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Abstract. Contrary to the eleven-parameter group consisting of Poincare-transformations and
dilatations, the group of so-called special conformal transformations can act on the Minkowski
space M4 only as a local conformal Lie transformation group.

We show that the universal covering space M 1§S IR x S3 of the compactified Minkowski space
M4 gj? S1 x S3, together with an appropriate metric g on it, form a suitable Lorentz manifold (M, g)
that admits universal covering group SO0(2, 4)/Z2 of the "conformal group" of M4 as a transitive
Lie transformation group. This group respects the causality notion on (M,g) usually defined on a
Lorentz manifold. However, (M,#) possesses only seven isometrics in contrast to the well-known
ten isometries on the Minkowski space M4, which correspond to conservation of energy-momentum
and angular-momentum.

§ 1. Introduction

Many papers have been written discussing conformal invariant quantum field
theories (QFT) (cf. [27, 30] and the references quoted there). Some crucial funda-
mental questions, especially the compatibility of the group of conformal trans-
formations with the notion of causality as usually defined on a Lorentz manifold
(cf. [33], [9]: Chapter VI), are either bypassed by considering another space-time
e.g. the Euclidean space-time with definite metric [17], or simply ignored by
considering the "group of infinitesimal conformal transformations on Min-
kowski space M4" instead of the "group of (finite) conformal transformations
on M4", which does not exist.

The "Euclidean procedure" would be more satisfactory, if the equivalence of
the Wightmann QFT (which is formulated essentially in M4) with the Euclidean
QFT (cf. [21]) can really be guaranteed without additional assumption [5].

As to the second approach, we want to stress that the meaning of the "group
of infinitesimal special conformal transformations on M4" is somewhat different
from the meaning of the group of infinitesimal Poincare transformations on M4.
The special conformal transformations/can be considered on Minkowski space
only as a local group of dίffeomorphisms1. It can be defined as a global transformation
group on compactification of M4 (denoted by M4 resp. M4 below) [7,23,25],
but in that case no global causal structure can be defined. However there is still
a local causal structure which can be lifted to a global causal structure if one con-

* Supported by the Bundesministerium fur Forschung und Technologic.
** Present address: Institut fur Theor. Physik, University of Bern, Bern, Switzerland.
1 i.e., roughly speaking, each element consists of a group element of the special conformal group

together with a domain of definition which is not the whole Minkowski space. Therefore this set is
not a group in the usual sense. For an exact definition see (6.5).
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siders the universal covering space JVl_of^ompactifϊed Minkowski space. On this
space the universal covering group SU(2, 2) of the "conformal group" SO0(2,4)/Z2

of M4 acts as transitive transformation group which conserves the causal ordering
and allows a conformal metric g (i.e. metric up to a positive factor) which is
invariant under the mentioned transformations. There are some attemps [19,
28, 30] to establish a well-defined conformal invariant theory that is compatible
with causality on M.

Since the space (M, g) has no constant curvature it does not admit ten Killing
vector fields. We show that it admits at most seven such fields in contrast to ordinary
Minkowski space where we have the ten Killing vector fields corresponding to the
conservation of energy-momentum and angular-momentum.

This paper is organized as follows: In § 2, we start witrrthe fourfold covering
SU(2, 2) of the "conformal group" of M4. The action of SU(2, 2) on M is derived
in § 3, where we shall also give the explicit transformation laws of the subgroups
D, f, L, C on M. These two sections are based on the papers of Schaaf [26] and
Rύhl [25]. In § 4, the metric structure of the spaces M, M4 and M4 are considered.
A Lorentz metric g that is compatible with the conformal structure of M gives
rise to the Lorentz manifold (M, g). The isometry groups on (M, g) are investigated.
In § 5 we first recall some concepts of causality on Lorentz manifolds that are
well-known in general relativity. The conformal invariant causality notion on M
is then confirmed. In the last section, we make some remarks about conformal
theories formulated on different Lorentz manifolds. In § 6.1. we find out that the
reason for the causality violating property of the finite special conformal mapping
c on M4 is simply because c is not even a homeomorphism of M4 onto M4.
In § 6.2., we make some remarks on the notion of "the group of infinitesimal
conformal transformations" on M4. In the last § 6.3., after some discussions, the
question concerning the usefulness of (M, g) as a physically meaningful framework
for a conformally invariant theory is considered, cf. [16].

Some notations used in this paper come from certain texbooks [14, 31]. We
denote the vector space of real rc-tuples x = (x1,..., xn) with the bilinear form

s n

b"s(χ, y): = - £ x'V + £ xV, 0 ̂  5 ̂  n ,
i=l j=s+l

by IR". IR" (or the space isomorphic to it) then has signature (s, n — s). By a Lorentz
metric in a four dimensional manifold we mean a metric of signature (3,1). The
summation convention shall be used throughout the paper. The indices {p, q,r...}
shall run from 1 to 4; {z,j, fc...} shall run from 1 to 3; {μ, v,...} from 0 to 4 or 5.
The subscript "0" in SO0(2,4) shall denote the identity component of the group.

