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Abstract. It is shown for the Heisenberg model that the correlation functions are analytic in h and T
if Re(/ι)φO and T is positive.

Introduction

The analyticity properties of the Ising model, when there is no phase transition,
were established by Lee and Yang [6, 11] and by Lebowitz and Penrose [5]. The
theorem of Lee-Yang about the zeros of the partition function of the system plays
a prominent part in these papers. The generalization of this famous theorem to
the case of the Heisenberg model was made by Asano [1] and Suzuki-Fisher [10].
With the help of this generalization we obtain analogous results as those obtained
by Lebowitz and Penrose for the Ising model: the correlation functions are
analytic in h and T if Re(/ι)φO and T is positive. The proof follows closely that
of Lebowitz and Penrose. We use essentially the theorem of Lee-Yang and the
technique introduced by Asano [1]. Our proof is only valid if the total magnetiza-
tion commutes with the Hamiltonian, and does not extend to the general case
considered by Suzuki and Fisher [10].

Notation and Definition of the Model

The model is defined on the lattice Έv. With each point of the lattice we asso-
ciate a spin — 1/2, which we describe by a Hubert space ̂  isomorphic to C2,
and by the Pauli matrices σf , σf , σf. We consider first a system restricted to a
finite subset A of TLV. The corresponding Hubert space is #CA = (x) J^ and we

ieΛ

choose the Hamiltonian as follows :

HA=- Σ H(i,j) + h Σ ( σ f + l ) (1)
i φ j ieΛ

iJeΛ

with

H(iJ) = K(i -j) (σ?σ* + of of) + J(i -j) of of . (2)

In this formula H(i,j) describes an interaction between two spins. The interaction
will be a ferromagnetic one:

J(-x)ZO, K(x) = g(x)J(x) (3 a)
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with

-l^g(x) = g(-x)£+i. (3b)

The function g allows us to introduce some anisotropy in the coupling between
the spins. It is, however, very important for the rest of the paper that (4) holds:

[ £ o f , H ] = 0 . (4)
L i e / 1 J

The constant h may be interpreted as a magnetic field. We impose also two
conditions on the decrease of the interactions K and J for large distances :

sup rv J(s} = w(r)->0, r->oo, (5 a)
\s\>r>0

se1v

Σ /(x)<oo, £ |K(x) |<oo. (5b)
x Φ O x Φ O

Such conditions ensure the existence of the thermodynamic limit of the correlation
functions [4, 7]. When we take the thermodynamic limit, this means that we choose
a sequence of finite subsets of 2£v, (Λn)ne^ such that ΛncΛn+1 for all n and for
every finite subset Δ of Έv there is a number N(zl) with the property that A is
contained in Λp for all 77 > N(A).

We denote the partition function by

1 , (6)

and the correlation functions by

<<£ - *£> (̂  T, /I) = Tι>>i} - C e*p(-βHA))/P(h, T, A) , (7)

where x1 , . . . , xm are m sites of /I and z7 = x, 3; or z, 1 g; ̂  m.
Remark. All finite subsets /I which we shall consider have the property: If x

and y are two points of Λ, then there exists a set of points {x0, . . ., xn} with x f e A,
x0 = x,xn = y and where the spins at xf and x ί+ j interact with one another.

Results and Proofs

If A is a finite set, HΛ is a matrix and we may without difficulty consider com-
plex values of h. Asano showed under the hypothesis 3 a) and 3 b) that P(A, T, A) ή= 0
if Re (A) Φ 0. On the other hand it is easy to see that P(0, T, A) Φ 0. We may thus
define <σ^ ... σ^> (h, T, /I) if Re(/z)φO or h real. Our first result is

Theorem I. For the model defined above [in particular if (3 a), (3 b), (5 a), and
(5b)holdJ.

1) If T is a positive fixed number

lim << . . . σ£> (A, T, Λ) = <(£... σ£> (A, T) (8)
Λ-> 00

converges locally uniformly in h, both when Re(7z)>0 and when Re(A)<0.
2) Γ/ze function (σl

x\ . . . σ^> (A, Γ) is analytic in h and T in the region Re (A) > 0
(and Re (A) < Oj am/ T in a complex neighbourhood of the positive real axis.

