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On the Tonization of Crystals
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Abstract. We provide a lower bound for the energy required to ionize an “electron” from a finite
crystal of low density and we show that the bound is independent of the crystal size. The electrons
interact with each other and with the fixed positive charges by short range interactions from a suitable
class of potentials.

I. Introduction

In this article, we prove the following assertion; let Hy,(N, a, m) be the Schro-
dinger operator for M spinless “electrons” of mass m in the presence of N fixed
“protons” regularly arranged in a finite lattice with lattice constant a. Assume
that the electrons are either Bosons or Fermions and assume that they interact
with one another by a positive, short range continuously differentiable potential
vg(x;— x;) and interact with the protons by —uv4(x; —y;). Here, x; is the position
of the i-th electron and y; is the position of the j-th proton. Then H,,(N, a, m) has
a ground state eigenvalue 1,,y uniformly isolated from the continuous spectrum
for all N and M < N if a and m are sufficiently large. Hence there is a g >0 such
that for all N and M < N, dist (43,5, 04 n) = g Where o,y 1S the continuous spectrum
of Hy,(N, a, m).

The quantity g is a lower bound for the work function familiar from the
photoelectric effect, i.e. the amount of energy required to ionize an electron from
the crystal. The fact that the work function is non-vanishing insures that the elec-
trons do not spontaneously escape from the crystal, regardless of the crystal size.
Thus the result is related to the more general problem concerning the stability
of solids.

Let us now outline the strategy of the proof. By Hunziker’s theorem [1, 2],
the infimum of the essential spectrum for H,,(N, a, m) lies at inf,,. _,, {inf spectrum
H,, (N, a, m)}. We make the inductive hypothesis that this infimum is actually
Ay—1,n 1€ the ground state for the Hamiltonian with one less electron. It is
therefore natural to consider the tensor product of the corresponding ground
state eigenfunction y, _, y (not necessarily unique) with a one particle trial
function ¢ and to try to show that the energy expectation value for the tensor
product is bounded above by 4,,_; y—g. This would establish the existence of
discrete spectrum for Hy (N, a, m) below 4,,_; y—g and therefore the existence
of a ground state eigenfunction v,y corresponding to A, = infspectrum
Hy/(N,a,m). The induction then proceeds to M < N. However, there are two
modifications to this strategy.
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The first modification comes about in considering the tensor product of
Yu— 1,y and the one particle trial function ¢. In the case of the electrons obeying
Fermi statistics, the tensor product should be antisymmetrized. In order to avoid
difficulties arising from matrix elements complicated by the antisymmetrization,
we first multiply y,,_; y by a symmetric factor n(x;...x,,_ ) so that the resulting
function vanishes whenever any of its variables lies in the support of ¢.  is con-
structed so that the norm of #y,,_; y is near one.

The function ny,,_; y is further modified by a unitary operation which shifts
the variables of #1,,_, y a small amount in a lattice site where the one particle
density o(x)= [dx,...dxy _|wy_1 5% X,,...Xy_)|* is small. The reason for
such a shift is seen by the following heuristic argument: In the limit as a, m— o
we expect o(x) to become highly concentrated about each proton position with
weight about equal to 1/N. If M is approximately equal to N, the potential seen
by an additional electron situated at x near one of these positions (say y;) is

—v4(x—y)+(M—1) fop(x —x)o(x)dx"~ —v,(x — y)
L M=1)

N vR(x —yy)

which may be insufficient to bind this additional electron for M~ N— oo (ie.
the attraction is cancelled by the repulsion). We find however that if vy y,
and hence p, are shifted slightly in the site of the additional electron, it will bind
with an overall decrease in energy by g or more. This local shift approximates
the polarization of the M — { electrons due to the introduction of an additional
electron.

In Section 2 we give the precise statement of the theorem along with its proof,
which we discuss in Section 3. An Appendix is included giving simple criteria
under which the hypotheses of the theorem are satisfied.

II. The Main Theorem and Its Proof

The class 7~ of admissible two body potentials is the set of pairs v = (v, vg)
of continuously differentiable functions on [0, c0) such that

¥+ v,(r), vr(r) >0 and monotonically decreasing to 0 in r.

¥, At infinity, v ((r), vg(r) < Cr~ 37 for some C, 6 > 0.