§ 2. The Universal Covering Group SU(2, 2) of Conformal Group SU(2, 2)
and Its Subgroups T, C, D, L

2.1. The Group SU(2, 2) and the Universal Covering Group SU(2, 2)

The group SU(2,2) consists of the complex unimodular 4 x 4-matrix H
satisfying

= G, G=i J, d e t H = + l , (2.1)
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where E: = I is a 2 x 2-unit matrix. Using 2 x 2-blocks A, B, C, D, H can be

written as H = \ . The constraint (2.1) leads to the unique polar decomposi-

tion of Graev [8, 26]
0ιW

where z: = £ D~ 1 belongs to the generalized unit disc

£>(2,2): = {z|0^zz+<£H{z|0^z + z<£}; (2.3)

Nl:=(i-zz + ) ~ 1 / 2 , W 2 : = ( l -z + z)~1 / 2 are positive definite 2 x 2-matrices

/eίx \W; E SU(2), ί = 1, 2; Ω! (x) = Ω2 (x) = Z is a positive definite Hermitian
matrix. \ /

The group law HH' = //" of SU(2, 2) in the above parametrization H = ZUΩ

ΓeadS ZUΩoZ' U'Ω' = Z" υ"Ω" , (2.4)

where the explicit forms of Z", £7" and Ω" can be found in [26], § 2. (2.2) implys
that D(2, 2) can be identified with the homogeneous space SU(2, 2)/S(l/(2) ® 17(2)).

Denoting the center of SU(2, 2) by Z4: - ~ ° , v4 - e2ίn/4E, n = 0, 1, 2, 3 1, the

group element H e SU(2, 2)/Z4 acts as the automorphism of D(2, 2) by

1 -
, z') : - (Azf + B) (Czr + /))" x .

The seven-dimensional boundary dD(2, 2) contains the so-called Shilov boundary
S [25], which is a four-dimensional subset of 3D(2, 2) consisting of all unitary
2 x 2-complex matrix s:

) |5+-5- 1}. (2.6)

By analyticity, the invariant action of SU(2, 2)/Z4^n_Sjs also given by (2.5).
The element H of the universal covering group SU(2, 2) is of the form (Z, [/, x),

where xeIR and Z, U are given above. The group composition law of SU(2, 2)
is given in [26] by

(Z, U, x) o (Z', £/', x') : = (Z", EΓ, x" : = x + x' + F(Z, Z'uΩ(x})) , (2.7)

where Z", U" are given in (2.4) and

F:D(2, 2) x D(2, 2)-*R, F(Z, Z'): - /(z/+) - - f(z+ zf]

:-Imtrln(£: + zz / +)

is of class C°° with range in the open intervall ( — π, + π). Furthermore, we have

^/(-'+) = det(E + zz/+)/|det(£ + zz / +)|-:ω(zz / +) (2.9)

and
det z(z, M) = (ω(zu+))2 detw, for u e 17(2) .



160 Tjoe-hian Go

2.2. The Subgroups D,L,T,C of SU(2Γ2)

Using the results of [25], we can readily write down in (A, B, C, D)-language
the various subgroups of SU(2, 2) corresponding to

Cation: 6- ; (2.104
\— Shρ£

(A B

= - j\C D

where

, 2 = - j > D - o , jt (2.10b)

det aμσμ= +1 and σfc are the usual Pauli matrices

translation: = , Γ = ίμσμ, (gelR4; (2.10c)
Z —

and special conformal transformation:

„ IE-iC/2 ίC/2

The corresponding universal covering subgroups D,L,f,C can easily be obtained:
we merely have to translate the (A, B, C, D)-language into (Z, U, x)-language by
computing z = B D~1, N1=(E —z+z)~1/2 etc. We shall not give the explicit
forms of them here.

§ 3. The Action of SU(2, 2) on the Universal Covering Space $
of Compactified Minkowski Space $

3.1. The Transformation Law and Some Group Properties of SU(2, 2)
as Lie Transformation Group on S

It is clear that the universal covering space of S = £7(2) is SU(2) x IRt^ΰ S3 x IR,
where the homeomorphism Φ is given by

n4σQ + ίnkσk. (3.1)

SU(2) inherites the natural C°°-structure of S3 via Φ. With respect to which,
Φ is a diffeomorphism. We shall denote the C°° -manifolds SU(2) x IR and S3 x IR
by the same symbol S. Likewise, S shall also inherite in the standard unique way
(cf. [31] Lemma 1.8.23iii) the C^-structure of $ via the local homeomorphic
covering map

p:S-+$, s = (u(n\τ)^u(n)eiτ (3.2)

so that p becomes a local diffeomorphism.
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Our task is to define a mapping /ίeSU(2, 2): S->$ such that it not only
guarantees the commutativity of the following diagram

SU(2Γ2) x S 3 (h, S)f->ft(S) e S

{p |p Jp (3.3)

where h(s) is given in (2.5), p by (3.2) and p by

,2), (Z, U,x)^ZUΩ(x), (3.4)

but also satisfies the conditions of being a Lie transformation group of S.
Let 5 e S with det s = e2ί\ then s = (se~l\ τ) e S. We define h(s) as follows:

(3.5)

where z, ω, / are given in (2.5), (2.9) and (2.8) respectively. By means of (2.10),
(3.1) and (3.5), the action of the subgroups D,L, f, C of SU(2, 2) on S can be
computed. , .

