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Abstract. We investigate the ergodic properties of a general class of infinite systems of
independent particles which undergo nontrivial "collisions" with an external field, e.g.
fixed convex barriers (the Lorentz gas). We relate the ergodic properties of these systems
to the ergodic properties for a single particle moving in a finite box (with periodic boundary
conditions) with the same dynamics. We prove that when the one particle system is mixing
or a K-system for a sequence of boxes approaching infinity so is the infinite particle system
with an equilibrium measure obtained as a Poisson construction over the one particle
phase space.

1. Introduction

The ergodic properties of some "interesting" finite Hamiltonian
systems are known in considerable detail [1, 2]. Very little is known,
however, about the ergodic properties of nontrivial systems with an
infinite number of degrees of freedom. These are of great interest for
statistical mechanics. Sinai [3, 4], De Pazzis [5] and more recently,
Aizenman, Goldstein, and Lebowitz [6] have investigated the ergodic
properties of an infinite ideal gas in an arbitrary number of dimensions
and of an infinite system of hard rods moving in one dimension while
Lanford and Lebowitz [7] have considered the infinite harmonic system.
While these systems have very good ergodic properties (K or Bernoulli
systems) the physical interpretation of this result is that "local disturb-
ances stream off to infinity where they are no longer visible" [8]. Thus
these results shed little light on the "local approach to equilibrium"
for macroscopic systems.

We investigate here the ergodic properties of some infinite systems
with non-trivial "collisions", i.e., the transformation which occurs during
a collision possesses itself good mixing properties. Except for these col-
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lisions the particles move freely. The main result of this paper is contained
in Theorem 7.1. There the ergodic properties of an infinite system of
non-interacting particles moving in a periodic field (e.g., fixed barriers
with which they undergo collisions) is related to the ergodic properties
of a single particle moving in a finite box (with periodic boundary
conditions) with the same dynamics.

It seems reasonable to expect that the ergodic properties of our
systems will be at least as good as those of the "trivial" systems mentioned
earlier. We must be cautious, however, since the physical explanation
of the ergodic properties of those systems may not be valid here. It will
be seen, in fact, that the underlying mathematical structures (partitions)
which determine the ergodic properties of the systems are of a very
different nature from those obtained by Sinai for the infinite ideal gas.

2. General Description of a One-Dimensional Model System

We observe that insofar as we will be concerned with systems of
noninteracting particles, we expect that the measure spaces of our in-
finite systems can be identified with "Poisson distributions" of points
in the one-particle measure spaces, with the infinite system dynamics
induced by that of the one-particle systems.

To develop the general theory of such systems we begin with the in-
vestigation of the ergodic properties of an infinite system of non-inter-
acting particles moving freely in one dimension except for "collisions".
A periodic array of barriers is the agency responsible for the collisions;
when a particle reaches a barrier, it may be either reflected or transmitted.
Since we wish to study a dynamical system, we attach to each particle
internal parameters whose sole function is to determine which of those
two possibilities occurs. In turn the sole effect of the spatial variables
(position and velocity) upon the internal dynamics will be assumed to
be the determination of the times at which the internal parameters
undergo a transformation. We choose the convention that the trans-
formation occurs immediately after a particle leaves a barrier.

We choose as our internal dynamical system one which, though
among the simplest of dynamical systems, has ergodic properties of the
strongest kind (Bernoulli): the Bernoulli shift on an alphabet of 2 letters
each with weight J, £(i>i)> which is equivalent to the baker's trans-
formation [9]. It is also natural from the standpoint of the theory of
Bernoulli shifts to require that the spatial dependence upon the internal
space should be measurable with respect to the partition which deter-
mines the entire ergodic structure of the internal dynamics, the
independent generator [10]. This is the 2-element partition of the
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baker's square into a left side and a right side (of the same area). The
dynamics can therefore be described as follows: a particle moves freely
until it comes to a barrier; if its internal parameters lie in the left side
of the baker's square the particle is reflected, otherwise it is transmitted.
In either case the internal variables undergo a baker's transformation,
and the particle moves on freely until it reaches another barrier.

Since the particles are non-interacting nothing would be gained from
a purely dynamical point of view by our considering an infinite system
of particles we are considering an infinite system because we are inter-
ested in ergodic properties. Thus we must specify an invariant probability
measure on the phase space. Such a measure should be natural from the
standpoint of statistical mechanics, e.g., a limit of grand canonical meas-
ures on finite systems [11]. The simplest measure satisfying these re-
quirements may be described as follows: (a) the (unlabelled) particles
are distributed along the line with a Poisson distribution of density ρ,
(b) the internal and velocity spaces associated with a particle at a given
position are independent of the configuration (positions) of the particles,
of the spaces associated with other particles, and of each other.

