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Abstract.We shall try to define local field products under assumptions imposed only on the four-
point-function. This idea is based on the work of Schlieder and Seiler [1].

In our framework we shall prove that the two-point-function carries the strongest singularity
whenever two arguments in a Wightman function coincide. This will be generalized to the case when
more arguments coincide. We shall define "regulated" rc-point-functions and study their properties in
detail. This will lead us to the definition of arbitrarily high powers of the field-operators as operator-
valued distributions over ^(1R4) in the center coordinate with a dense domain of definition.

1. Introduction and Some Results Stated in [1]

Field products at the same space-time point lead to great difficulties in quan-
tum theories because of the distributional character of the field operators.

Schlieder and Seiler [1] define local products of two field operators under
assumptions imposed only on the four-point-function. We want to extend their
approach such that it includes local products of three or more field operators.
Our investigation is based on axiomatic quantum field theory [2] described in
terms of Wightman functions.

Let us first introduce some notations:

_Z:=(Zo,...,zn)eC
4<«+1)

C:=(C 1 ; . . . ,ς)e<C 4 « with ζ^zt-z^

("forward/backward tube")

("extended tube")

where L+(<C) denotes the proper complex Lorentz group. For πeSB + 1 (group of
permutations of {0, 1, ..., n}) we define

Cπ := (Zπ(l) — zπ(0)> > Zπ(n) ~ Zπ(«- 1))
/π(l) π(0) π(n) π(n-l)

= Σ C j - Σ C , , . . . , ΣO- Σ c,
\ J = 1 j=ί j=l j=l

("permuted forward/backward/extended tube") .

Based in part on the author's thesis, University of Munich, Germany, October 1974.
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Sometimes we shall decompose ζ in three parts:

C=(C,C;,C)

defined by

The real scalar field A(x) and the Hubert space 2tf are assumed to fulfill Wight-
man's axioms [2].

/ " \ -Φ(z0. ...,*„): = fexp i £ PkZk\A(pQ) ... A(pn)dp0 ... dpnΩ

is a vector-valued holomorphic function for

z0, Z! - z0, ..., zn - zn_1 e T!+ (cf. Jost's book [2]) .

We shall call Φ(z) a ,,Jost-state". The span of all lost-states will be denoted by /
and is a dense subspace of the basic Hubert space 2tf.

The assumptions made in [1] are:
(Al) There exists a function r(ζ) with the properties
a) r is holomorphic in τ/.
b) r(ζ) = ri^).
c) r is invariant under the homogeneous, real Lorentz group S£\.
d) r(ξ) e ®'(Φr(0)), w/zere .̂(0) is α reα/ neighborhood of the point OeC4 wzίft

respect to the Euclidean norm.
(A2) W4(ζl9ζ2^3)r(^3) nas an analytic continutation to the points τ^ x Wr(Q).
We shall call r a regulating function.

Remarks. (1) A theorem of Hall and Wightman [3] states that r is even in-
variant under the group L+((C). Further there is a function r(σ) holomorphic for
σ e <C\[0, oo), such that

r(0 = r(ζ2).

Property (d) implies

f(σ) 6 ̂ r(( — oo, ρ)) for some ρ > 0 .

(2) Condition (d) is equivalent to (e) formulated in [1] by the virtue of a
theorem given in the Appendix 1.

The crucial result on which we shall rely is the following theorem proved by
Schlieder and Seiler.

Theorem 0. Under the assumptions (Al) and (A2) all the Wightman functions
Wn+1(ζ)r(ζj) have analytic continuations to the points ζ/ = 0,

First we want to strengthen this Theorem 0.

