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Abstract. Asano-Ruelle-Slawny method is generalized to discuss analyticity and
uniqueness of the correlation functions in terms of the group structure associated with
any lattice systems. The use of Poisson formula for abelian groups gives a simple method to
obtain explicit domains where the above properties are verified.

I. Introduction

The analysis of the zeroes of the partition function Z is one of the
standard methods of statistical mechanics used to derive general proper-
ties of lattice systems. A powerful technique, based on Asano's contrac-
tion [1], was given by Ruelle to study domains of zeroes of Z in the
complex variable z = e~2βh[2]ι the main idea is to reduce the study of the
zeros of the partition function to the study of smaller polynomials
associated with the local structure of the lattice.

More recently the Asano-Ruelle technique was generalized by
Slawny [3] to discuss domains of zeroes in all the complex variables
zB = e~2βJ(B} where J(B) is the interaction associated with the bond B;
the idea of Slawny is to start with the Low Temperature (L.T.) expansion
of the partition function expressed as a summ over a certain group Γ,
called the L.T. group. He then makes use of the group structure associated
with lattice systems to give general conditions for the partition function
to be the Asano contraction of the partition function of small subsystems.
Using then a theorem due to Ruelle [4] this extension of the Asano-Ruelle
technique yields new results concerning the analyticity properties of the
free energy and the uniqueness of the equilibrium state for ferromagnetic
systems at low temperatures.

In the following we shall extend Slawny's results to arbitrary lattice
systems and give a general method to obtain explicit domains where Z is
different from zero. These results then imply the analyticity and uniqueness
properties of the free energy and the correlation functions, and they
follow from a generalization of the Asano-Ruelle-Slawny method.

We consider an arbitrary spin \ lattice system {A, &}, defined by a set
of lattice sites A and a set & of bonds, ^C^(/L); we then discuss the
zeroes of polynomials of the form M(z^) = £ J~J ZB where G is any
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subgroup of £?(&) and ZB is a complex variable associated each bond B
of &. Using the group structure of the lattice we give a necessary and
sufficient condition for M(z^) to be the Asano Contraction of smaller
polynomials M(z^.) reflecting the local group structure of the lattice.
It then follows immediately from Poisson Formula for abelian groups
that the zeroes of M(z^.) can be discussed in terms of the zeroes of poly-
nomials of the form :

M(2Λi) = 1 + Π ZB where ZB =
JSe^ί ~τ~ ZB

Since domains of zeroes of such simple polynomials are most easily
obtained we then have directly domains where M(z^) is different from
zero. In fact in the following discussion we have restricted our attention
only to the "trivial" domains defined by \ZB\ < 1 for all B, \ZB\ > 1 for all B
and argzβ <π.

For the application to statistical mechanics the groups G of special
interest are the fcΉigh temperature (H.T.) group Jf" and the "Low
Temperature (L.T.) group Γ"; it should be remarked that for G = Jf the
small polynomial is not the partition function of the small subsystem as
it is for the case G = Γ. Applying the above simple results to the special
group Jf (resp. Γ) we obtain immediately explicit domains DB such that
the partition function Z is different from zero if ZB e DB for all B in &
and zβ = tanhK(β)(resp. zB = e~2K(B}). The analyticity and uniqueness
property of the pressure and the correlation functions follow then immedi-
ately.

As direct consequences of these simple results, we recover in particular
- Lee- Yang circle theorem for ferromagnetic systems with two body

forces [5].
- Ruelle's result of unicity of the equilibrium state for ferromagnetic

systems with two body forces and external field [4].
- Sarbach and Rys' result concerning the antiferromagnetic Ising

system with two body forces [6].
- The uniqueness of the equilibrium state ω invariant under transla-

tion for any lattice system at high temperature [7],
we extend Slawny's result to conclude that for any lattice system there
exists at low temperature a unique state ω invariant under the full symmetry
group
we obtain explicit domains where analyticity and uniqueness properties
of the pressure and correlation functions hold.

