for func-
tions of many complex variables [5], because there can be no singularities on
manifolds of real codimension > 2.
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() Lemma 1 and 2 together imply that if F,(0)=0 then Tr({) satisfies
conditions (A4). If B w ¢
B®)=% a, a=*0

then with

r'()= Q).

1
ﬁ
Theorem 2 is fulfilled. o)

Remark 3. Because of Theorem 2 we can always normalize our regulating
function r in such a way that F, (0) = W,(0) r(0) = 1. If r, and r, are two normalized
regulating functions then there is a meromorphic function h with h(0)=1 and

r()=r(0) hQ).

This defines an equivalence relation.

3. Representation of the n-Point-Functions

The first aim of [1] was to define the product of two field operators under
assumptions only on the four-point-function. But to our great surprise the as-
sumptions (A4) are sufficient to make definite statements about the singularities
occurring in n-point-functions if an arbitrary number of arguments comes very
close together.

Let us define

Rn+1(§)=Rn+1(C1) v )= H ’”(Zj‘ )

0gi<jzn

ond = H i+ - +8) with (=z,—z_,, i=1..n

1A
||/\

j=n

n+1(§)=%+1(20’ "-szn) n V(Zj—Zl-)

0<i<j=n
n+1(C n+1(£

Theorem 3. F, .;({) has an analytic continuation to the point { =0.

Proof. a) Properties of F, ,({):
Combining the well established propertles of W,,, and R, ,, we get
(1) F,41({) is holomorphic for {e () 7, , and invariant under the group

1'L‘€Sn+1
L,(@©).
(2) F,41(Q)=F,.,({,) for every permutation € S,, .

1 n
O lim Foa@rined (o a0) )
b) Consequences of Theorem 1:
For every permutation ne S,+; the function W, ,({,) r((, ) is holomorphic
for {, ;e %,(0)and (,, C o) €T, Because of the analytic structure of R, { ({) we get
(4) w1 (©) holomorphlc for {, ;€ %,(0), ((n,(: Yet,)_,.
c¢) Idea of proof:

F,.1({) is holomorphic in 7, and F,,+1(C ):=F, (=, ..., —{;) is holo-
morphic in t,. If the boundary values F, (£ +i0) and F,,,(¢—i0) are equal




Local Field Products 79

(in the sense of distributions) then by the edge of the wedge theorem, Theorem 3
has been proved. For this purpose we shall put in %(n— 1) — 1 other boundary

values between F,.;(£+i0) and F,,(£—i0) such that by (b) every boundary
value equals its neighbor.
d) Definition of the boundary values:

. 1 )
Without any restriction we can choose %™ (0)C 702{,(0). Let us define for

ge 2([U"O]) and n€ S,

(5) Glno):=dEG&) i (E+in)nae V"
The boundary value

©) Q)= lim G,
n2Nre>0
exists by property (3).

f) Lemma 3. Let ne S, ., be a permutation and © = (j — 1, j) be the transposition
which permutes j — 1 with j then

(7) 6(0,)=GQ,..).
Proof. 1) By definition

Creesi "= Znos() = Zreotj=1) = Zaj-1) ~ Zn(n = — Cmj
and therefore .. ;= — 1, ;. This means
8 lim G@)= Ilim  G(,..)
®) , lim  Glg)=lm  Gl.)

By property, (4) F,,;(0) is holomorphic if {, ;e %" (0) and (gn,fn)er:+1. Hence
: S ~ j . i L
©) V+3}:I,?,—»06(ﬂ”) - V-slzg.l,—»OG(ﬂ") N V*aliroll.J—»oG(n"”) if (ﬂ”’ (ERASE
2) G0)=  lim lim G(_q,,)}

Vi-13(1,Mz=0 | V*¥31y ;=0

lim OG(gm)] =G(0,.,).