Theorem 1. Under the assumptions (Al) and (A2) all the Wightman functions
Wn+l(ζ)r(ζj) have analytic continuations to the points

{£eIR 4 |£ 2<r 2}, (C.Oed for some r>0.
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Proof, a) For real, spacelike ζj and (ζ, ζ) e τ^-\ the point ζ = (ζ, ζj9 ζ) is in the
extended tube τ'n (cf. Jost [2], p. 84).

b) The case ζj e IR4, ζf = 0 is contained in the Theorem 0 because for every
δ >0 there exists a real Lorentz transformation A such that \Λζj\ < δ. (\ζ\ denotes
the Euclidean norm!)

c) By Lorentz invariance and because r(σ)eS>'((— oo, r)) it is clear that
^4(Cu (2* £3) r(Cs) has an analytic continuation to C1? £2 e τι+> £3 e ̂ J (O) (see a^so

[10]). This implies that the vector-valued holomorphic function A(z)A(z + ζ)r(ζ)Ω
has an analytic continuation to ζ e <%r (0) for every z e τ^ [1].

d) Now choose ζj e IR4 with 0 < ζ2 < r2. Without any restriction we can assume

Ho)
Consider the n-tuple ζ = ( ζ ί 9 . . . , ζn) and the permuted one

n-l

We are looking for a point C = (d ,...,(„) in the analyticity domain of
Wn+1(ζ) r(ζn) and for a complex Lorentz transformation A e L+(C) such that

ΛC^/tC^ζ. and (ζ,ζ):=Λ(ζπ,ζπ)ε<-ι

Suppose we have found such a point ζ. The analyticity domain is open and there-

fore there exist complex neighborhoods ^(Qc<C4 and Y'(ζ9ζ)Cτ^l such that

W n + 1 ( ζ ) r(ζj) is analytic for ζj E ̂ (ζ ) and (ζ, ζ) e τT(ζ, f).
For gf(Q e ^lR4n^( let us define

Because of the spectrum condition G(ζ, ζ) is analytic for (C, f) e T^. But G(£, 6 = 0

on i^(ζ, ζ). This implies G(ζ,ζ)=Q on τ^i. By the edge of the wedge theorem
WΠ+1(£) r(Q is analytic for ζj*e lR4n^(Q and fixed (ς 0 e d. By the generalized
Hartogs theorem [1 1] we get the analyticity in ζ for ζj E IR4 n tft(ζj) and (ζ, C) e τ^_ 1 .

e) For fixed zeτ^, A(z)A(z + ξ) r(ξ)Ω is a vector-values holomorphic func-
tion for ξ e ̂ .(0). Therefore there is a complex neighborhood <$O ̂ (0) such that
A(z)A(z + C) r(C)Ω is analytic for ζ e <%. If we write

we see that W n + 1 ( ζ ) r(ζn) is holomorphic if ζn e Φ, Cn-ι - z ε τ^, and C1? ..., ζn_2

For simplicity we fix z = z -* 1 .

f) Now we choose 0 < α < — such that

'CV
$•

cosα

0

0

z sin α

0

1

0

0

0

0

1

0

z sinα\
0

o
cosα/

ίc\ /ccosα\

lδj = l δ j + iί ^\csinα
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(c\This is always possible because U. e % and ̂  open. Define

/ccosoΛ / 0
ζn =\ * +M\ 0 / \csmα

and

This choice of ζ and ΛL fulfills the requirements of (d) by construction. This proves
our Theorem 1.

Remarks. (3) By complex Lorentz transformations we can further enlarge the
region of analyticity. Lemma 4 by Schlieder and Seiler [1] ensures the single-
valuedness of this continuation.

(4) By a trivial extension of the proof we can write £π, π e Sn+1 a permutation,
instead of ζ in Theorem 1.

2. Connection between r and the Two-Point-Function W2

In [4] de Mottoni and Genz argue that the two-point-function has the leading
singularity in an expansion of the products of two fields. We shall prove such
a behaviour in our framework.

Theorem 2. Under the assumption (A) there is even a function r'(ζ) with the
properties

(1) r' satisfies the condition (A).
(2) Define F'2(ζ): = W2(ζ) r'(ζ) then F2(0) = 1.

Remarks. (1) Theorem 1 states the analyticity off for ζeτ^u^O). Because
offz(0)=l

behaves like W2

 1 (ζ) and

like W2(ζ) for sufficiently small ζ 6 τ^.
These two relations imply that W2~

1(ξ) and r'"1^) are elements of 2'(
(2) The singularities in any n-point-function W n + ί ( ζ ) if ζj goes to zero cannot

be stronger than the singularity of W2(Q.
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Proof of Theorem 2. (a) F 2 ( ζ ) : = W2(ζ) r(ζ) is analytic for ζ = Q. As shown in
Appendix 2 there exists a function F2(σ) analytic for σ = Q with F2(ζ) = F2(ζ1).