We note that whereas it is only in the infinite case that the ideal
gas becomes ergodically interesting, our system, since it has a non-
trivial dynamics, is ergodically interesting even for a single particle.
We shall therefore investigate this problem first.

3. Ergodic Properties of One-Particle System

Let the barriers be situated at integral positions. Choose the unit
of time so that the absolute value of the velocity of the particle is unity.
(The speed of the particle is a constant of the motion.) The only modi-
fication of the description in the preceding section is that we now take
for our external space IR/nZ, the real line modulo some integer n, instead
of 1R, i.e. the particle moves on a circle L of length n. This is necessary
because we wish to have a normalized spatially homogeneous invariant
measure.

We thus have the following dynamical system τ = (X, Σ, μ, St): The
phase space X = ΪR/nΈ®{i, —1}®£, where B is the baker's square.
The Σ-algebra Σ = ΣL®P{i, — 1}®ΣB where ΣL is the Σ-algebra of
Lebesgue sets of the real line modulo n, P{1, — 1} is the power set of
{1, -1} (regarded as a Γ-algebra), and ΣB is the Γ-algebra of Lebesgue
sets of the baker's square. The measure μ = μL®μ2®μβ^ where μL is
the normalized Lebesgue measure on ΓL, μ2 assigns mass \ to the points
of {1, — 1} and μB is the normalized Lebesgue measure on the baker's
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square. St is a measurable flow on X such that for t < i we have

1 (x + vt, v, ξ), if Zn [(x, x + t;ί)u(x + vt, x)] = 0

(m + £0t;(ί-|m-x|),£oί;,r£),

if Zn [(x, x + ϋί)u(x + vt, x)] = m .

Here x e IR/nZ, ι? e {1, — 1}, ξ e #, T is the baker's transformation, and
ξk= ±1 is the feth coordinate of the Bernoulli representation of ξ [9].

One easily checks that the above does in fact describe a dynamical
system, and in particular that μ is invariant under St. However, it is
not difficult to see that this dynamical system is not mixing; in fact, Ŝ

n- 1

is not even ergodic. If A= (J (fc + i, fc + f) then A®[I, —i}®B is a
k=Q

subset of X, invariant under S1? with measure |. More generally, all
periodic functions of IR/nZ symmetric about the point x = \ are invariant
under Sί.

The failure of τ to possess strong mixing properties is not very sur-
prising; the breakdown occurs in precisely that "part" of τ which is in
no way affected by the good mixing properties which we built into the
collisions. To be more precise, let us define a bijection α from X to
X' = {0, ...,n- 1}®[0, 1)®{1, -1}®5 as follows: Let m be the posi-
tion of the last barrier with which the particle in the dynamical state
ueX has collided. Let £ 0<0 be the time when the last collision has
taken place; ί0 > — 1. Then α(x, v, ξ) = (m, |ί0|, υ, ξ). Thus α, regarded as
a mapping defined on the configurational part of X, can be thought of
as a transformation from the position coordinate x to coordinates (ra0, δ)
which describe the location of the barrier from which the particle is
departing and the distance of the particle from this barrier, respectively,
α determines, in an obvious manner, a dynamical system τ' which is
isomorphic to τ. Letting S't be the image of St under α, we have

I (m,δ + t , v , ξ ) if O ^ f < ! - < $ ,

(m + υ,(δ + t)modl,ξ0Ό,Tξ)

if l ^ f > l - < $ .

We thus see that S't acts in a trivial way upon [0, 1) (the second term in
the product defining X'). Indeed τ' can be factored into a skew product
with a rotation for its first component:

S;(<5, ω) = (δ +1) mod 1, φ*ω), δ e [0, 1),

ωe{0, ...,n-

in an obvious manner.
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Note that although φf does not form a one parameter group, its
value changes only when t = k — δ,keΈ, and φδ

k = (φ\}k = (φl)
k, since

φ\ is independent of δ. Thus τ "factors" into the product of a rotation
and an essentially discrete (space and time) dynamical system τ' in
which all of the ergodic activity occurs. We investigate such a system
in the next section.

4. Discrete One Particle System

The discrete dynamical system τ' can be described as follows :

τ' = (*',r,/Γ,S')

X' = TLn (x) { - 1 , 1 } (x) B , (Έn is the set of integers mod n)

where υ = ± 1 and Σf and /Γ are obvious.
Since we are now dealing with a discrete system, the velocities are

somewhat unnatural. Therefore, instead of investigating τ' we will in-
vestigate an apparently simpler system τ which has the same ergodic
properties as τ'. τ is obtained from τ' by dropping the velocity part of
phase space and making the appropriate modification of the dynamics;
τ is, in fact, isomorphic to τ'.