To conclude this analysis we have applied the general results to the
study of some specific examples with many body forces. In particular
we have shown in one example the usefulness of the duality transformation
to improve the domains of analyticity.

II. Asano Contraction and Zeroes of the Partition Function

With any spin | lattice system {A, $}, defined by a finite set A of
lattice sites together with a family $ of bonds where $ C 3P(Λ\ we can
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associate a group structure defined by means of the following abelian
groups [8] :

0>(Λ) = {X; X C Λ} X' - X" = X'vX" - X'nX"
"Group of configurations",

"Group of Graphs",

; YIB = Φ\ "High Temperature group ",
Beβ J

"Low Temperature group",

The "Ή ίgh Temperature" expansion of the partition function is given by

(1.1)
Be® βetf Beβ

and we are interested in domains which do not contain the zeroes of Z as
function of the complex interactions {K(B}}. More generally with each
bond B in & we associate a complex variable ZB and we consider the
polynomial in the complex variables ZB = {zB}Be<% defined by

βeG

where G is any arbitrary subgroup of £?(&) and for any β in
zβ = Π ZB Using the identity (Poisson formula for abelian group [9])

Beβ

Σ
βeG

where _

and

we then have:

, βeG Be® Je&-
where

Proposition 1. For any subgroup G of 0>(β) the zeroes of the polynomial

M(z<%) = Σ zβ such tnat ZB =t= — 1 /<?r «W ^ z?ί <^> βr^ related to the zeroes
βeG

of the polynomial
M(zΛ)= Σ 2"

βeG^

by the transformation Eq. (1.4).
The H.T. and L.T. groups defined above have the property that

Γ1 = JΓ tfL = Γ (1.5)
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moreover zB = tanhK(B) implies zB = e~2K(B} and the Poisson Formula
applied to the H.T. expansion of the partition function Z yields the well
known "Low Temperature" expansion [8] :

Σ Π e-2K(B). (1.6)
Be^ βeΓBeβ

n

Let &= (J J*i be a finite covering of J*; the idea of the Asano
ι = l

Contraction combined with Ruelle's theorem [2] is to obtain information
on domains of zeroes of M(z^), from a knowledge on domains of zeroes
of the "smaller" polynomials:

M(zΛi) = Σ z& (1.7)

where Gt and G/ are the subgroups of ^(β^C&(β) defined by:

Gt = {βn&i βεG} Gi = (βiC 9»{ ^(ft) =i\/βe GJ

which yields:

i.e. the elements βt of G/^ are precisely the elements of G1 which are
subsets of 3St.

If G = Jf, G1 = Γ and G/^ is the subgroup of Γ defined by those βt

If G - Γ, G1 - JΓ and G/ is the subgroup of JΓ defined by those ft
Let us remark that for G = Γ, which corresponds to the L. T. expansion

and zB = e~2K(B\ the small polynomial M(z^.) is related to the partition
function of the subsystem {Λ^ JfJ, Λt= [j B by Eq. (1.6); the corre-

Be38i

spending statement is however not correct for G = Jf.
Let J* = u 88i be a finite covering of 3d and

be a family of polynomials. The polynomial P(z@) is the "Asano contrac-
tion" of {Pf(z^.)} if cβ = Y[ct>βr,<%. moreover a variable zβ is said to

undergo contraction if B belongs to more than one 36{ [3]. The interest
of this definition lies in the following theorem:

Theorem (Ruelle [2]). If P(z@) is the Asano Contraction of{Pi(zgS)} and
tf PM Φ 0 when ZB φ Ri>B for all B in Λi9 ί = 1, 2,..., n, then P(za) φ 0
when zBφ — Y[(—Ri,B) for a^ B ™ ̂  where RiB, i = 1,..., n Beέ%h are

i

closed subsets of the complex plane which do not contains 0 if ZB undergo
contraction.