VAo nmor j=

= lim
V=130, )r—0
This proves Lemma 3.

g) Let n be the permutation

(0 1 2 n)
n n—1 n=2 O,

then {,=(—{,,..., —{;). The theorem has been proved if we can show that
G(0)=G(0,). But we can write 7 as the product

n=[01)(12)...(n—1n)][O1)...(n—=2n—1)]... [(01)(12)] [(0O1)].
Now by applying Lemma 3 we have proved the theorem because
G(Q) = G(Q(12)) = G(Q(onuz)) == G(Qn) .

Corollaries. 1) By following the same line as in the proof of Theorem 3 we can
prove similar statements, e.g.:

a) Wy, (0) r(ly) r(C5) ... r(¢5,-1) has an analytic continuation to {;, {3, ..., (3,1
€ %r(o)a CZ’ C49 cery CZn—Z € Tf—‘
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b) WO r() r;+{+1) r({+1) has an analytic continuation to {;, (44
€%0), ¢y, ...s =15 Ciay oor (€7, . For more complicated expressions, analo-
gous results hold.

2) Theorem 3 gives the following representation of the n-point-functions:

Wi O=F© [T 771G+ +0).

1gigjsn

W,
By Remark 1 of Part 2 we can replace ! by F—Z in a small neighborhood ¥ (0):
2

W O=Fon@) ] 2

1<i<jsn F,

Gt - +0).

But F; '({) is analytic for {=0 and therefore the singularities of W, ,({) are
controlled by those of [  WL({;+ -+ + ().

Lsigjsn
This result is surprising, because assumptions (A4) are conditions only imposed
on the four-point-function. Nevertheless, we get statements about all possible

singularities of n-point-functions.

Examples. Perhaps we should illustrate our approach by two examples
1) Free field with mass zero [6]

A(x)=0(x) with [Je(x)=0.
The two-point-function is of the form

-1 1
W(zo,21) =W, (0)= W zz-
All the higher n-point-functions are built up from W,.
#,(z2)=0 n odd

Wonlzss o z2)= Y. Wiz, 2) .. Wiz, 15 23,) -
all
partitions i

This means for the four-point-function

Walts o) = s (e + : ¥ ol
SRR ot 188 T GO GG T GGG
As a normalized regulating function we can use
1
= — 2 2¢2 = .
0=-Crr =4 o

The assumptions (A) are trivially fulfilled. The Wick product is defined by

@(21) @(z5) = Wi(z; — z1) + :00(2,) (25): .
Hence we get
(@) @z + ) r()=1-02n 0@ o(z+0):.
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The properties of the Wick product [6] imply that for all { € R* the “regularized”
product ¢(z) ¢(z + () r({) is defined on _Z, (see Part 4 for definition) and analytic
in { if applied to a vector @ € #,.

Starting from the above example we can construct a whole class of examples-
namely all Wick polynomials in the free field ¢(x) with mass zero.

2) The exponential function of a free field with arbitrary mass in two dimen-
sions [7] ° 1

AX)=:e”(x)= ) T k:(x) with (O +m?) e(x)=0.
k=0 :

The restriction on two dimensions is necessary for the Wightman distributions
to be temperate. We shall denote the two-point-function of the underlying free
field @(x) by W,({) and the Wightman functions of 4(x) by ¥,(z) or V,({).

Y320, 21) = V() = exp {W,(0)}
V1@ = H vz, Zj)

0<i<j<n
e.g: VaQ) = Va(L) Va(Gy + 85) Val(ly + 85 + ) Vo) Valls +85) Va(ls)
1
Because of this factorization property, it is clear that »({):= —V(—C) defines
2

a normalized regulating function. By Wick ordering we get [7]
A(zy) A(z5) = V3(z5 — 21) 1 A(z,) A(z,):
A@2)Az+ )= Az) Az+0):.

or

Therefore A(z) A(z + () r({) has the domain _#, and is analytic in { for { e R* if
applied to @€ #,. For the functions F,,({) defined above we get F,,;({)=1.
Because of this we think of this example as a very typical one.