We let τ(n) = ( X , Σ , μ 9 S ) where X=_B®In, Σ and μ are the corre-
sponding Σ-algebra and measure, and Sx = S(ξ, k) = (Tξ, k + ξQ). τ(n) is
thus a skew product of a Bernoulli shift with a rotation on the integers
mod rc. The dependence of the rotation on ξ is measurable with respect
to an independent generator of B [10]. It is known [10, 12] that such
a system is Bernoulli if it is mixing. We will here prove as a special
case the following:

Theorem 4.1. τ(n) is Bernoulli if and only if n is odd. (For n even τ(n)
fails to be mixing.)

Proof. Let Mn be the Markov shift on Έn with transition probabilities
πjk = Ί(δj,k+ι +<5/,Λ-ι) and stationary distribution pk=i/n (random
walk). Since a mixing Markov shift is Bernoulli [10], the theorem
follows from 2 lemmas :

Lemma 4.2. τ(n) is isomorphic to Mn.

Lemma 4.3. Mn is mixing if and only if n is odd.

Proof of Lemma 43. A Markov shift is mixing if and only if the mth
order transition probabilities π™k approach (in the limit w-*oo) the
stationary distribution pk [13].
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For a Markov chain on a finite state space this condition holds if
the chain is irreducible and aperiodic [14]. (A chain is irreducible if
every state has a nonvanishing probability of being reached from any
other state. A chain is aperiodic if every state has Period 1. If v is the
largest integer such that π"7 is nonvanishing only for n an integral multiple
of v, the state j is said to have period v.)

It is clear that Mn is irreducible for all n. For n even all states have
Period 2, since the states can be partitioned into an "even" class and an
"odd" class in such a way that (one-step) transitions always involve a
change in class. For all n we have π^ ̂  0, so v rg 2. Since by jumping to
the right on each transition the system will eventually return to its
initial state, we have v = 1 for n odd. Thus for n odd Mn is aperiodic
and the lemma is established.

Proof of Lemma 4.2. One easily checks that

is a Markov generator [10] for S, having the same conditional proba-
bilities as Mn. (The isomorphism (modO), α, determined by Pn is easily
seen to map every point xeX into its trajectory {ηk}εΈ%. Equipped
with the measure jnduced by α, Έ% becomes the measure space of Mn

and the image of S under α is clearly the shift on trajectories.)
In the next section we will have occasion to use a general criterion

for determining whether a countable family Γ of measurable subsets
of a Lebesgue space [15] (X, Σ, μ) generates Σ. A necessary and sufficient
condition for Γ to generate (modO) is that the decomposition ζ(Γ) deter-
mined by Γ be the decomposition of X into points (modO); i.e., that
there exist a set A of full measure such that for any x, y e A there exists
Γn 6 Γ for which x e Γn, y φ Γn or y e Γn9 x φ Γn [15]. For the case that Γ
is generated from a (finite) partition P by the transformation T this
condition reduces to the requirement that the mapping from points to
trajectories determined by (P, T)_be injective (modO). It is trivial to
check that for the system τ(ri), (Pn, S) satisfies this condition (everywhere).

5. Ergodic Properties of Infinite Discrete System

We have now descended as far as we will go in the direction of simplifi-
fication, and we will now begin an ascent to the general systems with
which we are primarily concerned. We investigate a system τ^ which is
essentially the thermodynamic limit of the model of the previous section.
(Since the particles are non-interacting in all of the models which we
consider, there is nothing to be gained by considering a system with
several particles.) We expect the infinite system to have "strong" ergodic
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properties, having found finite systems for which this is the case and
remembering that the thermodynamic limits of some trivial systems (i.e.
the ideal gas) possess these properties. _

The system τ^ρ) = (X^, Σ^, jϋ^fe), S^) can be most easily described
by means of a Poisson construction. In general, given (X, Σ, μ, T), an
automorphism of a totally σ-finite non atomic measure space, we may
obtain a probability space (X^^Σ^.μ^) with automorphism 7^, the
Poisson system built over (X, Σ, μ, T), by means of a Poisson construction :
We let X^ denote the set of countable subsets of X. For any A e Σ we
define a function N(A) by

for xeXy, and where "φ" denotes "cardinality of. We then let Σ^ be
the Z-algebra generated by all the N(A)1, and we let μ^ be the measure
for which each N(A) has a Poisson distribution with mean μ(A) (i.e.,

and for which disjoint regions of X support independent Σ-algebras.
(ΣA, the Σ-algebra supported by A, is generated by the random variables
N(B) with B C A). Finally, for x e X^ we let

where on the right side of the equation we explicitly regard x as a subset
of X. That T^ preserves μ^ follows easily from the μ-preserving nature
of T, as will be illustrated in the proof of Theorem 5.1.