Proposition 2. Let G be any subgroup of &(Ά\ 3t=\jdi{ and
Gί= {βnJ^ βeG}. M(zΛ)= ^ zβ is the Asano Contraction of

βeG

M(z<%)= Σ z/?ί tf and only tf the subgroup of &(β) generated by
βieGt

coincide with G1.
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plane

Fig. ί. The homographic mapping ZB =

1 -

The proof of this proposition is identical with the one given by
Slawny [3] for the particular case G = Γ and we shall not repeat it.

In consequence all covering 0$ = vϋ8i of ̂  for which the Asano-Ruelle
method applies are obtained in the following manner:

Given G, we first find G1; let G^, i = 1,. . ., n be a family of subgroups
of G1 which generate G1, then &t=iBe (j β\. The simplest covering

\ βe& ί
3$ = u&ί is obtained by means of the generators gf of G1; in this case
$i= 9\ and> using Proposition 1, the zeroes of M(zgS) such that ZB Φ — 1
for all B in ̂  are obtained directly from the zeroes of the polynomial

where ZB is related to ZB by the transformation Eq. (1.4).
For example with G = jf, which corresponds to the H. T. expansion

and ZB = tanhK(B), we have G1 = Γ and we can choose the covering

reΛ

To study domains of zeroes of M(z&) for the case dί{ = gj , we shall
use the following remarks:

M(z&) = 1 + Y[ ZB is different from zero
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Fig. 2. Domains DίB such that M(z@) φ 0 if ZB e Dt)β

i) either if δ%ϊn ̂  arg zβ ̂  δβ

max /or α/ί β e ®{

where
(z/c - l)π < Σ(5£in < Σ(5β

max< (2/c + l)π fc = 0,1,2,...,

ii) or if |2fl| ^ ( α// B e J^ where Πc)β < 1.

Moreover the homographic transformation ZB = - ̂ - mapps the
1 +ZJB

line arg ZB = δ onto the circle x2 + (y — cotg δ)2 = 1 + (cotg δ)2, z = iy

and the circle |zJ=ρ onto the circle x -- -̂ + v 2 = ( - ̂
\ 1-ρ 2/ \ l - ρ 2

(see Fig. 1).

Propositions. For the covering 3S = v3Si defined by the generators
of G1, M(zΛι) φ 0 if ZB e Dί>β /or α// B in & where

i) either DiB is the open set intersection of the interior of the two circles

x2 + (y + c°tg <5β)2 = 1 + (cotg δB)
2 where 5β ̂  0 and £ <5B = π

ii) or D ί f J 8 is ί/i^ open sef outside (resp. inside) of the circle

ί 1 + QB\2 2 ( 2QB \2

I X 2~J "^^ = l ~ j 2~] v ^β > l (re5P ^β<l)

w/zerβ
f^ ρβ = 1 (see Fig. 2).

It is important to notice that in order to apply Ruelle's theorem we must
take δB>0 or QB > 1 dor all B which undergo contraction (otherwise

III. Applications

Let {2£v, ̂ } be an infinite spin \ lattice system with finite range inter-
action J(B) = kTK(B); moreover, to simplify the following discussion,
we shall assume the system to be invariant under translation, i.e.
K(τaB) = K(B) for all a e TL\ B e &.
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With JO a fundamental family of bonds, i.e. for all B e & there exists
one and only one αeZ v, £0e J*0 such that B = τaB0 we consider the
class [£0] of bonds congruent to BQ

Ύhefree energy of the system is defined by

p= lim — logZ(Λ) (2.1)
Λ - Z V \A\

where /l-»2£v in the sense of Van Hove and we thus have:

p = log2 + £ log cosh K(B)+ lim -i- log £ Πtanh^) (2 2)
Be^o Λ-»ZV |Λ.| βeOtrΛBeβ

p= Σ X(B)+ lim -i-log Σ Π*-2K(B) (2-3)
Be^o ^1->ZV \Λ\ βeΓΛBeβ

where JΓ^ and ΓΛ are the groups associated with the finite system
[Λ9 @Λ] and3ίΛ = {Be&'9BcΛ}.