Let h = p(h) = ZUΩ(x)= eSU(2,2) corresponds to ΛeSU(2,2). We

rewrite the action of SU(2, 2) on $ given in (2.5) by

h: $->$, 5 - u(n)eίτ^sh: = (As + B) (Cs

where Fh(s): = det(C5 + D). Introducing Nh: = \_(Kl}2 + K^]1/2 we thus obtain
(teishγ

l2 = e"F~h

lNh.
Rewriting (3.5) also for $,

^:S-^S, (n, τ)h>(κ', x + τ + /(z(W(n)e")u

+

Ω(3C))) , (3.7)

it then^ follows that rip^Kp

hN^ eS3, p = l,...,4, while for ^eSΪJ(272), /fe),
ζ];: = z(ft)(M(n)eίτ)II"β(x), is computable with the help of its equivalent form /(zz'+)
= ImΣf = 1 ln(E + hE)9 where {AJ are eigenvalues of zz' + .

We give the results of our computations :
The eigenvalues λ® 2 for C# are

can therefore be given explicitely as a series
00 sin T V

f(ζβ)= X (thρ)v - [(π4 + i|«l) v + (w4-i|«l)Ί (3.8a)
v=l V

The same can also be done for L-subgroup, because the expression within the
square-root in the eigenvalues of CL

Af 2 = e-«[- J' n± ]/J2-(Jf n)2] ,

J: =(aQ

RaR + aQ

IάI-aR x α^/detX,

J':=J + (2άRx α j/det /I), det ^L : = (4)2 + αf
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is semi-positive definite that can be seen by means of the homomorphism A
mapping SL(2, (C) onto L\. The more practical form of f(ζz) is however

/(C£) = Imln(l-2ie- ί r J ' n-e-2 ίV2/4).

We note that it does not depend on n4-variable. Likewise,

/(ί?)=Imln

(3.8b)

-(t t)R,
4 |K 2 | 2 V ' ' ' ' * V 2 ί

(3.8c)

Λ - 2 i τ

/(Cc) = Im In 11 + i —rΓ (n4((Λ'2 - iR\)R\ + ic2) + iR'2c n) - (c - c)l

where (3.8d)

1 are given by

KD = n
(3.9a)

L = i(e"-e~ίτ)detA J + n(aR aR + aj Uj)

+ 2d,(dj π) + 2άR(aR n) + 2a°R(d! x n) + 2a°,(n x ακ)

= (eiτ ~- i(eίτ - e~ ") -̂ - + w4 1 + - +t n
4 2 2

(3.9b)

(3.9c)

2

-c c _
T"

c c
— c π

c

y (3.9d)

(3.8) and (3.9) are the explicit group transformation law of SU(2,2) on S.
The center Zc of SU(2,2), consisting e.g. of elements of the form,

Έ 0\ IE 0

0 E ' 10 £
, 2πn , neZ, (3.10)

is infinite (cf. [11] p. 239). It is obviously sufficient to guarantee the transitivity
of SU(2,2) on S. SU(2, 2) does not act freely on S,2 since there is a subgroup
{e} x Spin (3) C SO0(2) x SO0(4) of SU(2,2) (cf. [11] p. 347) that leaves a point
(τ, n) of S invariant. §U(272)/ZC

 (3~4) SU(2,2) acts effectively on $ which can be
2 The author is indebted to Dr. D. Mayer for discussing this point.



Conformal Invariant Theories 163

seen from the existence of the isotropy subgroup of the point (τ, nl, n2, rc3, n4)
= (2π, 0, 0, 0, 1) 6 $, which is given by the 1 1 -parameter group

[(L(g)D)χ)C]/Zc. (3. 11 a)

It is isomorphic to the isotropy group of the corresponding point [77] = [(77°, η1,
...9η\ η5)-] = [(0, . . . , 0, 1, 1)] in M4 (cf. § 3.2. below),

(L(χ)£)χ)C. (3. l ib)

That SUpT?) does not act linearly on $ depends on the fact that S '§? 1R x S3 is
not a flat Euclidean space.