We now identify τ00(ρ) with the Poisson system built over the gener-
alized baker's transformation (B^, Σβχ, ρ/fg^, T^)2, where

ί=00

with δi = (B, ΣB, μβ), the measure space of the baker's transformation,
for all i._ Identifying B^ with E®TL, etc., we will write Bt for J5®ί, and
define T^ by T^ξ, m) = (Tξ, m + ξ0). T^ has a simple geometric repre-
sentation: Recall that the baker's transformation can be described
geometrically as a two step process:

Now if we perform the baker's transformation independently on a doubly
infinite array of baker's squares and follow it with the simultaneous

1 Any set A to which we shall henceforth refer is to be understood as measurable (e Σ).
2 We will usually delete the reference to ρ in τ^ρ).
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translation of the top half of each resulting square one unit to the right
and the bottom half one unit to the left, we obtain T^. We thus have
the following "picture" of 7^:

This auxiliary system is, of course, simply a one particle component of
τ^, i.e., the infinite volume (w-»oo) limit of the τ(nf.

We shall now show that the natural requirements of a) independent
probabilities at different sites (since there are no interactions) and b) the
homogeneity of the baker's square, i.e., if A, D C Bi with μB(A) = μB(D\
then N(A) and N(D) are identically distributed, make μ^ the only
"reasonable" invariant probability measure for this problem. While
this is in agreement with our intuition it is not immediately obvious
that the number of particles at a given site must have a Poisson distri-
bution. That this is so is proven in the following theorem.

Theorem 5.1. μ^ is the unique τ ̂ -invariant probability measure on
ΣOO for which we have:

a) The ΣB., z = 0, 1, — 1 ..., form an independent sequence of Σ-
algebras.

b) The distribution of N(A), AcBh ie2£, is determined by μ^J^A)
(and i) and satisfies (N(A)} = ̂ dμ^x) [ΛΓ(A)] (x) < oo.

Proof. We note that

[ET * x)

and that

({x e Xoo I [ΛΓ(D)] (x) = m) = {Soo

(S - ix) = m} =

(x) = m}

0 D)] (x) = m} .

It now follows from the area (μgj preserving property of T^ that any
measure for which the joint distribution of any finite sequence of random
variables of the form (N(Di)}, where {DJ, i e Z, is a sequence of pairwise
disjoint subsets of B^, depends only on the sequence of areas {μg^D,.)} is

3 One easily verifies that
described in Section 2.

is equivalent to the discrete analogue of the system
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invariant under S^. μ^ is thus invariant (since {N(D)} is Poisson with
constant density).

To prove uniqueness it is sufficient to show that ΣA is independent
of Σc when Ar\C = 0. We can assume that A and C are both subsets
of BQ. If A0 and C0 are distinct atoms of

V
k=-n

there exists 7 ej[-n,n+ 1] for which T^AQCBl and T^C0cBm, lή-m.
Thus ΣfjU0 = Sίo^o is independent of SJ

aDΣc0 = ΣfloCo so that, by in-
variance, ΣAo is independent of ΣCo. By an induction on n one verifies

N

that for any N, and for 4' and B' disjoint unions of atoms of \/ TjP,

ΣA. is independent of ΣB>. Because <JV(D)> = <N(E)> for μ^φ) = μs^CE),
Λ/"(D) = 0, a.e., if μsjβ) = 0. Thus, since P is a generator for T, 1̂  must
be independent of 1̂  for ^nB = 0. Since <N(Bf)> clearly equals <JV (£,-)>,
we are done.

Using methods similar to those used above, we prove the following:

Theorem 5.2. τ^ is mixing.

Proof. Let α = {α }, 7*6 J and β={βk}, keK, be finite families of
_ N

disjoint subsets of B^ such that \J α7 and (J jβfc are contained in (J Bt

jeJ keK M i=-N

for some N. Let any set α k e α be an atom of \/ T7F for some M
j=-M

and — N ̂  i < AT, where Pl is the partition of Bt corresponding to the
partition P of B. Let

- Wj for all

J^Wk} = {x e ̂  1 7V(ft) = mfc for all keK}.

We have S^X^ = X^ Also f^ α is a family which is independent
of the "future". Thus fcf°

+m, m= 1,2 ... induces a random walk on a
point uniformly distributed over an element of α. We can,_therefore,
use the central limit theorem to find an N so large that for N ̂  N

We can now use the independence of N(A) and N(Q for AnC = 0 to
conclude that

= lim
H-» 00
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Since finite unions of sets of the form X^j} are dense in Σ ̂  we conclude
that τ^ is mixing.