Let us first consider the H. T. expansion of the finite system {Λ, &Λ]

and the covering

We have :

Since zr does not undergo contraction while ZB undergo a contraction
of order at most equal to \B\ iϊ\B\ ̂  2, Ruelle's theorem yields the following
result:

Proposition 4. 1. The partition function Z(Λ) of the finite system
{A, $Λ] is different from zero in the complex domain:

I * \ |B |

larg e- 2βh\ ^ δ0 |tanh JK(B)| < I tg -j-\ \B\ ̂  2 (2.4)

where {δB}Be@ are arbitrary real numbers such that

Bar

2. The partition function Z(Λ) of the finite system {A, $Λ] is different
from zero in the complex domain:

(2.5)
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where
QB > 1 QτaB = QB and ρ0 Π QB=!

Corollary 4.1. 1. The free energy is an analytic function of the complex
variable ZB = tanh K(B\ B e ̂ 0, in the domains defined by Eq. (2.4) or
Eq. (2.5).

2. At high temperature, i.e. at temperature T such that

t J(B)\ I δB\W
tanh-*τHt8T ' «?> = π

there exists a unique equilibrium state ω invariant under translations.
Moreover the correlation functions ω(σx) are analytic functions of

ZB, BE&Q in the domain defined by Eq. (2.4).
3. For systems with non zero external magnetic field such that

\e~2βh\ <ρ0 < 1 there exists a unique equilibrium state ω invariant under
translation in the domain defined by Eq. (2.5). Moreover in this domain the
correlation functions are analytic functions of ZB.

Indeed the first part of this corollary follows from Vitali's theorem.
The second part from Ruelle's theorem [4] and the fact that for all

finite X CZV and any ε>0, the free energy p(K + λKx) with Kx(Y)=i
if Y e (X) and zero otherwise, is analytic in the domain.

/ £ \\B\ I g \ \ X \

large" 2 / ? Λ |^<5 0 ; |tanhK(B)|< tg^ |tanh/l|< tg——
\ 2 ] \ 2qj

B3r

q = number of bonds in [Jf] containing the site r.

Therefore ω(σx) = —:—p(K -f λKx)\λ=0 has same value for all transla-
dλ

tionally invariant equilibrium state.
Letting ε->0 we conclude the proof.
The last part is obtained in a similar manner taking:

£o Π Qβ^i —
BBr V Q ,

and letting ρ ^> 1

As consequence of Proposition 4 Part 2 we recover the Lee-Yang
circle theorem for the zeroes of ferromagnetic systems with two body
forces and external field: indeed if \B\ ̂  2 for B in & and q is the coordina-
tion number, we have that the partition function is different from zero
in the domain:

9-2βh\e~2βh\<i-ε \t3nh Ktj\φ - R e z <
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and therefore for all ε e [0,1] the partition function is different from zero
in the domain \e~2βh\ < 1 — ε if tanhK^ >0. By symmetry argument
we obtain the same result for \e~2βh\> 1 -hε and ε->0 we obtain the
Lee-Yang Circle theorem.

As consequence of Corollary 4.1 Part 3 we also recover Ruelle's

result concerning the unίdty of the translationally invariant equilibrium
state for ferromagnetic systems with ίwo body forces and non zero external
field [4].

It should be noticed that the condition Eq. (2.5) is particularly well
suited for system such that \B\ ^ 2 for all B in έ%. Indeed it is for this case
only that Eq. (2.5) yields the whole positive axis.

From Corollary 4.1 Part 2 we obtain immediately unicity of the
translationally invariant equilibrium state for T>T0 where

tanh
J(B)

kT0

\B\

< j tg —— q = coordination number.

This result which is very simple yields upper bounds on the critical
temperature which are not as good as those obtained by more refined
techniques [7].