§ 3.2. The Connection of the Transformation Law of SU(2, 2) on $
wzίft the Transformation Law of SO0(2, 4) on IM4

To see the connection of the transformation law of SU(2, 2) on $ with the
well-known transformation law of conformal group SO0(2, 4) on e.g. M4 ~p S1 x S3,
let us consider the following homeomorphism

φ:$-+M4: = Q5/IR+,

el'τw(rc)κ>[>7] ΞΞ [fo°, £ ??4, ?75)] : = [(sinτ, n, n4, cosτ)]

where QQ is the isotropic quadric in the space ΪR4\{0}

Qg: = {^elRS\{0}|&J(ι/^) = 0}, (3.13)

and 1R+ is the equivalent relation

η*η' iff η' = ρη, ρ e l R + . (3.14)

As before, we have equipped M4 with the ΐp-induced C°°-structure of S to obtain
a C°°-manifold M4.3

The induced action of SU(2, 2) on M4 is then given by

M = [(sinτ, n, n4, COST)]K>[^;] = [(sinτ7, n', ri4, cosτ')] (3.15a)

where n' are given in (3.9) and

fa'°, ̂ '5) = (Re, ImK^1^- (sinτ', cosτ'). (3.15b)

One readily verify that the usual transformation law of SO0(2, 4) on a six-di-
mensional space (cf. e.g. [12]) up to a multiplicative factor N^ 1 would be obtained,
if we do not consider the point η as a representative of the equivalence class \r\~\.
The appearance of JVΛ~ 1 is clearly necessary to warrant that the mapping does
take place from S1 x S3 onto S1 x S3.

3 There is still another compactification of M4, i.e. ίVί4: = Q0/IR0, where the equivalent relation
IR0 is given byη^η' iftη' = ρη, η eIR\{0} [7]. M4 is therefore twofold covered by M4. The difference
of M4 §? S1 x S3/Z2 and M4 can at best be seen from their different first fundamental group: π^M4)
^Z, πl(M.^) = Z x Z2, where the group Z x Z2 has a nonabelian group structure, since Z2 acts as
inversion relative to origin, while Z acts as translation [3]. We shall only consider JM4 in the sequel.
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§ 4. The Universal Covering Space IM
of the Conformally Compactified Minkowski Space M4

4.1. The Space M and Its Relation to M4 as Well as M4

To get a space corresponding to $ which is on the same footing as the dif-
feomorphic image of $, i.e. IM4, let us consider the bijective mapping

y:S->Ht (τ,^)h->j;:=(τ,^]/α2 + τ 2), (4.1)
where

Ml: = {y 6 IRij | b5

4(y, y) = - α2, α = const > 0} 'g 1R x S3

is a hyperbolic subset of IR^. We provide H4 as usual with the y-induced C00-
structure of $. y then becomes a diffeomorphism while H4 turns out to be a
paracompact regular submanifold of IR^ that shall be denoted by M in the
sequel.

According to the discussions above, the local diffeomorphic covering map
pί :M->M4 is given uniquely by

pί:M->M4, (τ, ̂ ]/α2 + τ2}±->[_η]: = [(sinτ, np

9 cosτ)] . (4.2)

In contrast, the Minkowski space M4 is identified in [7] merely as a homeo-
morphic image of a local chart (Uκ, φκ) of M4,

φκ:Uκ^ΪR4πφκ(Uκ), MH>(X"): =(η"/κ), κ:=η4 + η5*Q,

where the domain of φκ is an open dense subset of M4 corresponding to $\JN of S,
N: = {s E SI at least one eigenvalue of s = — 1}.

§ 4.2. The Lorentz Metric Compatible with the Group of Conformal
Transformations on M, M4 and M4

It was shown in our previous paper [6] that the metric

g: - (dη° ® dη° + dη5 ® dη5 - dηp (x) dηp)/r2, r2: = ((η°)2 + (η5)2), (4.3)

where ημdημ = Q, is a pseudo-Riemannian metric on M4 (and M4 as well). By
using e.g. the parallelizable vector fields on M4 (cf. [2] Proposition 7.3.2), it can
easily be verified that the metric g given in (4.3) is compatible with the group of
conformal transformations4 SO0(2, 4) on M4, i.e., for h e SO0(2,4), we have

(h*g')\[η] = (r/rf)2g\[η] (4.4)

where g':=g\[ηΊ, \_rf~] = h\_η] eM4. With the aid of the differentiate covering
map p l 5 the uniquely determined lifted metric g = p*g on M is readily found:

g = dτ®dτ-dnp®dnp, np dnp = Q. (4.5)

The transformation law given in (3.5) ensures that g is compatible with "SU(2,2),
i.e. we have an analog relation to (4.4) for g\

(4.6)

4 See footnote of Eq. (4.9).
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where

Equations (4.4) resp. (4.6) imply that the isometry subgroups of SO0(2,4) resp. of
SU(2, 2) on M4 resp. on M are given by the seven-parameter SO0(2) x SO0(4)
resp. 1R x Spin (4) (cf. [11] p. 347). The spaces therefore do not have the maximal
possible ten parameter isometry group of a four-dimensional manifold. This is
because they are not spaces of constant curvature, i.e., the metric does not fulfill
the following equation

Rμvξΰ(x)=-K(gvξ(x)gμe(x)-gμξ(x)gve(x))9 x e M ,

where RμvξQ is Riemannian curvature tensor, K = const, (cf. [24], § 13.7).
If f(y) is a positive C°° function on M, then f(y)g is a metric which is con-

formally equivalent to g. The dimension of the isometry group of f(y)g obviously
depends on f ( y ) 5 . We want to see how the number of isometries varies with /.