We will now show that τ^ is a K-system. We first review the definition.
A continuous Lebesgue space (X, Σ, μ) equipped with an invertible meas-
ure preserving transformation 5 is said to be a K-system if there exists a
measurable partition ζQ, called a ^-partition, such that [15-18]

1) S"C0 = Cn^Co(modO) for rc^O;

2) V£«~ε(m°dO)> where ε is the partition of X into its elements;
n

3) /\ζn = v(modθ), where v is the trivial partition of X whose sole
n

element is X itself.
If {S1} is a measurable flow on (X, Σ, μ) and if in the above definition

we replace "n" by "ί", we obtain the definition of a K-flow.
We have already shown that the single particle system τ(n) is Bernoulli,

which implies that it is a K-system, for n odd. Let Σ'n be the Σ-algebra
generated by the S*PΠ, fc^O, where Pn was defined in Section 4, and let
ζ(Σ'n) be the partition determined by the family of sets of the form S\Pπ>ί,
fc^O, Pni G Pn [15]. It is easy to see that ζ(Σ'n) satisfies l)-3). 1) is trivial,
2) is equivalent to the fact that the S*PΛ, k^TL generate (see final para-
graph of Section 4), and 3) follows from the fact that for n odd the tran-
sition probabilities approach the values of the stationary distribution.
(That the partitions which we encounter are measurable and that the
spaces are Lebesgue are easily verifiable in each case [19].) ζ(Σ'n) can be
described as that partition for which x ~ x', i.e., x = (ξ, m) and x' = (ξf, m'}
belong to the same element of ζ(Σ'n), when m = mf and ξj = ξ'j for j ^ 0.

We now introduce some notation for partitions oϊ_X^. Let y be a
partition of B^. We denote by ζ[_y] the partition of X^ generated by
functions of the form N(D), DεΣ(y)cΣSoo [15, 16]. Let γ denote the
partition for which Bt e Σ(y) for all i and which when restricted to each
BI is "identical" to y (a partition of B). We write ζ[y] for £[y]. We denote
by 70 the partition of B into vertical line segments, i.e., ξ~ξ' when
ξj = ξ'j for j^O. We recall that y0 is a K-partition for (B, ΣB, μB, Γ).
We shall now show that CLVo] ^s a K-partition for τ^.

Theorem 5.3. τ^ is a K-system.

Proof. We will show that ([70! satisfies l)-3). We observe that

a) S»)ζ[y] = ζ[fiy],W6Z
and _

b) ^oCM = C[T"y], n E Z + , y a partition of B, and y ̂  P.
1) Is an immediate consequence of b) and the corresponding property

of y0. Similarly, 2) follows from b) and the fact that \/ Tny0 = &B (modO):
n

for x + yeX^, there exists an N and a set A such that [N(AJ] (x)
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N

Φ [N(A)~] (y), A e V TJpi for some ί<e^ τhus * is separated from

y by C[TN

7o] and hence by V^C[70] Hence VMyo]=β( = V

• C[T"y0] = C V τ/>o] = ί M (modO).

We_now give a (somewhat) heuristic argument for 3). Let
σn = Σ(Snnζ[y0]) and let σ= f) σ". To establish 3) we must show that

n

if yl e σ we have μΌoC4) = 0 or μ ̂ (A) = 1. Let Fn be the Σ-algebra generated

by IN(D):DC 0 β;j Let F= (J Fn. We would like to show that if
[ i--n J «>0

C e F and if ,4 e σ then μ^(Ar\C) = μ^(A) μ^(C). From this the theorem
would easily follow, because for any Aeσ [recalling that Σ^^I^F)]
we can find a sequence {An} for which AneF for all n and lim JI00(AnΔA)

n— > oo

= 0. We then would have

= lim μ
n-^ oo

= ]ίmμao(A)JϊOD(An)=[βao(A)']2

9n~* oo

so that we would have μ^(A) = Oorμao(A)=ί.
_ We now use a) to obtain the structure of the σn. Recall that y0 partitions
B^ into "vertical" lines. Hence T~nyQ partitions B_^ into unions of 2"
vertical lines in such a way that the image under T~ n of a line in B0 is
a set of lines scattered among the Bt with a random walk distribution
(i.e., the number of lines in Bj is p"2", with p" the rc-step 0->j random
walk transition probability). We can thus use the central limit theorem
to find an N such that for any A e Σ(T~^γ0) we have

i= -M

(given ε and M). Thus given any β e F and any ε > 0, we might expect
that there would exist an N such that for any αe σN = Σ(ζ[T~Nγo]) we
would have

Thus for α e σ we would have μ^(aπβ) = μ(α) μ^(β) for any jβ e F, and
the proof would be complete.

The difficulty in the above argument lies in showing that * is valid
uniformly as α ranges over σ". We bypass this difficulty by using Doob's
martingale theorem [20] to directly establish 3). We need the corollary
of Doob's theorem which asserts that for a decreasing sequence of

Z-algebras, Σn\,Σ0, and a measurable set A we have

limμ(A\\Σn)(x) = μ(A\\Σ0) a.e.,
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where μ(.||.) denotes conditional measure (with respect to an arbitrary
Σ-algebra; see [13], Chapter III).