4. Operator Products

Up to here all statements and conclusions have been formulated in terms of
Wightman functions. Now we want to define operator products, specify their
domains, and characterize their analytic behaviour.

For this purpose we need the subspace ¢, of the space # of all Jost-states

defined by 4 e g
="

where ¢'?'# is the translation operator. This means
b (zq,...,2,)e ¢, ff D(z,—2z, ...,2,—2)€ F.

Theorem 4.
Alxy) ... Ax) ] rlx—x)

1si<js<l

exists as a sesquilinear form with domain ¢ x ¢ and is analytic in x,...,x; if
X1, -.0r X1 € U, (x) for some neighborhood %,(x)={x} + %,(0).
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Proof. Because of the structure of ¢ it is sufficient to prove the theorem for
the special states @,,(z')® @,(z")

A(X1 A(XI)HT(X l m(le "'sz;n)®¢n(zllli ""Z;:z)

i<j
= (Q A(Z,) ... AZ) A(xy) ... A(x) A(Z]) ... Az) Q) []7(x—x)
i<j
=Wt 10nZops «oes 215 Xt wees X1 245 s Z0) [ [ 1 (X = X2) -

L<]
But this is analytic in x, ..., x; because of Theorem 3.
Theorem 5. If zet then A(z)... A(z,)]_[ r(zj— z;) defines an operator with

domain ¢, and is analytic in z, ...z, if z; ... z,e%(z = {z} +%,0) for some
neighborhood %,(0).

Proof. 1) Let @ be the state A(z)... A(z,)Q2e #,. We can write the vector
Alzy) ... Az) [ [ r(zj— z) A(2)) ... A(z,)Q
i<j
in two ways with different regions of analyticity:

P,(0):=Az+{) A+ +0) . A+ G+ - +0)
[T G+ +HAE) ... Aiz)Q

2zigjsl

holomorphic in {;, ..., if {; ... {et] and 2§ —z—(, — - ={etf

D,0):=A+0+ - +0) . Az + () n H=0— - ={)
CAZ) ... A(Z)Q S

holomorphic in {;, ..., {;if{; ... ety and z+ ¢ + - +{ e, .
2) Theorem 3 tells us that the matrix element

(Q, AE) ... AG)AE) ... AG) [ rE-2)

i<j

A(zy) . Az) [T r(—2) A ... A(z;)sz)

i<j
is analytic in z; ...z, if Z, ... Z,€e %, (2) and in z, ... z, if z; ... z;€ U (2). (Z,, z; are
thought of as independent variables!) This implies

/_,O”‘pl(_‘f'lﬂ)— 2(_ ”2
—V%hr'}l_'o (dil& +in), @4 (& +in)) + (D, (& —in), Py (E—in)

— (@, +in), @5~ in) = (P2(E— i), Dy(& + i)} =0

because each term tends to the same limit. By the edge of the wedge theorem we
get that for all ¥ € 5#

(‘P, A(zy) ... Az) [] r(z;— 2) A2)) ... A(z;,)Q)

i<j
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is analytic in z,...,z if z,...,z,€ %(z). But weak analyticity implies strong
analyticity and the theorem has been proved.
As a more complicated problem we now attack the existence of the boundary

value .
+l;r;loA(x +iy+&) . Alx+iy+E) n r(&—¢&).

4 i<j

Of course it will be no longer an operator without smearing in the center co-
ordinate x !

Theorem 6. For &, ..., & € %,(0), %,(0) some real neighborhood, the product

Ax+&) . A+ E) [T r(€—8)

i<j
defines an operator-valued distribution (in x) over D(R*) with domain ¢ and is
infinitely differentiable in the relative coordinates &y, ..., ¢&,.