(b) If F2 (0) = c φ 0 then with r': = — r our theorem has been proved.

[Because of F2(ζ) = F2( — ζ) the constant c is real!] Therefore let us assume
F2(0) = 0.

(cjJLemmal. F2(0) = 0 implies W4(ζ)r(ζ3) = Q for ζ^ = iη with η2 =0 and

Proof. Schwarz's inequality tells us

\(A(z)A(zl)A(z2)Ω9A(z)Ω)\^\\A(z)Ω\\ - \\A(z) A(zJ A(z2)Ω\\ .

Written in terms of Wightman-functions this means

C1? ζ2, C3)l2 ̂  W2(ί3) W6(ζl9 ζ29 C3, - C2, - Ci)
if ζ l5 C2 6 τi*" and £3 = ίyy e iF+. Because r(if/) is real we can multiply both sides

withr2(C3H|r(ί3)|2

\w4(ζl9 C 2 5 C3) KC3)I2 ̂  ̂ 2(C3) r(C3) ^6(d, C2, C3, - C 2 ? - Ci) KC3) .
For fixed d, C2 e TI

+ the functions W4(ζ l9 C2, C3) r(ζ3), ^2(ζ3) r(C3), and PF6(ζ1? C 2 ? ζ3,
— £2> — Cι)^(C3) are holomorphic in ζ3 within some (complex) neighborhood
^(O)ofOeC 4 _

Therefore the inequality remains true even for (3 e/F+n^(0). But F2(C3)
= W2(ζ3) r(C3) - 0 for C3 = 0 and C3 e iV+ n^(0). This proves Lemma 1.

(d) Lemma 2. For fixed (l5 C2 e τ^

2 (0) = 0 implies
1) F (£) = 0 /or C2 = 0

2) —2~ is holomorphic in

Proof. (I thank E. Seiler for this proof)

is holomorphic in ζ2, C for ζ Φ 0 and |ζ2| < |ζ2|. This implies

/(C2,o= f uc,±)(c2r
n=0

in this domain, where bn(ζ, ±) are holomorphic functions for ζ φ 0. (The + sign
in bn shall indicate that bn can depend on the choice of the branch of ]/V )
F(0 = 0 for C2-0, ζei7 + nΦ(0) by Lemma 1. This implies 60(ζ +) = 0 for
ζ e iIR3n(^'(0)\0). But the riemannian manifold of j/^2 is connected and there-
fore b0(ζ, ±)=0 for C φO. Lemma 2 follows by the continuity theorem for func-
tions of many complex variables [5], because there can be no singularities on
manifolds of real codimension > 2.



78 K. Baumann

(e) Lemma 1 and 2 together imply that if F2(0) = 0 then — r(ζ) satisfies
conditions (.4). If oo

then with

Theorem 2 is fulfilled.

Remark 3. Because of Theorem 2 we can always normalize our regulating
function r in such a way that F2(0) = W2(0) r(0) = 1. If r± and r2 are two normalized
regulating functions then there is a meromorphic function h with ft(0) = 1 and

This defines an equivalence relation.

3. Representation of the /i-Point-Functions

The first aim of [1] was to define the product of two field operators under
assumptions only on the four-point-function. But to our great surprise the as-
sumptions (A) are sufficient to make definite statements about the singularities
occurring in n-point-functions if an arbitrary number of arguments comes very
close together.

Let us define

0 ̂  i < j ^ n

= Y[ r(ζi 4- + ζj) with Ci — zί — zi -1 •> i = 1,..., w
and i^ί^j^n

0 ̂  i < j ^ n

Theorem 3. Fn + ί(ζ) has an analytic continuation to the point C = 0.

Proof, a) Properties of Fn+-L(ζ):
Combining the well established properties of Wn+1 and Rn+1 we get
(1) Fn+1(ζ) is holomorphic for ζ e IJ τ'nj7t and invariant under the group

πeSn+i

(2) Fn+ L(ζ) = Fn+ί(ζπ) for every permutation πeS π + 1.