First of all we remark that we mainly want to study a SU(2,2)'-invariant
theory on the whole M, and therefore the positive C00 function / should also
well-defined everywhere on ]M. This excludes, for instance, the case of an Ein-
stein-de Sitter space which is conformally equivalent to a proper subset of (M, g)9

because in this example the corresponding function / is not well-defined every-
where on M. (cf. [9] § 5.1-§ 5.3, and [24] § 16.3.) We remind also that / must
clearly be a homogeneous function of degree zero in the ^-variables, cf. (4.3).

Having / well-defined on the whole M, Eq. (4.6) then implys

, £eSU(2^. (4.7)
f(y) r'

Equation (4.7) implys that the number of isometries of the metric f(y)g cannot
exceed the number of isometries of g9 i.e., seven. (In using Eq. (4.6), one occasionally
notices that the 15-ρarameter SU(2, 2) constitutes the conformal Lie transforma-
tion group of maximal dimension with respect to the 4-dimensional Lorentz
manifold (M,#), cf. [13], p. 143, Theorem 6.1.)

To be physically meaningful, one still has to impose another conditions on
the set {/}, this shall be done in § 6.3.

The well-known Minkowski metric

'g = dx° (x) dx° - dxl ® dxl (4.8)

can be obtained via the local diffeomorphism

from the conformal metric g given in (4.3) in a suitable local coordinate φx:[f/]
H>(X°, ...,x3)eM4 relative to appropriate basis vector fields in TM4. The
group of isometries is the ten-parameter inhomogeneous Poincare group IO0(1, 3),
while the automorphisms of the CO(1, 3)-structure on M4, which is in 1-1 -cor-
respondence with 'g (cf. [13] p. 9 Excercise 2.6), is obviously the eleven-parameter

The author is indebted to R. Haag and J. E. Roberts for reminding him of this important point.
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group IO0(1, 3)(χ)D1, D1 being the 1-parameter dilatation. Since the so-called
special conformal transformation c given by

c:xμεM4^xfμ:= * + C * ' * , χ χ:=(χ°)2- V (x1)2 (4.9)
σ(x c) ί=1

σ(x; c): = 1 + 2c x + (c c)(x x)

is not a diffeomorphism of M4 onto itself, the group of special conformal trans-
formation on M4 does not exist, c can only be considered as a conformal map-
ping6 on M4, since the relation

formally holds, where 'gm, = 'g\m, if m' = c(m) e M4.

§ 5. The Conformally Invariant Causality Property of (IM, g)

5.1. Some Concepts about Causality on a Lorentz Manifold and
the Stable Causality of (M, g)

It is well-known (cf. [9] and the literatures cited there) that a local causal
structure can be defined on a four-dimensional connected Hausdorff differentiable
manifold M by assuming.

i) there is a Lorentz metric (at least of class C2) on M, and
ii) M is time-orientable.
(For precise definition of time-, space-, and topological orientalίty of a con-

nected pseudo-Riemannian manifold (M, g\ cf. [31] p. 341.)
For a four-dimensional space-time M, the Lorentz metric g of signature (3,1),

i.e. ( —, —, —, + ), gives rise to some extra structure on M. The tangent vector
X W Φ O at a point m e M can be divided into three classes: Xm is called timelike,
lightlike or spacelike if gm(Xm, Xm) > 0, = 0, or < 0 respectively. The timeorien-
tability of M then enables us to decompose the subset P of timelike tangent
vectors of TmM into two separated sets: Those labelled by "future-directed" (P+)
and those by "past-directed" (P_), P = P+ u P_. In a similar way, we say that a
piecewise smooth curve fc:/ClR->M is timelike, null or spacelike curve, if its
tangent vectors k'(t) are timelike (k'(t) E P), null (fc'(ί) e dP) or spacelike (fc'(t)
e Tk(t)\P) for all ί e /. A curve k is called causal iff it is timelike or null curve. On a
Lorentz manifold M, a point p E M is said to be in the past (resp. strictly in the
past) of another point g e M, denoted by p < q (resp. p <^ q), if p can be connected
to q by a future-directed causal curve (resp. by a future-directed timelike curve)
/c:EO[0, 1]->M with fc(0) = p, k(i) = q.