Y50 lim diln vg(r)=0.

r— 0 r

¥, There exist numbers r, > ¢, > 0 such that

sup3 'UA(lxI) —v4(]x +7oe ) +vr(lx +(ro +&0)e; l)l —v4(80)< —9 <0,

xe R

where e, is a unit vector. We also identify
vr(x) =vg(lx]), v4(x)=0,(x]).

We show in the Appendix how to construct functions which are in ¥".
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Our Hamiltonian H,,(N, a, m) depends on v e ¥~ and on the parameters
N, the number of charges ~+ 17,

M, the number of charges “—1,

a, the lattice constant,

m, the bare mass.

Let y,,...yy be N different points on the unit lattice Z> CIR®. The “electron-
proton” attraction is defined to be

Vep(M, N, a) f —ay;). (1)

“MZ

Here, the x, are the coordinates of the quantum mechanical “electrons”, and the
ay; are the fixed positions of the “protons™ for lattice constant a. The “electron-
electron” repulsion is

Vee(M) = + Z vR(xj_ x,), 2
M2j>k21
and the total Hamiltonian is
A
Hy=Hy(N,a,m)= — Z };’ + Voo(M, N, a)+ V(M) 3)

ji=1
acting on #,, = P(L,(R*)®™), where P projects on the symmetric subspace if the
“electrons” are Bosons and on the antisymmetric subspace if they are Fermions.
We may omit the proton-proton repulsion since it is only a function of N and
not of M. Our main result is the following theorem.

Theorem 1. Given ve ¥ there are constants a,, m, and N, such that for all
lattice constants a = a,, masses m=m,, integers N=N,, and M <N one has
inf spectrum H,,(N, a, m) < inf continuous spectrum H,, (N, a,m)—q, for some
q,>0.

Remark. Our best estimate for g, in the limit as a, m— oo is a g of condition 77.
Note also that for ve ¥ the continuous spectrum coincides with the essential
spectrum.

Proof. Throughout the proof we let y,, y =1, be a ground state eigenfunction
for Hy (N, a,m) (no confusion will arise by suppressing sometimes the N, a,m
dependence), and let 1),y be its corresponding eigenvalue. The proof starts by
reducing the assertion to an induction argument in M. As was remarked in the
introduction,

inf cont spec Hy, , (N, a,m)= inf {infspec H,..(N, a, m)},
M <M

by Hunziker’s theorem [1,2]. We make the inductive hypothesis on M that
inf cont spec Hy, (N, a,m) =74 y<0,

(4o,x is defined to be zero), and that the theorem holds for M’ < M. It follows that

we must show
inf spec Hy . 1(N, a, m)é/‘LM,N—qus “)

for some g, >0, independent of N, a,m, M <N for sufficiently large N, a, m.
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In the case M =0 let ¢(x) be a normalized function with support concentrated
around one of the N protons. Then the expectation value (¢, H, (N, a, m)@) is
strictly less than zero uniformly in N, a, m for m sufficiently large. Thus there are
eigenvalues A, y uniformly less than zero and the induction starts. We now
proceed to the proof of inequality (4).

We start the proof of Theorem 1 with a geometrical lemma. Given y,...yy€Z?
and q, define A to be the union of the N lattice cubes of side a with centers ay,,
...ayy,and let S,, ... Sy be the cells of Ay. Let gy, ... g be positive densities on R*
with fps dx g; < 1. Let ¢, = 5, dx0;.

Lemma 2. Given ¢>0, there is, for each N sufficiently large, a cube S; C Ay
such that

1+e
Qoioé N 2

L
0 S ;VS, i=1,2,..K.

Proof. Let o> 1 be given and define ny(c, j) to be the number of cells in Ay for
which ¢;, <a/N. Then ny(«,j) = N(«x—1)/o. If not, then ny <N(x—1)/o and the
remaining N —ny cells with ¢;, = a/N would have total weight at least

(N—nN)% >(N—N(a—1)/oc)—§7— -1,

which is impossible. In particular

&
1 0O)=N
nN( +8’ )_ 1+£9
1+e 21 +e)—e .
2 | Z2N———F—— =1,...K.
”N( e ”)- Yi+e 7

To complete the proof we make the inductive hypothesis that the number of cells
my, satisfying the first j+ 1 inequalities of the lemma simultaneously is