Let us now consider the L. T. expansion of the finite system [A, 3ϋΛ}:
G—Γ 7 — s>-2K(B) C1L — tf<jr — 1 A, ZB — e , Lr — Jt A

and the covering &Λ=(Jκi defined by the generators κt of tf Λ :
t
M(zκt)=i+ Π ZB

BeKi

Using Proposition 3 combined with Ruelle's theorem we obtain the
following result:

Proposition 5. The partition function Z(A) of the finite system {A, &Λ} is
different from zero in the domain:

|arg tanh K(B')\ ^ δB> if ZB> does not undergo contraction

\ZB = e~2K(B}\ < Yl tg —^- ίfzB undergo contraction (2.6)
Ki3B 2

where

Definiting an invariant equilibrium state ω to be an equilibrium state
invariant under the full symmetry group [8] (Translation group and
Internal symmetry group) we then have the following result (see also
Slawny [3]):

Corollary 5.1. 1. The free energy is an analytic function of the complex
variables {zB = e~2K(B}}Be@0 in the domain defined by Eq. (2.6).

2. If e kτ < Yl tg— ~- \vith £ δίiB = π, there exists a unique inva-
KisB ^ βeκ t

riant equilibrium state ω.
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Moreover the correlation functions ω(σx) are analytic functions of
ZB in the domain defined by Eq. (2.6).

Part 2 of this corollary follows from Ruelle's theorem and from the
fact that for any B e <%, & subgroup of & \A) generated by ̂ , the group W
associated with J" — «^u{τfl#} is generated by 3C A and τak where

Therefore
MΛ(z^Λ)ή=0 for

and

for \zB\<ρ<i \zBί\<ρ
yields

for \zB\<rB Bφ\J

\zB-i\<ρ

and % is the number of generators κt containing the bond B. Letting
ρ ̂ »0 we conclude at the unicity of the equilibrium state ω invariant under
translation and such that ω(σx) = 0 if X φ £8 which is precisely the unicity
of the invariant equilibrium state.

It should be remarked that in Corollary 4.1 we have the uniqueness
at high temperature of the translationally invariant equilibrium state
while in Corollary 5.2 we obtain the uniqueness at low temperature of the
invariant equilibrium state.

In conclusion this last corollary extends to arbitrary ferromagnetic
systems a similar result derived by Slawny [3] for a special class of
ferromagnetic system with even bonds; moreover a lower bound on the
critical temperature is immediately given by

J(B) n(B) Λ I π
tg

To conclude this general discussion on analyticity and uniqueness
properties we shall remark that the domain which we have considered
were the simplest ones and therefore the result could be improved
by means of a finer analysis of the domain to be considered.

IV. Examples

1. v-dimensional I sing Model with External Field

In this example we consider the v-dimensional Ising model with
interaction J = kTKtj between nearest neightbour and external field
h = kTKt.
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From Proposition 4 we have the following result:

Corollary 4.2. 1 . The partition function of the ^-dimensional I sing
Model with n.n. interaction J and external field h is non zero for complex

(h, J) such that |arg e~ 2βh\ ^ δ0 jtanh β J\ < [tg

2. For real magnetic field h, the free energy is an analytic function of
I π \2

the comp lex variable x = tanh β J in the domain \x\ < tg - — .

3. For real interaction J such that |tanh/?J| <(tg(5)2, the free energy
is an analytic function of the complex variable z = e~2βh in the domain
|argz| <π — 4vδ.

In particular for v = 2 and J real, |tanh/?J| <(]/2- 1)2 yields

e~2βj> -y-and we thus recover Sarbach and Rys result that for

e-2βj> __ft}Q free energy does not have singularity on the real h

axis [6].
Moreover for v = 2 and h = Q we recover Ruelle's result (Proposi-

tion 2.4, [10]); indeed in this case the model is selfdual and analyticity
for |tanh βJ\ < (1/2 - I)2 implies analyticity for \e~2βj\ < (1/2 - I)2 which
is precisely the result of Proposition 2.4, [10].

2. Triangular Model with Three Body Forces and External Field

This model has been previously studied in the particular case h = 0
by means of the group structure [8, 1 1] in this case using duality argument
the critical point was located attanhKc=e~2Kc=y2—i. This result
was later confirmed by the exact solution of Baxter and Wu [12] for the
free energy density at h = 0. However analytical properties of this model
has not been investigated.