One of the properties of the metric thus ensures that the time labelling can be
carried out in a continuous way locally. (The reason for the (at least) C2-proρerty
of the metric is the field equation it has to satisfy in general relativity. This however

6 Cf. [13] p. 9 Excercise 2.6, [31] p. 79 and [22]. A differentiable map Λ:(M,0)->(M',0') of
pseudo-Riemannian manifolds is called conformal mapping, if there is a function A on M such that
g ' h ( x ) ( h χ X , h χ Y ) = λ(x)gx(Xί Y), for all x e M ; X, Y eTxM. If the inverse map h~l exists, i.e. if λ(x)
never vanishes, and is also conformal, then h is called a conformal diffeomorphism. If h is a conformal
diffeomorphism of (M, g) onto itself, then h is called a conformal transformation of (M, g).
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shall not be treated here.) But whether the time labelling can be carried out con-
tinuously over the whole manifold depends on the global connectivity property
in relation to the null cones. In this connection, it seems also physically reasonable
to demand that M shall not admit closed timelike curve. This forced us for instance
to abadon a compact Four-Lorentz manifold as a possible domain of a physical
theory, since it is known that a compact Four-Lorentz manifold admits a Lorentz
metric iff its Euler-Poincare characteristic vanishes (cf. e.g. [29] p. 207). Even if
this is the case, every such compact Four-Lorentz manifold has closed timelike
curve [1,4].

We call a non-compact Four-Lorentz manifold causal, if it contains no closed
causal curve. It turns out that the strongest causality property is the so-called
stable causality: A non-compact manifold M is stably causal, if there exists an
open set of metrics (in C°-topology as section of T*M(x) T*M) which are causal
and contains the given metric.

To see if a non-compact Four-Lorentz manifold is stably causal, we quote a
theorem due to Hawking [10]: A non-compact Four-Lorentz manifold is stably
causal iff it has a time function. By definition (cf. [31] p. 339) a time function on an
open subset U of a Lorentz manifold M is a smooth real-valued function / such
that g(grad/, grad/) — + 1, if the Lorentz metric has the signature (3, 1).

It is easy to see that the space (M, g) is time-, space-, and topologically orient-
able, since the linear holonomy group of the simply-connected (M, g) is contained
in the isometry group SO0(2) x SO0(4) of g (cf. [31] § 3.4).

Since f(y): = τ is a time function on M relative to the metric g given in (4.5),
(M, g) is therefore stably causal.

5.2. The Conformal Invariant Causal Structure on (M, g)

From the last section it is clear how to define the causal relationship between
the points of M. The future-directed (resp. past-directed) tangent vector

Λ Λ

yy dτ dnp

at a point y e M is defined by b° > 0 (resp. fo° < 0). Yy is timelike, lightlike or space-
like according to gy(Yy, 1̂ ) >0, =0, or <0 respectively.

To obtain a conformal invariant causal ordering, it is clear that
i) the division of tangent space in three parts and

ii) the "future-directed" (resp. "past-directed") property of a timelike or a
lightlike tangent vector must remain invariant under the action of conformal
transformations given in (3.5).

The first point is clear following (4.6). The second point amounts to showing
that for heSV(292):y1^y29 h*Yv = Y2 with Y—ffid/dτ + bξ d/dn% e TyM,
the equality

(5.1)

holds, where b°2 = (&?(! + d/dτ) + b{ d/dnp}f(^ h e1SU(2Γ2)! But since the trans-
formation law (3.5) imply s that the derived mapping p1# is compatible with the
action of 'SU(2Γ^Όn TM and the action of SU(2, 2) on TM*, we get
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where p^Y^ [(p )̂, ά}d/dη"]] e T^,M4. (Notice that p^d/dτ\y

η5d/dη°-η°d/dη5)~] e T[?7](]M
4), [ιj] =p1(y). We remind also that [7]

(ηf, a'μd'μ\ (η, aμ dμ) e [fa, aμ 3μ)] e Γ^M4)

iff

1) η' = Qη', a' = ρa + δη for ρ eIR+ and δ elR;
2) b6

4(a,η) = 0.
On the other hand, we proved in our previous paper [7] that given

[(?/, aμd/dημ)~] e 7Jn](]M4) then the sgn(a5η° — a°η5) is invariant under the action
of Oτ(2, 4) iff g[η](aμdμ, aμdμ)^Q with respect to g given in (4.3). The second point
is thus confirmed.

§ 6. Some Remarks

6.1. Why Does the Special Conformal Transformation in 1M4 "Destroy" Causality?

Compared with the general causality concept on a Four-Lorentz manifold as
described in §5.1., the usual well-known causality concept in Minkowski space
M4 ("M4-causality") turns out to be a special case: one only has to take the
straight line lxy in M4 joining the two points x, y e M4 under consideration to
determine their respective M4-causality relation according to the timelike, light-
like or spacelike character of this straight line (i.e., according to i?4(x — y, x — y} > 0,
= 0, or < 0 respectively) as well as the sgn(x — y). As the Poincare group ̂  acting
as Lie transformation group on M4 leaves the straight line and the symmetric
bilinear form b\ invariant, while sgn (x — y) is invariant under the orthochronous
Poincare group ^τ, M4-causality is invariant under ̂  (cf. [33]). The M4-causal
relationship for the transformed x' = hx, y' = hy, he^\ is determined thereby
again by a straight line lx,y, lying entirely in M4.