Remark. If we introduce the variable z = e~βh, then the domains of analyticity
for the new variable become \z\ < 1 and \z\ > 1.
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Proof. We shall use the following result, which we shall prove later.

Lemma 1. Let Abe a finite subset ofΈv. Then the inequality below is uniform

, if | z | g r < l , r fixed. (9)

This lemma means that the family of analytic functions (σx\ ... σj™> (z, T,Ap)
with peN is a normal family [2] on the unit open disc E = [z\\z\ < 1}. On the
other hand it has been proved by Ginibre [4] that for every finite interval / of the
positive real axis there exists a complex neighbourhood U of z = 0 such that

converges and defines an analytic function of z and T if z e U and T e /. (The
Hamiltonian in [4] is slightly different, but the proof of the above statement with
our Hamiltonian is the same except for minor changes. The difference between the
two Hamiltonians is a boundary term for the finite systems.) We apply then the
theorem of Vitali [3] and we obtain the first result, the second one follows directly
from the theorem of [5, p. 104]. Details of the proof may be found in the paper of
Lebowitz and Penrose [5]. We obtain the same results in the case where |z| > 1
using the symmetry of the model (see e.g. next section).

Let us suppose that there exists an arc γ of the circumference of the unit circle
{z| |z| = 1}, on which, if p is sufficiently large, P(z, T, Ap) is non-zero. Without loss
of generality we consider the case where y is given by the inequalities — φ < arg(z)
< + φ with 0 < φ < π. Under such assumptions the free energy is analytic in z
if z e y in the thermodynamic limit. We extend this result to the correlation
functions.

We consider the situation just described and we denote by δΓ the circle which
passes through the points eιφ and e~ιφ and which is orthogonal to the unit circle.
The open set which contains the point 1 and which has the boundary δΓ is denoted
by Γ. Then we obtain:

Theorem II. The first conclusion of Theorem I is true if we replace the unit
disc E by Γ. The function (σx\ ... σx

my (z, T) coincides with that of Theorem I if
| z | Φ l .

Proof. If we use the notation of Theorem I we can prove

Lemma 2. The family (σx\ ... σj™> (z, T, Ap), peN, is normal in Γ when p
is large enough, i.e. when P(z, T, Ap) φ 0 if zeγ.

With this result the proof follows as before.

Proof of the Lemmas 1 and 2

Introduction

We discuss here the technique used to prove Lemmas 1 and 2. In these proofs
the position of the zeros of some polynomials, and also their symmetry properties,
take a prominent part. In this section we define these polynomials and give some
of their properties. We prove the lemmas in the next section.
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We consider polynomials of N complex variables. It is convenient to use the
notation of Ruelle [8]. We introduce a finite set Ω of N elements denoted by
letters x, y, ... . We associate a complex variable zx to each x of Ω. If X is a subset
of Ω, then zx is the set of variables {zx\ x e X} and zx = Y[ zx. We put z0 ΞΞ 1. Let

xeX

be the set of all complex-valued functions / defined on the subsets of Ω.

f:XcΩt-+f(X)e<C.

Let 3?(Ω) be the set of all complex polynomials with N complex variables, linear
in each zx. Clearly there is a one-to-one correspondence between ^(Ω) and

XCΩ

On the set S(Ω] we define the transformation D(x, y) when x φ y :

r O if xeX and yφX

(D(x,y)f)(X) = \Q if xφX and yeX (10)

I /(X) otherwise .

The corresponding transformation on ^(Ω) is

(11)

This last operation is not exactly the contraction of Asano [1, 8, 9]. If we write
explicitely only the variables zx and zy, then we obtain

Pf(zΩ) = azxzy + bzx + czy + ώ D(Zχ9Zy)>azxzy + d. (12)

The class L(Ω) of polynomials, which interest us, consists of all polynomials of
), which satisfy the property E

E: Pf(zΩ) = 0 and |z j^l, V x e Ω implies \zx\ = l, VxeΩ. (13)

as also a symmetry property S:

S : f(X) = f(Ω-X)*9 V X C Ω , (14)

where * represents complex conjugation.
Remarks. The property E is equivalent to :

if P(zΩ) = 0 and \zy\^i VyεΩ-{x} and if 3/eΩ-{x} (15)

such that |zy/| < 1, then zx is such that \zx\ > 1.
The property Ŝ means :

Proposition. T/zβ class L(Ω) is stable under the transformation D(zx, zy).