Ne¢
R —
msz 21(1+8) ’

which is the case for j =0, by inspection. Then

. 14+e .
mNj+1>mNj+nN(2J+l - aJ)—N

Ne 2 4 g)—¢ Ne

> — : —N=———.
=201 +e¢) V(1 +¢) 2 ({ te)

. N o -
In particular, myg = ?‘TTL which is greater than 1 for N sufficiently large,

(1+e)

so there is at least one cell with the asserted properties. q.e.d.
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By 7, there is an ¢ > 0 and an integer k such that

(1 +a)# sup v (x)— v (x +roe)+ vg(x + (ro + &o)ey)l
(k—1—8) xeR3 5)

_UA(80)<_g<0a

and we fix now ¢ and k to such values. We also fix M £ N and we omit the sub-
script N whenever possible. Let y,, be a normalized eigenfunction of Hy,(N, a, m)
with eigenvalue infspec Hy, (N, a, m). We define the following four normalized
densities on R3:

om(x) = [ lpp(x, x5, ...xM)lzdxz cdxyy, (6)
lgrad, v, (x, x5, ... xp)|> dx,...dx,,

— 7
Twlx)= ] lerad, vy 2 ’ )
v (x) = Jor(x —x5) [pplx, x5, ~--3‘M)|2 dx,...dxy ®)

M Foley = x5) lwag(xy, X5, o xp )P dxyodxy,
Vaga(x) = JvRa(x_xl)IWM(xl’"'xM)lzdxl"'dxM )

e FoRa(x =X ) [pp(xy, .. xp)P dxdx, .. dxy,

where

Vra()=0 if r<a/4, 10)

Vra(r)=vg(r) if r=za/4.
By Lemma 2, there exists an S; C Ay, provided N is sufficiently large, such that

1+¢

Cmio S~ (11)
oS 2D (12
Vagio S 4(258) , (13)
iy S D (14

Refer now to Fig. 1. We divide the region S, into k subregions or wedges s, ... s,
with wedge axis passing through the center of S, and pointing in the x‘*-direction.
The wedges have opening angle 27/k. It is evident that for one of these subregions,
say s;, we will have the inequality

1+¢

[ dxe=—

550C S

(15)

Refer now to Fig. 2.
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Assume that new coordinates are chosen as shown, so that the wedge opening
is symmetrical with respect to the x* =0 plane and with edge running along the
x®)-axis. Let #,(x) be a piecewise continuously differentiable function on R* with
the properties
prope no(x)=1 on R>—(s; n(D,UD,)), (16)
7o(x)=0 in the openset O C(s; N(D,uUD,))

.. (17)
containing p,

and 7, interpolates linearly otherwise. The maximal derivative of 7, is independent
of the lattice constant a for a large enough.

We next define a diffeomorphism f on R? (also depending on a) which approxi-
mates the polarization of the charges due to the introduction of another particle
at po. It has the properties

F1) fis the identity on (R*— S, )uDj;, (18)
F2) fO9(x)=xY for j=2,3,1 (19)
F3) fmaps D, onto D, uD, and it maps no point from the exterior

of O into O, (20)

F4) sup |[f(x) — x| <r, and in the region R,
f(’;) =x +eWr,, where 'V is the unit vector in the positive (21)
xW-direction ,
F5) 09oVf0>0 and 09fV-6;,; as a—c0.
By F35), f will satisfy an inequality of the form

f(x) —f(») = (x =y =K (a) [x — yl, (22)

with K ((a)—0 as a— co. Property F5) and an inequality like (22) hold for the
inverse mapping f~ 1.

M
We extend now 7, and f to operators 7 and U acting on L,(IR*™). Let n =(X) 1,
be the multiplication operator acting on all variables of L,(IR**) simultaneously
M

and let U =(X) U, be the unitary operator on L,(R*™) where U, acts on L,(R?)
by the unitary action

Uop(x)=1/0f '(x) d(f ' (x)), $eL,(R?), (23)

and where 0f ! is the Jacobian. Let ®(x) be a C? function with supp @ concentrated
about p, and contained in @ and || @] =1. Let A denote the antisymmetrical
tensor product when the electrons are Fermions, and the symmetric tensor
product if they are Bosons.