What is changing, if one considers the conformal mapping c as given in (4.9)
on M4?

A straight line will be mapped into a curved line but preserving the angle
between two curves. This last property ensures the invariance of the division of
tangent vectors of tangent space into 3 classes [cf. (4.10), assuming σ Φ O for a
moment]. And as we have shown in [7], the division of timelike and lightlike
tangent vectors into two future- and past-directed parts is also invariant under
c. Therefore, in this sense, c does respect the causality locally. In fact, if we restrict
ourself to an open set (7(0; c) defined by

U ( 0 ; c ) : = {yeM4\σ(y;c)>0}> (6.1)

then the conformal mapping c would not destroy the causality relation of y e U(Q;c)
relative to 0 after the mapping even in M4-causality. But for all points y' e U'(0; c),

C7'(0;c): = C[/(0;c)nL 0 , (6 2)

where L0 = L 0 + u L 0 _ denotes the set of timelike vectors in M4 relative to
OeM4, the special conformal mapping c destroys the M4-causality.
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Is it however justified to use M4-causality to judge if cO and cy' still have
their old causality relation to each other? We do not think so, since c is singular
on dU. Therefore, the straight line I0y/ joining 0 and / e ί/'(0; c) would be trans-
formed into three disjoint parts of curves as viewed from M4. (This is the main
difference of c compared to ^®D^} These three parts are: I 0 y , nt/ would be
transformed into a curved line in

/ + (cO): = {zeJM 4 | z>cO} or Γ(cO): = {zeM 4 |z^cO}

according to sgn(j/°) > 0 or < 0 before the mapping, respectively; I 0 y , n U' would
be transformed into a curved line in M4\{/+(cO)u/~(cO)}; while the zero-curve
(i.e. curve containing only one point) l0y,ndU into "infinities" of M4, i.e., after
the omapping, this zero curve does not belong to M4 anymore. The following
figures for /Oy nL0 + Φ0 shall illustrate what we mentioned above (by supposing
c cφO):

6.2. Some Remarks on the Infinitesimal Conformal Transformation on M4

To avoid the "causality-violating" property of the conformal transformation
on M4, some people consider the so-called "infinitesimal conformal transforma-
tion" c, induced by the element of the special conformal group acting on M4,

c:xμ^xrμ: = (1 - 2c x)xμ + cμx x .

This implies

(6.3)

(6.4)

To avoid for instance the vanishing of 1 — 4c x, that would obviously destroy
any conformal character of the mapping c, one is forced to consider the mapping
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c acting only on an open neighborhood of x, Uς(x) C M4, such that 0(x; c2) can
be neglected compared with the factor 1 — 4c - x φ 0.

What kind of transformation is it?
Each such 1 -parameter transformation has to be understood as a local 1-

parameter group of local dίffeomorphίsm at zeM. (cf. [31] p. 4). It consists of a
neighborhood V£(z) of z, a constant ε>0, and a family {φt}\t\<ε such that

i) φt is a diffeomorphism of VE(z) onto φt(V) C M;
ii) the map (— ε, ε) x F-+M given by (f, xjπ^^x) is differentiable and (6.5)

iii) φs(φt(^))=:φs+t(χ) whenever x, φt(x)e F and |s|, |ί|, |s + £| <ε.
It is now clear that the set of mappings c as given in (6.3) constitute a ε-local

four-parameter conformal group of local diffeomorphisms at, say, x e M4. The
first "local" refers to group parameters (cμ\ e.g. (Σ4

=1 (cμ)2)1/2 <ε, the second
"local" to the space-time points in an open neighborhood of x, Uε(x) (cf. also
[20] §5.9).

Any ε-local one-parameter conformal group φt induces a conformal vector
field X on C7ε(x) by

<» feC«(U)9 yeUe(x).

X is the generator of the infinitesimal conformal transformation on M. It is
known ([32] Chapter VII) that a vector field X on (M, g) is conformal iff

Vm(g-φ?g) = βg (6.6)

for some function β on M, where <£x is the Lie derivative relative to X.
The induced vector fields on Uε(x) C M4 are

They fulfill (6.6) with β = 4y for each Xμ \y and hence are local conformal vector
fields, just like the mapping (4.9) induced by the elements of conformal group c
satisfies the condition explained e.g. in [31] p. 49 to be only a conformal mapping
by virtue of (4.10). The point we want to emphasize here once again is: one should
not forget the domain of definition t/ε(x) of these local conformal vector fields
[remember (6.4)!], if one tries to give any physical interpretation of the "infi-
nitesimal conformal transformation" c on M4. However, if one agrees that we
have a local four-parameter conformal group of local diffeomorphism, then the
next question arises: what is the meaning of these kinds of operations, i.e. local
diffeomorphisms, physically?