From Proposition 4 we obtain the following result.

Corollary 4.3. 1. The partition function of the triangular model with
three body forces J and external field h is non zero for complex (h, J) such
that:

| tanhj f fJ |< tg
π-<V3

Jo

6

2. For real external field the free energy is an analytic function of the
complex variable x = tanh β J in the domain \x\ < (2 — J/3)3.

3. For /ί = 0, the free energy is an analytic function in the domain
|tanh βJ\ < (2 -J/3)3 and e~ 2/?|J| < (2 - j/3)3.

The last statement of the above corollary follows from the fact that
this model is selfdual.

To study the analyticity properties in the complex variable z = e~2βh

we use Proposition 5 with the generator κa of Jf defined by:

We thus obtain, since Ba does not undergo contraction.
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Corollary 5.2. For ferromagnetic interactions the free energy is an

analytic function of z = e~2βh in the domain \z\< —$-.

Moreover using the symmetry relation Z(h, — K) — Z( — h, K) we
conclude that for antiferromagnetic interaction the free energy is analytic

for\z\>-^.

3. I sing Model with Four Body Forces and External Field

In this last example we consider the system defined by a two di-
mensional square lattice with four body forces J = kTK4 and magnetic
field h = kTKγ this model is self-dual [8] with (Kl9 K4)->(K^ Kf) and
for h — 0 the free energy can be easily computed.

We consider the L.T. expansion, i.e. G = Γ,zB = e~2K(B} and the
covering J* = u κa defined by the generators κa of Jf:

κ« = {Bβ,rβl,...,rβ4} \Ba\ = 4 rajeBa

Since Ba does not undergo contraction we obtain from Propositions:

Corollary 5.3. 1. For real ferromagnetic interaction J the free energy
is an analytic function of z — e~2βh in the domain |z|<(j/2 — I)4.

2. For real field h the free energy is an analytic function ofx = tanh β J
in the domain \x\ < (j/2 - I)4.

The last statement follows from the selfduality property.
To conclude this example we shall show it is possible to improve the

domain of analyticity using another covering ^ = ̂ j^t. We consider
again G = Γ and the subgroup Jf f of Jf defined by the set of generators
κa situated on a row (Fig. 3).

In this case M(z@) is related to the partition function of the one
dimensional chain defined by the bonds of J^ ; using a H.T.-H.T. duality
transformation [11] this partition function is proportional to the parti-
tion function of the one-dimensional Ising model with nearest neighbour
interactions K* = K4 and external field h* defined by tanh hj
tan βhtj tanh βhiίj9 i,e, e~2h*= tanh (hftj + hf+1J.

Using the Lee-Yang circle theorem we conclude that for ferromagnetic
interactions M(z^.) is different from zero if either \e~ 2h*j\ < 1 for all (1,7) or
|έΓ 2 h * |>lforall(iJ).

h K*

\ί. . .

(i.j)

Fig. 3. Covering 0, and its H.T. - H.T. dual

J
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But \tanh(hfj + hf+1J)\<l corresponds to |arge ~2(h? J+h?+1 ' /)| < —

therefore M(zΛί) φ 0 if |arg e~ 2h^\ < ^- for all (i,j)

i.e. |arg tanh /^ J < —

and thus M(z^) Φ 0 if \e~2βh^\ > (j/2 - 1).
We therefore obtain the following result:

Corollary 5.4. 1. For real ferromagnetic interactions the free energy
is an analytic function of z = e~2βh in the domain |z|<(]/2—I)2 and
\z\ > (J/2+ I)2 (by symmetry).

2. For real field the free energy is an analytic function of z = e~2βj in

the domain —^ < \z\ < j/2.

This last statement follows from duality and from the fact that

|tanh K4\ < (j/2 - I)2 is equivalent to \e~2K*\ > —r-.
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