Proof. The property S is evidently conserved [see (10)]. The property E is also
conserved (Proposition 3.3, [8]).
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We note also two simple facts :
I) If Pf(zΩ) e £?(Ω\ we associate to Pf a polynomial Qf in one complex variable z

by setting

We notice immediately that
N

ββ<*,3»/(Z) = Λ0 Π (&-*)•
ί= 1

II) If Pf(zΩ)ε L(Ω) and if we associate to each xeΩ a complex number ω^
of unit modulus, then we can introduce new variables zx = ωxzx and define

*) = *o( Π ωx) Π fo-*) = *o Π &-*)
ί = l ί = l

and

1<V (17)
yeX

In particular PJ(ZΩ] satisfies the property E and the symmetry property Sω:

f ( X ) = ωf(Ω-X)*9 ω=Y\ωx. (18)

Proof of the Lemmas 1 and 2

Lemma 1. We consider the explicit case i1 =x and 12 = yi the generalization
to other correlation functions is immediate. The fact that A is a subset of Έv is
unimportant. Therefore A is here a set with N elements {1,..., N} and we write 1
respectively 2 instead of xί respectively x2 etc. We must show

sup |<σfσ2

y>(z, T,Λ)\^(——J . (19)

The proof consists of expressing <σ*σ|> (z, T, Λ) as a sum of four terms; each term
is a quotient of polynomials, which possess the properties described in the last
section. Then we use Remarks I and II in order to obtain the desired result.

A. Definition of Four Polynomials

In j^Λ we introduce the vectors |{sj}> = |sι>(8)•••(8)|%> defined by σ]\s^
= s/ | s/> with Sj= ±1. These vectors form a basis in 2tfA and we index them by the
subsets of A:

+i. (20)

The partition function becomes

P(z,T,Λ)= Σ<x\™P(~βHΛ)\X>,β = (kTΓ1,z = e-lih. (21)
XCΛ
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The operator M = £ (σf + 1) commutes with HΛ = H0 + hM. Therefore
ieΛ

-βhM\
P(z,T,Λ) = Σ x

XCΛ

p l l λ V ί \

1 exp (- β HO) exp X ] (22)i ^ΛpV —F^0, W Λ p i - i

is a polynomial in z. Trotter's formula allows us to write

/ / β \\n

exp (- ]8H0)- lim m exp — H(i,7) = lim An (23)
«->• oo

with H(ίJ) given by (2). We make now the connection with the previous section:
Let A and A be two copies of the set { 1 , . . . , N}. We distinguish the elements or the
subsets of A by '. We define then Ω as the disjoint union of A and A and we
write the subsets of Ω by the pairs (X, Y'} with XcΛ and T C A. Let /„ be the
function of /(Ω) defined by

r>, (24)
and the corresponding polynomial

Pfn(zΛ,zΛ,) = Σ zxfn(X,Y')zY' (25)
XCΛ

Y'CΛ'

we first define gn e $(Ω)\

gn = D(3,y)...D(N,N')fn; (26)

then we construct two polynomials in four variables z l 5 z r ,z 2 ,z 2 ' , an^ one

complex parameter w:

Pπ

1(z1,z2 ?z r,z r;w)-D(z1,z r)D(z2,z r)P,n(zy l,zy lO (27 a)

and we put z3 = zy = - = ZN = ZN, = w,

Pl(z, , z2, zr, zr w) = Pgn(zΛ, ZA.) (27 b)

and we put z3 = z3, = = ZN = ZN, = w.
Finally we introduce

βi(z; w) = P^z, z, z, z; w) - α0(w) f] (4/N - z) , (28 a)
i= 1

βπ

2(z; w) = Pn

2(z, z, z, z W) = ΩO(W) Π («,(*) - z) , (28b)
ί= 1

(cf. Remark I).