Of course, it is also possible to consider the SO0(2, 4)-Lie- Algebra alone and
forget the special conformal group as global or local transformation group on M4.
In this case, there is the question: what is the meaning of the special conformal
algebra being treated on the same footing as the Poincare and dilatation algebra?

6.3. Remarks on (M, g)

The discussions in the last two sections showed in different ways that M4

is hardly to be a suitable domain to treat the group of conformal transformation
by the same simple reason: the (infinitesimal) conformal mappings given in (4.9)
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and (6.3) are not diffeomorphisms of IM4 onto 1M4. It is therefore natural to
extend M4 into a compactified M4 (or M4, we shall not repeat the similar
statement for M4 in the sequel). But following the remark in §5.1, the acausal
M4 (cf. also [7]) may not serve as reasonable domain for a physical theory. To
investigate the possible physical relevance of the conformal group, the next
logical step is to consider the universal covering space IM of M4 (cf. [19,28, 30]),
which has been shown in § 4 and § 5 to be a stable causal manifold admitting the
conformal group SU(2, 2) acting on it as Lie transformation group which respects
causality. From this standpoint, M is a physically acceptable non-compact Four-
Lorentz manifold having the conformal group as its space-time transformation
group, not only in infinitesimal sense but also in a global manner.

The physical relevance of the conformal group as transformation group shall
therefore be interpreted with respect to the space IM but not IM4 as attempted
in [12, 15]. We shall not try in this paper to give any detailed interpretation of
conformal transformation other than the obvious "rescalling" property exhibited
in (4.4) and (4.6), that is in the same spirit as the interpretation given by Kastrup [12].
However, following the discussion in § 4.2, there are only at most seven isometric
vector fields (Killing vector fields) on (M, fg\ where the maximal number of
isometries will only be assumed by / = const > 0.

What is the meaning of these isometric vector fields?
It is well-known that in a Lagrangian field theory a definite and unique formula7

for the symmetric energy-stress tensor Tμv can be derived by varying the action
with respect to the metric, while in general relativity the energy-stress tensor can
be considered as uniquely defined by the "other" side of Einstein field equation.
The first physical restriction to be imposed on the set of {/} is therefore the
following one: The energy-stress tensor corresponding to each metric fg should
be physically reasonable. Furthermore, the commonly postulated zero-divergence
condition on Tμv, Tμ v;v = 0, imposes the second restriction on/ Supposed that
the set of such / is not void (otherwise no reasonable physical theory can be
formulated). Since it is well-known (cf. e.g. [24] § 13.6) that the existence of Killing
vector field Xv is equivalent to the existence of the conserved vector field Pμ = TμvXv,
by taking / = 1 in fg, we would get a maximal set of conserved vector fields Pμ

whose corresponding Killing vector fields Xv may be related to the generators of
energy and rotations in S3, as the isometry group of g is SO0(2) x SO0(4)^IR
x Spin (4). These seven Killing vector fields on TϋKt are

— /Z5 0: = d/dτ

(&):= -/(Z23,Z31,Z12), (Nk): = - /(Z14,Z24,Z34)
 (6'?)

where Ljk = i(nj - d/dnk — nk d/dnj\ 1 rgj, fe ̂  4. Their image under p1 ^ on TIM4

are

Pi *^50 = ̂ 50 = 2 (Pa + ̂ o)

/h*(*ω = (Z23,Z31,Z12) (6.8)

PI *(w/) - (Z14, Z24, Z34) = - ±(pj - KJ)

In the case that the equations of the fields can be derived from the Lagrangian.
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where Lμv: = i(ημdv — ηvdμ\ Bv: = d/dηv, 0 ̂  μ, v ̂  5 are generators of "rotations"
in (μ, v)-plane of M^;

Pμ = L5μ + L4μ, Kμ = L5μ-L4μ 0^μ^3

are generators of translations and special conformal transformations in M*
(cf. [18]).

Z50 can obviously be regarded as the "total energy operator" for a conformal
invariant theory on M (cf. [16]). It then follows that (P0 + K0)/2 plays the same
role for a conformal invariant theory on M*.

Qk and Nk generate six rotations in the space part S3 of M. As we identified
the Minkowski space M4 with an open dense subset L/κ or M4, where xμ = ημ/κ,
μ —0, 1,2,3 and κ = η4 + η5ή=Q, Qk correspond to the pure space rotations in
the space part 1R3 of M4. Qk can therefore be interpreted as generators of conserved
"angular momentum" in M. On the other hand, the "boost" along the j-axis
in M4 is replaced by iNj ~ — (Pj — K^/2. iNj are, as viewed from M4, generators
of transformations responsible for the mixing of finite part and "infinities" of IM4.
In a naive manner, we would try to interprete them as generators of conserved
"extended angular momentum" in M.

The absence of three Killing vector fields in M may have something to do
with the non-conservation of "linear momentum"8 in M in a global manner.
These quantities can still have an approximate conservation law in a small
region of M. However, it is not clear how this approximate conservation law
behaves with respect to the different "small regions" of M.
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