(3) +lim Fn + 1(£ + iri)e&(\—Wr(Q)

b) Consequences of Theorem 1:
For every permutation πeSn+1 the function Wn+1(ζ_π)r(ζπtj) is holomorphic

for ζπ j e ^(0) and (Cπ, Cπ) e τ^i. Because of the analytic structure oϊRn+1(ζ) we get
(4) Fn + 1(ζ) holomorphic for ζπJeΦΓ(0), (Cπ, fjeτ^.
c) Idea of proof:
Fn+ΐ(ζ) is ̂ holomorphic in τn

+ and Fn + 1(ζπ) := FΛ + 1(- C n , . . . , - Ci) is holo-
morphic in τ~. If the boundary values Fn + 1(ξ + iQ) and Fn+1(^ —iO) are equal
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(in the sense of distributions) then by the edge of the wedge theorem, Theorem 3

has been proved. For this purpose we shall put in — (n — 1) — 1 other boundary

values between Fn+ί(ξ + iQ) and Fn + 1(ξ-iQ) such that by (b) every boundary
value equals its neighbor.

d) Definition of the boundary values :

Without any restriction we can choose ^(n)(0)c — ̂ .(0). Let us define for

(5)
The boundary value

(6) G ( Q π ) : = ^ l i ^

exists by property (3).

f) Lemma 3. Let π e Sn+ί be a permutation and τ — (j— 1, j) be the transposition
which permutes j — 1 with j then

(7) G(Qπ) = G(Qπoτ).

Proof. 1) By definition

C π o τ : = Z π°τ(j)~ π°τ(j-l) = π(j-l)~ π(j)

and therefore ηπoτ j= —ηπ 7 . This means

By property (4) Fn + 1(£) is holomorphic if ζκje<fy"\Q) and (Cπ,fπ)eτn

+

+ 1. Hence

(9^JS^oGfeJ%-^2) G(Qπ)^ lim f Urn Gfojl
^-I3(3^)τr-*0 [K+3^,^0 J

= lim lim

This proves Lemma 3.

g) Let π be the permutation

/O 1 2 n \

\n n-1 n-2 O / '

then ^π = (— CΠ, ..., — Cι) The theorem has been proved if we can show that
G(Q) = G(0π). But we can write π as the product

π = [(01) (12) ... (n- 1 «)] [(01) ... (n-2 n - 1)] ... [(01) (12)] [(01)] .

Now by applying Lemma 3 we have proved the theorem because

Corollaries. 1) By following the same line as in the proof of Theorem 3 we can
prove similar statements, e.g.:

a) W2n(ζ) r(Cι) KC3) ••• Kί2n-ι) has an analytic continuation to ζ1? ζ3, ..., ζ2n_1
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b) W n + l ( ζ ) r ( ζ j ) r ( ζ j - { - ζ j + 1 ) r ( ζ j + l ) has an analytic continuation to ζpζj+1

r(0), C1? . . . ,ζ j __ 1 ? ζ j + 2 ? •••' Cn e τι+ For more complicated expressions, analo-
gous results hold.

2) Theorem 3 gives the following representation of the π-point-functions :

1 ̂  i ̂  j ̂  n

w
By Remark 1 of Part 2 we can replace r~l by - in a small neighborhood f (0):

F2

W

But F 2

1 ( ζ ) is analytic for ζ = 0 and therefore the singularities of W n + 1 ( ζ ) are
controlled by those of f] f^2 (ζ .+ . . .+ Q.

1 ^ i 52 j 2Ξ n

This result is surprising, because assumptions (A) are conditions only imposed
on the four-point-function. Nevertheless, we get statements about all possible
singularities of ^-point-functions.

Examples. Perhaps we should illustrate our approach by two examples
1) Free field with mass zero [6]

A(x) = φ(x) with

The two-point-function is of the form

All the higher rc-point-functions are built up from W2.

) = 0 nodd

all
partitions i

This means for the four-point-function

„ . , . . „ , i ί i i i
(2π)4 ζf ζi (d + C2)

2 (C2 + C3)
2 (Ci + C2 + C3)

2

As a normalized regulating function we can use

The assumptions (A) are trivially fulfilled. The Wick product is defined by

φ(z1) φ(z2) = W2(z2 - zj + ̂ (

Hence we get

φ(z) φ(z + 0 r(C) = 1 - (2π)2 ζ2 :φ(z) φ(z + ζ): .
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The properties of the Wick product [6] imply that for all ζ e 1R4 the "regularized"
product φ(z) φ(z + ζ) r(ζ) is defined on /z (see Part 4 for definition) and analytic
in ζ if applied to a vector Φ e /z.