Lemma 3. (Uny,,) (x,,...xy) =0 if any argument lies in 0. Also

@ A Unpy, “1?:2( rv+ 0y = [[Unyy, ”1242([113’") (24)

k—1—c¢
= llﬂWM||£z(m3M)Z Tk

U fWPis the j-th component of f.
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Proof. The first assertion follows by inspection from the definition of , and Uj,.
The equality of norms is then a consequence of the normalization of @ and of the
fact that U is unitary. Finally

Imwa* 2 lwal* =M [ dxydxy s, o)l
sj, xRIM 1
M(1+¢) - k—1—¢
kN T k ’

>1

by the inequalities (11) and (15), which proves the lemma.
We now estimate the energy expectation value for the trial function @ A Unyp,,.
Using Lemma 3, we find

(¢ A Uana HM+ I(N, a, m) D A UanM)

@ A Unypyll®
Y ,Hy(N,a,m)U
:( e ﬁl”fw IIZ) A +(®, H (N, a,m)®) (25)
M
v 2
+Wfdx1...dxM+1|<P(x1)UmpM(x2,...xM+l)| vR(x; —x,).
M

The idea is to undo the effect of the U transformation in the first term on the
r.h.s. of Eq. (25), which we consider now.

Lemma 4. One has

(Unwy, Hy(N, a,m)Unpyy) (
= Aun 1Py I*— M(ana {UA(f(xl) _a."io) — v,y — a}’io)}VI‘PM) +70(a, m),

where yo(a, m)—0 as a, m— oo, uniformly in N, M < N.
Proof of Lemma 4. We begin with the kinetic energy part of the Lh.s. of Eq. (26).

With the notation d, = grad,, it is
M M
— o, U 2= 2 27
100Uy 7= — =110, Uonpa[1*, 27)

where U, acts just on the first variable. A simple calculation yields
Uy, o™ U,
=U;! (—a(ﬂ‘/la/f@ U, + i Us H((0Wf 1) =6, ) Uy 4 0® . (28)
j=1
=Gy + Z G, 0V +o® .J
Here, G, and G, jkj are just functions with support in S; . Let y,(a) and y,(a) be

bounds for G,; and G, ., j, k=1, ...3, respectively. By Condition F5) on f, y,(a)
and y,(a) become arbitrarily small as a— c0. By Eq. (28),

110, Ugnwaell? = 11 Ug 0, Ugnppg 1> = 1011wy, 1> + 74(a) , (29)
with

[PR@ =397 | Ponrall> + 67172 [ Ponwagll 1| Pody g (30)
+ 61 | Ponacll 1 Po0inpall + 3?% ||P001111,UMH2 + 67, ”P051’71PM”2 >



On the Ionization of Crystals 183

where P, is the characteristic function in the first variable for §; . Now

[ Podynpnll = | Po(01m)warll + [[Pon 0y wagll

31
t+e\'2  [2+2e\'? G
= oynll o N~ | Tl N [019all s
by the inequalities (11) and (12). We now use
1 1
101l = {ar, Harpan) = (Waes Ve (M)Pne) = (wars Vee (M)}
(32)

< — {AMN"‘MSUP ) UA(x_aJ’,)} = sup z va(x —ay;).

j=1

We have used the induction hypothesis 1,y <0, and 7). The r.h.s. of (32) is
uniformly bounded as a— oo, by ¥5. Inserting (32) into (31) and applying (11)
and (31) to (30) and (29), we obtain the estimate

M M
Est. 1. — 0, Unyy|? = 18,y + (. m) where p(am)=0 as

a, m— o0, uniformly in N and M < N.
We next consider the V,, matrix element contained in (Unyy, Hy Unyy).
We have

(Unpar, Vepo(M)Unpyy)

= (1> Vep(M)Npag) + (ag, {U ™ Vo (MU — V., (M)} 1)

= (s Vep(MINpag) = M(nwag, {Ug M0,4(x1 — ay; ) U —v,4(x; — ap;) ny)
-M Z (e {Us "o (xy —ay)U —v4(x, — ay)inw) -

i¥ig

(33)

The last term on the r.h.s. of Eq. (33) is bounded in absolute value by

2M(1 +
2M0+e) sup Y, v,(x—ay,) < const/a’,
N xeSi, i * io

using inequality (11), assumption 77, and the fact that Uy 'v,(x; —ay;) U,
—v4(x, —ay,), i+i, is zero unless x; €S, . Hence this term can be made arbi-
trarily small for a— co. Thus

Est. 2.