Proof. 1) We choose for ¥ the vector ¥ =A(z;)... A(z,)Q2 € #. Then there
exists a point ye V' such that z; —iye ;. Now by Theorem 5

Ax+E +iy) ..  Ax + & +1Y) H rE—E)Alzy) ... Alz,)Q
i<j
is an analytic vector-valued function in the relative coordinates &, ..., &,.
2) Let us consider the norm:

”A(x+ E 4iy) . Ax+ & +1y) H‘r(éj—fi)A(zl) A(z,,)Q”2
=(Q,A(Z,) ... AC)Ax+ & —iy) ... Ax+ & —iy) Ax+ & +1y) ...
A i) Az - AN TT IRE - EIP

i<j
Now we multiply with  [] r(¢— & +2iy) and divide afterwards by the same
expression IEINEY:

= {(Q,A(Z,,) A E =Y AKX+ E +1Y) . Az,)Q)

: n "(éj—fi) V(fi—fj)n ”(fj—éi+2i)/)} n r_l(fj—fi""ziJ’)-

i<j ij
The term between curly brackets { } has a finite value as ye V* goes to 0.
Therefore [ [ »~'(¢;— &; + 2iy) controls the growth of
ij

Jlim L ACe+E i) ACe+ G i) [T g = E) PR

i<j
But as stated in Remark 1 of Part 2 r~'(x +i0) is a distribution over 2(V,(0))
and therefore there is an inequality like

e+ inl <COA T if xe¥;(0).
By this we have proved
HA(X + & Fiy) .. A+ E +iy) l—[ r(éj_ él)q/H < C(yZ)—%qlz

i<j
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if &, ..., & €%, 0). This implies that
A(x+&) . A+ [T &= &) P
i<j
is a vector-valued distribution (in x) over 2(R*) if &,, ..., & € %,(0).
3) Now let D* be a differential operator on the components of &, ..., &. By
similar reasoning as in (2) we get

D*A(x + & +iy) ... A(x+f,+iy)nr(fj—éi)vfy] <CpH e,

i<j

where Q depends on the order of D* Therefore

D*Ax+&) . Ax+ &) [1r(&-E)Y
i<j
defines a vector-valued distribution over Z(R*) too.
4) So far we have proven that for ge Z(R*) and ¥ € # the limit

yAm [ DA+ & +iy) . ALt & iy) [Tr(g - &)Y

i<j
exists. If we can show that this limit is equal to
DaV}il}LO Fg)Ax+ & +iy) ... Ax+ & +iy) [ r(g—E) P
i<j
our theorem has been proved. But this problem is solved by the Appendix too.
These results can be extended in various directions:
a) One can enlarge the domain of definition in Theorem 6 such that it con-
tains states like
AR Az+ErO)Q, Cer0)

A(z) A(zy + &) r(&1) A(z) Az, + E) 1(E)Q, £, E,€77(0).

b) We can prove the locality of the operator products in the sense of sesqui-

linear forms on ¢ x £.
c) It is easy to derive from Theorem 6 a Wilson-Zimmermann expansion [8]
for arbitrarily high products. Let us consider the product of three field operators

as an example:
Az—8A@R) Az +n) r( &) r(€+n)rn)
acting on a state @€ #,,ze 1, is analytic for & ne %, (0) (cf. Theorem 5). The
boundary value
Alx — &) A(x) A(x +n) r(&) r(€ +n) r(n)

is an operator-valued distribution in x, infinitely differentiable in &, n for &, n € %,(0),
and has domain ¢ (cf. Theorem 6). Therefore we get the following asymptotic

expansion:
Alx — &) A(x) A(x +1)
o L1 g ey
Z m! n! r(é) r(é'*”’l) "(77) u:-..um,vl...vn(x)~

m,n=0

or
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The “composite operators” C,, ., . ., (x)are local [in the sense of (b)], opera-
tor-valued distributions with common domain £

Finally we should mention that the assumption (4) is too restrictive to be
considered seriously for more realistic Wightman theories. One should try to
start with a finite decomposition of the four-point-function

1

ACHONSES kzl un({3) Gl £2, G3) -
The functions u,({5) are analytic in t;, Lorentz invariant, and characterize the
possible singularities in (5. The functions G,({;, {5, {3) are assumed to be analytic
for { €13 x {tr{ U%,(0)}. Such an ansatz is suggested by the free fields and their
Wick polynomials.
This problem is still under investigation and has not yet been solved in a
convincing manner.