Starting from the above example we can construct a whole class of examples-
namely all Wick polynomials in the free field φ(x) with mass zero.

2) The exponential function of a free field with arbitrary mass in two dimen-
sions [7]L J co i

A(x)=:eφ:(x)= Σ yr :</:M with (Π + m2)φ(x) = 0 .
k = o k -

The restriction on two dimensions is necessary for the Wightman distributions
to be temperate. We shall denote the two-point-function of the underlying free
field φ(x) by W2(ζ) and the Wightman functions of A(x) by τΓn(z) or Vn(ζ).

^ + ife)= Π' r2(zi9zj)
0^i<j^n

e.g.: V4(ζ)= F2(CJ V2(ζ1 +C2) V2(ζ1+ζ2 + ζ3) V2(ζ2) F2(C2 + C3) V2(

Because of this factorization property, it is clear that r(ζ) : = defines
a normalized regulating function. By Wick ordering we get [7]

A(z1)A(z2)=V2(z2-z1):A(z1)A(z2):
or

Therefore A(z)A(z + ζ)r(ζ) has the domain /z and is analytic in ζ for ζelR 4 if
applied to Φε/z. For the functions Fn+1(ζ) defined above we get Fn + ί(ζ)=l.
Because of this we think of this example as a very typical one.

4. Operator Products

Up to here all statements and conclusions have been formulated in terms of
Wightman functions. Now we want to define operator products, specify their
domains, and characterize their analytic behaviour.

For this purpose we need the subspace /z of the space / of all Jost-states
defined by

$ -= JP'2 tf
(7 Z ' ^ <7

where eip'z is the translation operator. This means

Φn(zi9...,zn)e/z iff Φn(z1-z, ...,zπ-z)e/.

Theorem 4.
A(xί)...A(xl) Π Kxj-Xf)

l^ί<j^l

exists as a sesquilinear form with domain /^/ and is analytic in xl9 . . . ,x/ if
xl9..., xz 6 ̂ r(x) for some neighborhood Wr(x) = {x}
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Proof. Because of the structure of / it is sufficient to prove the theorem for
the special states Φm(z')® Φn(z"}

Λ(Xl) ... A(xl)l\r(xj-xl](Φm(z{, ...,zm}®Φn(z'i ...X))
t<j

: = (Ω, A(zm) . . . A ( z [ ) A(Xl) . . . A(xl) A(z'[] . . . A(%)Ω) f] r(Xj - xt)

But this is analytic in x l 5 ...,xt because of Theorem 3.

Theorems. // zeτf then A(zi) ... A(zl)Y[r(zj- zt) defines an operator with
i<j

domain /z and is analytic in zv . . . zl if z1 . . . zl e %(z) := {z} + Wr(Q) for some
neighborhood .̂(0).

Proof. 1) Let Φ be the state A(z() ... A(z'^Ωe /z. We can write the vector

A(Zl) ... A ( z l ) Y [ r ( z j - z i ) A ( z f

ί ) ... A(z'n)Ω
i<j

in two ways with different regions of analyticity:

- Π r(ζi+.. +ζi)A(z()...A(z'n)Ω
2^i^j^l

holomorphic in ζ l5 . . . , ζt if ζί . . . ζl e τ^ and z'1—z — ζ1— — ζt e τ^

A ( z { ) . . . A ( z ' n ) Ω

holomorphic in £ 1 5..., ζt if ζ1 ... ζl e τf and z-\-ζ1-\- 4- ζt e 1
2) Theorem 3 tells us that the matrix element

β,Λ(FJ... A ( z [ ) A ( z l ) . . . A(zJ Urfr-zj)

• A(z^ ... A(zl) Y[ r(zj-zi)A(z'1)... A(z'n}Ω

is analytic in zt ...zl if zv ...zte %(z) and in zί . . . zl if zt . . . zl e ^r(z). (zί? z{ are
thought of as independent variables !) This implies

— (Φ\(ζ + z/j), Φ2(ζ — ^/O) — (^2^>~ ??')»^ι(έ + y/))} — o
because each term tends to the same limit. By the edge of the wedge theorem we
get that for all Ψ e ffl

Ψ 4(7 } A(7\Tϊ r(? —*> Λ(zl) '- Λ\zl) I I r\zj
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is analytic in z1? ...,z z if zl9 . . . , Z j e tftr(z). But weak analyticity implies strong
analyticity and the theorem has been proved.