B. Relation between the Polynomials (27 a), (27 b), (28 a), and (28 b),
and <σfσ|>(z, Γ,yl)

We see immediately, comparing (22) and (28 b), that

, , = 1

because

P(z,T,Λ)=\imQ1

n(z;z), (29)

(30)
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On the other hand we compute the expression

115

— lim Tr^
n-» oo

with the aid of the basis

-βhM\ , n I-βhM
P lexp(-j8H0)exp[ ^

-βhM-βhM
, exp

= \sl9s29X) with

We have used the following vectors

= Λ-{i,2}.

which satisfy

Hence we obtain

-βhM\ / -βhM\
σfσ2 exp Aa exp I —^ 1

XCΛ XCΛ

1.-1, X\. ..|-1, -1,

(31)

(32)

(33)

(34)

(35)

[... represents the expression between the square brackets on the left hand side
of (35)].

Using (33) and the definition of Pn

2 we see that

(36)

and the three other terms in (35) have analogous expressions.

C. Estimation of {σfσl) (z, T, /I)

We use now the result proved by Asano [1]:

Pfn(za)EL(Ω).

We thus obtain using Remarks I and II

z, - iz, z, - iz; w) - ~ z) (37)
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Hence the nth approximation of <σf σ£> (z, T, /t) is the sum of four terms of the
following type:

1 ά0(z) * g f(z)-z

4 α0(z) &(*)-* '

If M ̂  1, then |̂  (w)| ̂  1, |^(w)| ̂  1 and if |w = 1, then |^(w)| - |&(\v)| - 1.
Consequently

(38)

sup

1

~|z|<U£i 4
M = ι

ί

T
4

Π
i — 1

α0(z)

α0(z)

4

Π
i= 1

— z

&(w)-z

<li(z) ~ z

4i(z} ~ ^

h r \ 4

" 4\i-r)

(39)

This last expression does not depend on n and A. Hence the lemma is proved.

Lemma 2. We use the same notation as before. Let P± and P2 be two interior
points of the arc 7 and k be the closed disc whose boundary is the circle passing
through P1 and P2 and orthogonal to the unit circle. We introduce two subsets of
fc:fc! = { z e f c | | z | ^ l } and k2 - {ze fc||z| ̂  1}. By the transformation zκ>(z*)"1

we have kί\->k2. Let us take now any interior compact subset k of k and we put
d(k',δk) = d>0, where d(k',δk) is the distance between k and the boundary δk
of k. Let us consider <σf σ|> (z, T,Ap). By assumption it is possible to find an
integer W(p, fc) such that if n > N(p, k) Ql

n (z; z) Φ 0 for z e /en 7. On the other hand
PH(ZΛ, ZΛ>) φ 0 if all |zf| < 1 or all |z f| > 1. We may apply the proposition p. 268 of
[8] and hence we find

P I I

1(z 1,z 2,z r,z 2,;w)Φθ if z l 5z 2,z r,z r, and w e k .

In particular β^(z; w)φO if z and w e / c therefore

zefc'

wefc

(40)

(41)

This estimation is independent of p and n. If w e /q , we know that |^/(w)| ̂  1 hence

(42)max|^.(wj-z|S

ze/c'

where φ(E^>k1)is the diameter
Finally we obtain

sup
ze/c'nfc]

1) = δ ,

^\47,
(43)

We extend the validity of this last estimate using the symmetry properties. The
symmetry S of P*(z1,z2,z1,,z2>ιw) allows us to write

(44)
4

= (w*)27y-4(z*)4α0(w*~1) Π (^(w^-^-z*-1)
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and the symmetry S_1 of Pπ

2(z1? — zz 2,z r, — iz2,; w)

4

(45)
== —1 (w I (z ) ίZnίvv ) I I \d \\v ) — z ) .\ / \ / u \ / ί_ i \ j ί i \ / /

ί = l

Hence (43) is valid for all z in k and the lemma is proved.
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