Acknowledgements. 1 thank S. Schlieder for suggesting the problem and his encouraging interest,
J. Kiihn and E. Seiler for many helpful remarks and discussions.

Appendix 1. Boundary Values of Functions Holomorphic in the Forward Tube

Let be
% CIR*" a connected open set

% CV," an open convex cone

n

3
Csi=Cn{yeR*"||yl<6} with PP=Y Y
_ k=1 p=0
%' a compact subcone. "

Proposition. Let f(z, £) be continuous for (z, &) e 1, x G. G CC*™ compact, and
N (f(z, &) holomorphic in z).

teG
For ge D(U) let us define

Fy(9,8):= Jdxg(x) f(x+1iy, £).

Then the following statements are equivalent : _
(A) Forallge 2(%) lin}) F,(9,£) exists and F,(g,{) is continuous for (y,£)e6;x G
y0 2 b s

for every compact subcone €' and some &> 0.
(B) For every compact set K CU and compact subcone €' C V' there are 5 >0,
M >0, and N>m=0 such that

|fx+iy, OIS forall (x+iy, &)e[K+i%;\N0}]xG.

™
For the proof of the theorem, we refer to [9].

Corollary. Let f(z, {) be an infinitely differentiable function in £ € GCR" and
let f together with all derivatives D, f fulfill condition (A) of the proposition. Then

forall ge 2(%) . .
i (D¢ (9, ) =D im (g, ).
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0
Proof. 1t is sufficient to prove the corollary for f and e f only. Without any

restriction we can assume that f depends only on z and ¢=¢&,. Let ge 2(%).
By assumption

(—QZ—F)( 9= [ dxgl) o flx+in, O
662 Xg9 T Xglx aéz 2 _X)

is continuous for (y, &) € €; x G. The mean value theorem tells us

F g, ¢+ &)~ F(g, &) A( )(g,@} (52 )(g,¢+@A)[

0¢? ),

2

2

. — 0°F & .
with 0 < ® < 1. But for every compact set KCé;x G '( T ) (g, &)| is bounded

for all (y, & e K. If we choose K suitably our corollary has been proved.

Appendix 2

Let F(() denote a holomorphic function for { et U{{ e C*||(|*> < 6%} which is
invariant under £ Then there exists a function F(0) holomorphic for 6 e C\[62 0)
such that F({)=F (CZ) F((?) is a holomorphic continuation of F(().

Proof. 1) By a theorem of Hall and Wightman [3] there exists a function F(o)
holomorphic in C\[0, co0] such that F(¢)=F((?) for { e].
2) F(o) can be analytically continued to ¢ € (0, §2).

Proof. a) For o € (0, 6%) let us define

L, =(V65)(1/3>0)

F(o):= F(C,).

and

Hence F(o) is continuous for o € (0, §2).
b) Let (0,7) two sequences with limit ¢ (0, §2) but Ims," >0 and Ima, <O.
As above we define

T
Ca,f—':=(1/§_") with arg]/——e

=limloy =C,.
o) By (1): F(o])=F((o;), Flo;)=F(lo,)
lim F(o})= limF({o,")=F (11331 ca,f) =F(o)=F(o).

This proves (2).
3) F(o) can be analytically continued to ¢ =0.
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Proof. By (1) and (2) F(o) is holomorphic in the open disk 0 < |o| < 62 But for
2

O<lol<y F@)|s sup |F(OIS max |F(O) <o

82 2
le2 < % 2=

because F({) is analytic for |{|*> < 6% and the maximum principle holds for F({).
2

. o A .
This means |F(o)| bounded on 0 <|o| < vy and therefore F(o) can be analytically
continued to g =0.
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