(Uan’ ep(M)UanM) (anM’ ep(M)nlpM)
— M, {0a(f(x,) —api) —va(x; —ay ) nwu) +7ep(a) ,

where y.,(a)—0 as a— c0.
The V,, repulsion matrix element of (Uny,,, Hy, Uny,,) is equal to

(Unpags Vee(MYUnpag) = (9ar, Vee(M)1py)
M(M — ,
+ ~——~—j dxy .. dxy [npy(xg, . X)) (VR(fF(x) —f(x,) —vR(x; —x3)) . (34)

We will establish the following lemma.
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Lemma 5.
[or(f(x 1) = f(x,)) — vr(x; — x,)| < c(@) vg(x; — x,) (35)

where c(a)—0 as a— 0.
Postponing the proof of the lemma for the moment, we apply it to the second
term on the r.h.s. of Eq. (34), whose absolute value is therefore bounded by
cl@M(M —1) j dxy ... dxy |npy(xy, .. X)) [P vg(x, — x3)
Sio X R3M~1)
4(1+¢)
eN

SclagM(M —1) jdxl e dxp Inpa(xy, "'xM)lz vr(xX1 —Xx3)

< o0 049

8
(wars V(X1 — X2) W) S cla) (l;]- )

N
M sup Z valx—ay;)
* =1
which tends to zero as a— co. We have used inequality (13) and the fact that the

expectation value for V. is less than the expectation value for ¥, ,, because 4,y <0
and — 4 = 0. Therefore we have shown

Est. 3. (Unyag, Ve (M)Unwag) = (19ar; Vee (MIYar) + 7ee(a), where yee(a)—0
as a—0. (36)

Proof of Lemma 5. We shall show: For every ¢ >0 there exists an a < oo for
which the assertion holds with ¢(a) = c¢. Let ¢ >0 be given. By condition #7 on vg,
there exists a x, = 2r, so large that

[vR(x)/vR(x) = & (37
for x = xy, — 2r, where o >0 is a fixed number satisfying
2ar, exp(2ary) =c. (38)
Then on integrating (37) we obtain
Vr(x £+ 2rg)vr(x) < expary) for x=x,, (39)
and so
xt2ro xt2ro

[og(x £ 2rg) — vR(X)| =

| dyv;(y)’ga | dva(y)!

40
= 2ary exp (2org) vr(x) Scvg(x) for x=x,. (40)

Thus, for [x — y| = x,
[vR(f(x) — f(y)) — vr(x — y)|
=|vg(f(x) —x —f(y) + y + x —y) —vp(x — y)| (41)
= IUR(Ix =yl £2ry) —vg(x _.V)] Scog(x—y),

where the first inequality holds by #7 and by F,. The plus or minus sign is selected
according to whichever makes the bound larger. This proves the assertion (35)
for [x — y| = xo = x,(c).

Now suppose |x — y| < x,. Since vy, is differentiable,

[vr(x)/vg(x)| Sy forall x. 42)
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Choose now a so large that K (a) < 1 and
%o K p(a)xq exp (2o K (a)x,) < c, 43)

cf. Eq. (22). Then by an argument similar to that for |[x —y|=x, we have for
|x —y| <X,

[or(f(x) —f()) — vr(x = ¥)| = [0R(f(x) = f(¥) —x + y + X — y) — vg(x — y)|

<|or(lx — vl £ K (@) Ix — yl) — vg(x — )|

<o K (a)x, exp (O‘oKf(a)xo) vp(x —y)<cog(x —y)
and this proves Lemma 5 (all cases).2

We return to the proof of Lemma 4. From Est. 1-3 it follows that

(Unya, Hy Unwy) (44)
= prs Hunpa) — M(nwae, {va(fCer) — ayi,) = va(xy — ayi)inpa) +v3(a, m)

with y,(a, m)—0 as a, m— 0. Since y,, is an eigenfunction for Hy, (by the induction
hypothesis), we have that [3, p. 458]