As a more complicated problem we now attack the existence of the boundary
value

vlϊm^A(x + iy + ξ1)...A(x + iy + ξl)Ylr(ξJ-ξύ.

Of course it will be no longer an operator without smearing in the center co-
ordinate x !

Theorem 6. For ξί9 ..., ξl e ̂ (0), ̂ (0) some real neighborhood, the product

defines an operator -valued distribution (in x) over ^(1R4) with domain / ana is
infinitely differ entiable in the relative coordinates ξl9 . . . , £ / .

Proof. 1) We choose for ψ the vector ψ = A ( z ί ) ... A(zw)Ωe/. Then there
exists a point y e V+ such that zί — iy e τ^. Now by Theorem 5

is an analytic vector- valued function in the relative coordinates ξί9 ..., ξt.
2) Let us consider the norm:

= (Ω,A(zn) . . . A(zί) A(x + ξt- iy) ...Aix + ξ,- iy)A(x + ξ,+ iy) . . .

...A(x + ξl + iy)A(z1)...A(Zn)Ω)Y\\r(ξj-ξi)\2.
ί<j

Now we multiply with Y[ r(ξj — ξi + 2iy) and divide afterwards by the same
expression i^U^ί

+ ξί-{-iy) ... A(zn)Ω)

• Π r(ξj - ξt) r(ξt - ξj) Π r(ξj -ξt + 2iy)\ - [] r~\ξj -ξi + 2iy) .
i<j iJ J i,j

The term between curly brackets { } has a finite value as y<=V+ goes to 0.
Therefore f] r~1(ξj - ξt + 2iy) controls the growth of

But as stated in Remark 1 of Part 2 r~1(x + iO) is a distribution over
and therefore there is an inequality like

By this we have proved
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i f ξ l 9 . . . , ξ l E *r(0). This implies that

is a vector- valued distribution (in x) over ®(IR4) if ξl9 ..., ̂
3) Now let Dα be a differential operator on the components of ξ l5 ..., ξz. By

similar reasoning as in (2) we get

where Q depends on the order of Dα. Therefore

defines a vector-valued distribution over ^(1R4) too.
4) So far we have proven that for g e ^0R4) and Ψ e / the limit

^ Hm Q J g(x) ITA(x + ξl+ iy) ...A(x + ̂  + iy) Π r(ξj - ξt) Ψ

exists. If we can show that this limit is equal to

our theorem has been proved. But this problem is solved by the Appendix too.
These results can be extended in various directions :
a) One can enlarge the domain of definition in Theorem 6 such that it con-

tains states like
A(z)A(z + ξ)r(ξ)Ω9 ξe^r(Q)

or
A(z,)A(zl + ξj r(ξ1)A(z2)A(z2 + ξ 2 ) r ( ξ 2 ) Ω , ξl9 ξ2 E τTr(0) .

b) We can prove the locality of the operator products in the sense of sesqui-
linear forms on / x /.

c) It is easy to derive from Theorem 6 a Wilson-Zimmermann expansion [8]
for arbitrarily high products. Let us consider the product of three field operators
as an example:

acting on a state Φe^^zeτ^ is analytic for ξ9ηe^r(0) (cf. Theorem 5). The
boundary value

A(x- ξ)A(x)A(x + η) r(ξ) r(ξ + η) r(η)

is an operator- valued distribution in x, infinitely differentiable in ξ, η for ξ, η e Φr(
and has domain / (cf. Theorem 6). Therefore we get the following asymptotic
expansion :

A(x~ξ)A(x)A(x + η)

» 1 1 ξ>»...ξ»» ηΊ...η>*
~m,f=0 ml nl r(ξ)r(ξ + η)r(η) "«-^.v-^ >'
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The "composite operators" Cμι _μm > V l ...Vn(x) are local [in the sense of (b)], opera-
tor-valued distributions with common domain /.