We want to verify that σn |v. Since μ(A\\Σ) = μ(A) a.e. if and only
if Σ = v (modO) we must show that for A e Σ^ we have

lim μ^A \\ σ") = μ^) a.e. **
n-> oo

But, by virtue of the remarks at the beginning of the paragraph before
the preceding one, it is not difficult to see4 that ** is satisfied by ^_of
the form X^} [see proof of Theorem IV.2] and hence by all AeΣ^
so the proof is complete.

6. Ergodic Properties of Infinite Continuous System

The continuous case can be treated similarly to the discrete case.
We will therefore limit ourselves to a few remarks, omitting details.

In the previous section we indicated how the systemτ^f^Γ^, /Γ^, S^),
can be obtained by a_Poisson construction from the non-nprmalizable,
one-particle system (B^, Qμg^ T^). The auxiliary space B^ could be
regarded as a product of the baker's square with the discrete space TL.
The continuous models τVtρ = (Xαo, Σ^, μv,ρ, St)9 where v is an even
probability measure on 1R, the velocity space of the particle, absolutely
continuous at the origin, are flows which can be obtained by a Poisson
construction from the auxiliary system (Bm, μβoo(ρ, v), 7J); B00 = B®ΪR2

and dμBoo = dμB ®ρdq ®dv. We have chosen v to be absolutely continuous
at the origin so that the probability of finding a particle at rest in any
given (finite) interval will vanish.

As already suggested by our notation the only "physically reasonable"
invariant probability measures on Σ^ are of the form μv > ρ, v an even
probability measure on R Letting β denote a Maxwellian measure on
R with inverse temperature β, i.e., β(A) = }/β/2π J e~*βυ* dv, AclR

A

(taking the mass of the particles to be unity), we obtain a family of
"states" { μ β ί ρ } natural from the standpoint of statistical mechanics
(since they are infinite volume limits of grand canonical ensembles).
The presence here of more general invariant measures corresponding
to different velocity distributions is due to the fact that the velocities
play a trivial role in the "collisions".

4 The convergence ofμ^A || σ") is a tail property, i.e. lim μm(A \\ σ"), which by Doob's

theorem exists a.e., is measurable with respect to Σc for C the complement of any bounded
subset of Bm. Thus, by the zero-one law for tail events [21], lim μ^A \\ σ") — μ^A \\ σ) is

constant, a.e.
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The partition of X^ which corresponds to the partition C[y0] has
the property that two points x and x' 6 X^ belong the same element of
this partition if they differ at most by values of some "past" Bernoulli
coordinates. In essentially the same way as for C[yo]> this partition is
seen to satisfy the conditions by virtue of which it is a K-partition. We
thus have:

Theorem 6. τv Q is a K-flow if v is absolutely continuous at the origin.

7. Ergodic Properties of a General Class of Infinite Systems

We are now ready to generalize the results of the last two sections.
We will do this by establishing a theorem relating the ergodic properties
of a general (base) system (X, μ, T) to those of (X^, μ^, T^), the Poisson
system built over (X, μ, T). The theorem will concern (base) systems
which share with (B^, μ^, T^) certain key features. In particular_we
observe that the group TL of integers, acting in the natural way upon B^,
preserves μ^ and commutes with T^. We can thus "reduce" (B^, μ^, T^)

n

to a set Bn = (J Bt by replacing B^ = B®Έ by B®Έ2n+v (Έn denoting

the integers considered modulo n); we obtain in this way (after normal-
izing the induced measure) the one particle periodic systems τ(2n + 1),
which we have shown, Theorem 4.1, to be K-systems (in fact, Bernoulli).

Let X have a representation as IR2 with μ defined on Lebesgue sets.
(We make this assumption for the sake of convenience of expression the
appropriate generalizations of the definition we give should be clear.
We could, in particular, take (X, μ) to be the product of (IR2, μR2) with
any probability space and proceed in the obvious manner.) Let T be an
automorphism of (X, μ) and let the representation be such that there
exist α, be lR for which G(a>&), the group generated by (x,y)-+(x + a,y)
and (x, y)-+(x, y + b\ preserves μ and commutes with T. Let R0 = {(x, y)
e J R 2 | 0 ^ x < α , 0 ^ y < b } and let us call the translates of jR0 by the
elements of G(a>b} basic rectangles. Let us call rectangles which are unions
of basic rectangles compound rectangles. For any compound rectangle
R with sides of length ja and kb let τR be the dynamical system obtained
from (X, μ, Γ) by replacing X with X modulo G(ja^kbr We will say that a
sequence Rt of rectangles converges to infinity if the sequence of lengths
of the largest side converges to infinity. (X, μ, T) will be said to be of
periodic K-type if τRo has finite entropy5 [22], T(jR0) is bounded, and

(K) there exists a sequence Rt of compound rectangles converging to
infinity such that each of the systems τRι is a ^-system.