M
(TYaes Hynon) = Ayew I 12 + 1@ &

(45)
M (1+¢8)

o 2
m N ”617’1”00 s

S Aun [M9ar ”2 +

byinequality (11). The assertion of Lemma 4 follows now by inserting (45) into (44).
We now continue the analysis of Eq. (25) and we pass to the term

(@, H{(N,a,m)®). It clearly approaches —uv,(p,—ay;) as a,m— oo when the

support of @ is chosen highly concentrated about p,, i.e. we have the estimate

Est. 4.
((D, H{(N,a, m)(D) = —v,(&0) +y,(a, m) (46)

where y,(a, m)—0 as a, m— 0.
Finally, we analyze the last term on the r.h.s. of Eq. (25). The numerator
can be estimated by

M [dxdx,...dxy |®(x)Unpy(xy, ... xp)|* ve(x — x,)
=M [ ...+M |

x1€S,, x1e R3\S;,
=M j dx, ~-dxM|’7U’M(x1w--xM)’2 v(f(x1) = po) (47)
x1€8,,

+M SuP¢fdx1 cedXp (X, ~~xM)|2 |UR(f(x1)—x)—vR(f(x1)—p0)|

xesupp

+M [ dxy . dxy | P(x ) Unpp(xy, .. Xppp )P og(xy — x5).

x26€ R3\S;,
2 An inspection of the proof of Lemma 5 and of Theorem 1 shows that a uniform gap exists also

d
if /75 is replaced by 773: rlLrg o In vg(r) = oy, with 2a; 74 exp (20, 70) <(9/v4(0)) (/8(1 + &)).
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The second term on the r.h.s. of (47) is bounded by
M (1+e)

Sup [oR(f(x;) — x) — vR(f(x;) — po)l

which goes to zero in the limit of the support of @ becoming highly concentrated
about p,. The last term of (47) is bounded by sup I(x) where I(x) is defined by
xesupp

Ix)=M [ dxy...dxynpy(x, ... x0)7 op(x —x). (48)

x1eR3\S;,

Let D, be a cube of fixed side length d independent of N, a, m, M containing
supp @, and contained in D, UD,. Then for a sufficiently large,

[dxI(x)<M [ dxdx;...dxy|wy(xy, ... X)) vra(x — x;)
Do M

Do xR
: ?%ﬂfd dxl dlewM(xl’”’xM)IZURa(x—xl)
8(1 +s) 8049 ¢ v,
URa

by inequality (14). Thus there is a point p, € D, such that

8(1+e¢) j

I(py) < e dx vg(x). (49)

lx|za/4
Furthermore, I(x) satisfies a differential inequality,
[0I(x)] S M [dxy...dxy [npy(xy, ... X)) [OvR(x — x|

Sog fdxy.odxy npy(xy, ... xy)|? vp(x — xy)

Sopl(x),
by inequality (42), so that

I(x) < exp ([/3 dog)I(p,), for xeD,. (50)

Therefore

Mfdxdxl x| P(x)pg(xy, -'-xM)l2 vR(x—x;)

<M 8(”8) xp (|/3 doto) dx vg(x) 51)

|x1>a/4

which goes to zero as a— co. We thus obtain the estimate

Est. 5.
M [dxdxy...dxy |Px)npy(x,, ... xp) | ve(x — x,)
=M | dx;...dxy|npy(x;, X)) vR(f(x,) — po) + 72(a, m)

x1€8i,

where y,(a, m)—0 as a, m— co.
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We insert the estimates Lemma 4, Est. 4, Est. 5, and Lemma 3 into Eq. (25)

and obtain

(P A Unwy, Hy i (N, a,m)® A Unpy,)
[ A Unwpll®

SAunt+ (an’ Po{v,(x; — ay;) — v4(f(x,) — a.Vio) + UR(f(x1) - Po)}’W’M)

s
—v4(80) +7(a, m)
M1+ ek
Sount N(k(——l—)_ay Sgp [0.4(%) = 04 (f(%) + vr(fx) + 0 V)| — v4(20) + 7(a, m)
=1
Here, P, is the projection onto S;. By F4), the sup is bounded by

'SIUP [04(x) — 04(x +1roe™) + vg(x + (1o + 80)e™)] +7'(a)
x| §

where y'(a) = vg (g— —ro) +uy, (i —ro—so) —0asa—oo0.