Finally we should mention that the assumption (A) is too restrictive to be
considered seriously for more realistic Wightman theories. One should try to
start with a finite decomposition of the four-point-function

The functions uk(ζ3) are analytic in τ^, Lorentz invariant, and characterize the
possible singularities in £3. The functions Gk(ζί9 ζ2, £3) are assumed to be analytic
for ζ e τ j x {τf u^r(0)}. Such an ansatz is suggested by the free fields and their
Wick polynomials.

This problem is still under investigation and has not yet been solved in a
convincing manner.

Acknowledgements. I thank S. Schlieder for suggesting the problem and his encouraging interest,
J. Kϋhn and E. Seiler for many helpful remarks and discussions.

Appendix 1. Boundary Values of Functions Holomorphic in the Forward Tube

Let be
^ C IR a connected open set

# C Vn

+ an open convex cone

^:=^n{j;eIR4«||j;|<<5} with M 2 = Σ Σ Wl 2

_ / c = l μ = 0

<$' a compact subcone.

Proposition. Let f ( z , ξ ) be continuous for (z,ξ) e τ^ x G. G CC4m compact, and

Λ (f&ζ) holomorphίc inz) .
ξeG

For g e @}(tft) let us define

Then the following statements are equivalent:
(A) Forallge@>(%) lim Fy(g,ξ) exists and Fy(g,ξ) is continuous for (^,ξ}

for every compact subcone #' and some δ > 0.
(B) For every compact set K C % and compact subcone #' C V% there are δ > 0,

M > 0, and N 9 m ̂  0 such that

M
MI^- far all

For the proof of the theorem, we refer to [9].

Corollary. Let /(z, ξ) be an infinitely differ entiable function in ξ e G C ΪRm and
let f together with all derivatives Dξ f fulfill condition (A) of the proposition. Then
for all g G &(<%)

\im(Dξ_F\(g,ξ) = Dξ Km^(0, 0 .
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Proof. It is sufficient to prove the corollary for /and ——/only. Without any

restriction we can assume that / depends only on z and ξ = ξt. Let
By assumption

~ FJ (g, ξ): = J dxg(x) -j^f(x + i£, ξ)

is continuous for (j;, ξ)eΉδx G. The mean value theorem tells us

fdF_

\dξ
Δ^_2

with 0 < Θ < 1. But for every compact set K C Wδ x G (sΛ) is bounded

for all (y, ξ) e K. If we choose K suitably our corollary has been proved.

Appendix 2

Let F(ζ) denote a holomorphic function for ζ e τ^ u {ζ e C4 | \ζ\2 < δ2} which is
invariant under &\.. Then there exists a function F(σ) holomorphic for σ e(C\[(52, oo)
such that F(ζ) = F(ζ2). F(ζ2) is a holomorphic continuation of F(ζ).

Proof. 1) By a theorem of Hall and Wightman [3] there exists a function F(σ)
holomorphic in C\[0, oo] such that F(ξ) = F(ζ2) for ζeτ(.

2) F(σ) can be analytically continued to σ e (0, δ2).

Proof, a) For σ e (0, δ2) let us define

and
F ( σ ) : = F ( ζ σ ) .

- 0
'U

Hence F(σ) is continuous for σ e (0, δ2).
b) Let (σ*) two sequences with limit σe(0, δ2) but Imσπ

+ >0 and Imσw~ <0.
As above we define

with arg 1

c)

σ*) = F Aim ζσ*} = F(ζσ) = F(σ) .
n \ n I

This proves (2).
3) F(σ) can be analytically continued to σ = 0.
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Proof. By (1) and (2) F(σ) is holomorphic in the open disk 0 < |σ| < δ2. But for
δ2

|σ|<^ |F(σ)|^ sup |F(0|g max \F(ζ)\ < ao

because F(ζ) is analytic for \ζ\2 < δ2 and the maximum principle holds for F(ζ).
δ2

This means |F(σ)| bounded on 0 < |σ| < -— and therefore F(σ) can be analytically
continued to σ = 0.
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