5 By virtue of Kouchnirenko's theorem, all classical dynamical systems have finite
entropy [1].
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(X, μ, T) will be said to be of periodic M type if
(M) there exists a sequence Rt of compound rectangles converging to

infinity such that each of the systems τR. is mixing.
We can now state

Theorem 7.1. // (X, μ, T) is of periodic K-type (M-type\ then (X^,
μ^, TOO)? ίs a K-system (mixing).

Proof. It follows from (M) that for bounded subsets A and B of 1R2,

lim μ(TΛBnA) = Q.
«-*• oo

The "mixing" assertion then follows from an argument similar to the
one given in the proof of Theorem 5.2.

Let Coo be the partition of X^ according to the number of particles
in each of the fibers of a partition ζ of X. We have seen in Section 5
that (yo)^ is a X-partition for τ^, where y0 is the partition of B^ into
"vertical" line segments. Letting P^ be the partition of B^ whose elements
are the B{ (i = 0, 1, — 1,...), we recall that B^ can be identified with the
set of possible P^-names (what we have previously called "spatial"
trajectories) [10], and that y0 can be identified with the partition of

- / / °° _ \\
B^ according to "future" P^-names C V τάjp«> We further recall

\ \/=o //
that a key element in the proof of Theorem 5.3 was the observation that
by virtue of the central Hmit theorem the fibers of y0 expand toward
infinity; i.e., the fiber of T~nγQ containing a (fixed) point xeB^ grows
(monotonically) with n in such a way that the fraction of the fiber inter-
secting any fixed bounded region AcB^ approaches zero.

For the problem at hand we proceed similarly. We let β0 be the
partition of X into basic rectangles and let Q be a finite partition of
R0 which is a generator for τRo. (Since τRo has finite entropy, Krieger's
theorem guarantees the existence of such a partition [23].) We then
obtain Q^ by forming the "product" of Q0 and Q: the atoms of Q^ are
obtained by decomposing each atom of Q0 according to Q. Finally we
let our base-K-partition ζ be the partition of X according to future
Q^-names. Now the proof that ζ^ is a X-partition for (X^, μ^, T^) is
similar to the proof of Theorem 5.3. We need mention only that since,
by virtue of (K) and the boundedness of T(JR0), the restriction of ζ to
any of the rectangles Rt is a K-partition for τRi, finite partitions of K
systems having trivial tails [24], the martingale convergence theorem
applied to the τRι implies that the fibers of ζ expand toward infinity6,
permitting us to infer that the analogue of ** (see proof of Theorem 5.3)
is valid for (X^ μ^, TJ.

6 To define precisely the concept of expansion toward infinity, we use the canonical
systems of measures possessed by the T~nζ [15].
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We conclude by using Theorem 7.1 to prove that a Lorentz gas [25]
forms a K-system. Sinai has shown that (apart from possible pathological
situations) the motion of a particle in a two dimensional rectangle, with
periodic boundary conditions, containing convex barriers from which
the particle, which otherwise moves freely, undergoes elastic collisions
induces a K-flow on the unit tangent bundle of the rectangle [2]. Thus
the dynamical system representing the motion of a particle in a two
dimensional (nonpathological) periodic array of convex barriers (at unit
velocity) is of periodic K-type. Hence, the Lorentz gas, which is an
infinite gas of such particles, all moving with the same speed, with a
Poisson configurational measure on regions unoccupied by barriers, is
a K-system for any discrete time evolution.

The thermodynamic limit of a grand canonical ensemble, which
corresponds to having a Maxwellian velocity distribution, is not built
over a system of periodic K-type (since the speed of a particle is a constant
of the motion). We can however use an argument similar to the one
given above to conclude that it, too, is a K-system; we choose as our
base-X-partition ζ the union of the partitions ζ(s) (selR+), the base-K-
partitions on the surfaces of constant speed, and use the fact that such
surfaces "support" systems of periodic-^-type. (Here we are ignoring
the technical problem of showing that the partitions ζ(s) can be chosen
in such a way that their union is a measurable partition. We also observe
that although we have shown that our Lorentz gas is a K-system under
any discrete time evolution, we have not shown it to be a X-flow, though
an approach similar to the above could probably be exploited to establish
this result as well.)