8
Therefore,
, M (1+¢k
A S Aun+ N (k—i1-2o) sup [v4(x) = v (x +70e") + vp(x + (ro + 0)eV)]
—v4(80) + 7" (@, m)
Shyn—9g+7"(a,m), by (5)
with y”(a, m)—0 as a, m— oo, and this proves inequality (4) and hence the Theo-

rem 1.

II1. Discussion

In this section, we add some further remarks to the main result. One might
ask why neither the Coulomb case nor the finite range case (i.e. the case of a
potential with compact support) are covered in this paper. We feel that the main
difficulty in handling these two cases lies in the fact that one needs more specific
information about the eigenfunction y,, of Hy(N, a, m) than its mere existence
(which is all we have used). In particular, we do not know the charge density
distribution, which should be concentrated around the proton sites. In the finite
range case, for essentially the same reason, we have no control over the increase
in repulsion as the charges are moved slightly by the transformation U. To our
knowledge, no appropriate rigorous results are known about the shape of ground
state wave functions for the Hamiltonians in question, so that without further
work on this problem, the geometrical Lemma 2 concerning families of probability
distributions seems to be the only available tool.

Finally we note that some local singular behaviour of the potentials can be
accomodated: If v,, vy satisfy the hypotheses of our theorem and the particle
mass and lattice spacing imply that the conclusion of the theorem holds, then there
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is also a uniform gap under the perturbation v, — v, + v5", vg — vg + V3" provided
the I’2(R%) norms of v5i"¢, vii"¢ are sufficiently small. The proof of this remark is
effected by use of a Sobolev inequality with which one estimates the expectation
value for a contribution to the potential energy in terms of the kinetic energy
expectation value. We do not know of a decomposition of v, =vz= Yukawa
potential into singular and continuous parts for which a uniform gap can be
shown.

Appendix

The set 7~ contains pairs v =(v,, vg) With v, =vg (=7V).
Lemma. Let w(r) =0 be a monotonically decreasing function, and let
i) wFr)=0 iff r=ry,
(i) w(ry)=w(0)/3,
(i) w'(0)=0,
(iv) —a<w’'(r)<—-b<0 for r<r; and 2b>a.
—r,

r
Then there is a constant g(w) >0 such that for ry= and some small ¢ >0,

A(x, y): = (/x> + 1) — o)/ (x +70)? + 1) + o)/ (x + 1o +&)* + y?)]
— () < —gl).
Proof. (I) Let |y|=r,. Then

2w(0)
3

A(x, y) S o(ry) + o(ry) —we) = —w()=—a,;<0

for ¢ >0 small enough.
(I1) Let |y|<7,,x=%(r, —7,)+& Then
Ax, y) So()/x* +y) —0@E) S 0Fr, —r) - o) = —a, <0

for ¢ > 0 small enough, since r; £7,.
(1) |y|<ry, x=< —(ry —1,). Then

Ax, Y) S o)/ (x+ro+8)* +y*) — o)
S —r)—e)—wE)=<a; <0

for ¢ > 0 small enough.
av) lyl=sr, } _
—(ry—r)ExZ30 —1y) +e

Then |/x* 4+ y* <r;, and hence in this region for &> 0 small (iv) holds.
(IVa) sup A(x, y)=4(x,0).
yeER

Proof. We show ﬁdy‘ A(x, y) =0 iff y = 0. Indeed

A= {w’q/m) ICAVACR A el ot B (x+ro+s)2+y2)}
dy >y y l/X2+y2 1/(x+ro)2+y2 l/(x+r0+8)2+y2 .
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But —za<w'(z) < —zb by (iv) for 0<z<r, so that { } £2b+a<0 and (IVa)
follows.
(IVb) So we have to show

4 (0= —a,<0.
xeR

But

£ ro 2

A(x,0)= [dé [ dno’(x+ E+n)+o(x+&) —wE) < —a'rob—i—a% <0
0o 0

for ¢ small enough, so that 4(x, y) < — g(w) <0 as asserted.

Corollary. Let V(x)=w(x)+ y(x) with w(x) satisfying the hypotheses of the
Lemma and

@ 0<y(x)=g(w)/4
(il) y(x)ZO(1)|x|7>7°
(ifi) lim In y(x) =0.

Then v=(V, V) satisfies the hypotheses of the main theorem.
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