8. Remarks

We observe that though the infinite ideal gas and the infinite Poisson
systems τ^ built on base systems which are of periodic K-typQ are both
jf£-systems, there is certainly a sense in which the "mixing" which occurs
in τ^ is of a less trivial nature than that which occurs in the ideal gas.
(Recall that we require that certain finite submodels of τ^ be X-systems.)
This difference is perhaps reflected in differences in the ^-partitions
for the respective systems. Two points, x and x', in the phase space of
the ideal gas belong to the same element of its K-partition if the points
x and x' obtained from them by deleting all particles outside some region
of the auxiliary space coincide, suggesting, perhaps, the "nonlocal" nature
of the dissipation of distrubances7. Two points, y and /, of X^ belong

7 The infinite volume ideal gas can be obtained by a Poisson construction from the
system (Rd<g)lR1', (β/2πf2 exp(- ±βυ2) dq dv, T*)t where T*(q, v) = (q + ι>f, υ). Let A = {(q, v)
eIR d (B)IR d :g 1 +u 1 ί = 0 for some ί^O}. One easily verifies, using, e.g., the zero-one law
for tail events [21], that ζ(ΣA) is a K-partition for Tt*.
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to the same element of its K-partition if the points y and yr obtained from
them by factoring out some of the structure of the space X coincide,
suggesting, perhaps, a "local" mechanism for the dissipation of disturb-
ances.

This difference can be made more precise by considering in addition
to the time evolution also the action of space translations. The ergodic
properties of the system under the action of this spacetime group are
very different for the ideal gas and the systems considered here, the latter
being much more strongly ergodic. This will be considered in a separate
publication [26].

We conclude this section by showing that our obtaining a K-partition
of a very different nature from that of the ideal gas was unavoidable
for the model systems considered in Sections 5 and 6. Denoting the
one-particle (unit time evolution) ideal gas system by (X1, T1), we observe
that from its X-partition we can easily construct a partition F = {Ft} of
X1 such that T1 Fj = Fj+ί. It is easy to see that the existence of such a
partition of the auxiliary space of a Poisson system implies that the
system is isomorphic to a Bernoulli shift8. We will show that though
the systems we have considered may be Bernoulli, they are not of the
above type.

Theorem 8.1 . Let T be an automorphism of the measure space (X, μ).
If there exists a set A of finite positive measure almost all points of which
return to it infinitely often, then we cannot partition X into {Ct} in such
a way that T Cj = Cj+1.

Proof. Assume we have such an A and {CJ for which μ(^4nC0) >0.
Let Rn denote the set of elements x e A for which Tnx e A. Then the
Tn(A n C0 n ΛJ C 4 n Cπ are disjoint so that

But

XμμnC 0 nΛ π )= J^X%[^nC0nRJ(z)= J
n X n AnC0

where R(z) is the number of integers n for which TnzeA, and χ[D] is
the characteristic furiction of D C X9.

Since in a symmetric random walk in one and two dimensions a
particle will with probability one return to its original position infinitely
often [27], the above theorem applies to the auxiliary space of the models
we have considered in Sections 5 and 6. (For τ^ we can set A = B0.)

ΣFo is an independent generator for T1, since T1 ΣFj = ΣFj +1.

This argument is due to Oscar Lanford.
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We observe that all that is required for the above argument is that
the measure of the subset of A whose points return to A infinitely often
be nonvanishing. If this is not the case we will say that A is nonrecurrent.
Strengthened in this way, the theorem admits of a partial inverse.

Theorem 8.2. Let μ be totally σ-βnite. If all sets of finite measure are
nonrecurrent there exists a partition {CJ of X for which TCk = Ck+1.
(Hence the Poisson system built over (X, μ, T) is isomorphic to a Bernoulli
shift.)

Proof. We have X= (J Dn, with DncDn+ί and μ(Dn)< oo for all n,
n

for some sequence {Dn}, n^i. Let En be the set of points which will
eventually be in Dn. Let Fί = El and Fn = En — En_ 1? n > 1. Let / be the
measurable function from X to Έ such that for x e Fk, f ( x ) is the largest
integer n for which Tn(x)εDk. f is defined almost everywhere, and
f(Tx) = f ( x ) — 1. We therefore obtain a partition {CJ satisfying
ΓQ = Cί + 1 by setting Cj={x\f(x)= -j}.

Since all the states of a random walk in more than 2 dimensions
are transient [27], the above theorem is easily seen to apply to the
(auxiliary) space representing such a random walk. Furthermore, the
analog of the K-partition of τ^ is easily seen to be a K-partition for
the Poisson system built over a random walk (path) space in any finite
number of dimensions (with infinite stationary measure)10. Thus a
random walk in more than 2 dimensions provides a basis for a system
in which a K-partition of the ideal gas type and a K-partition of the
^oo tyPe are present simultaneously.

These remarks apply as well to the higher dimensional generalizations
of the continuous system τv ρ considered in Section 6; the two dimensional
generalization of the periodic field of barriers could be taken, say, to be
a square grid from which particles are either reflected or transmitted
according to the same rules as in the one dimensional case.
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