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Abstract. We discuss the classical two-body scattering problem for potentials which
decrease at infinity like r~α, 1 ̂ α > 0 . We prove existence and uniqueness theorems for
scattering orbits parametrized by their asymptotic data. Wave operators are constructed
and their properties discussed. We also discuss and prove cluster properties of the S-operator.

I. Introduction

A few years ago, Buslaev and Matveev [1], following Dollard's [2]
example in the case of the Coulomb potential, constructed generalized
wave operators for the quantum two-body potential scattering problem
with potentials which decrease slowly at infinity (i.e. faster than r~α

for some α > 0). (See also Ref. [3] for α ̂  3/4.) This problem has also been
attacked by Alsholm and Kato [4] who rederive the results in [1] with
less restrictive assumptions.

In this paper we examine the same problem in classical mechanics.
We feel that a more fundamental appreciation of many aspects of the
quantum mechanical situation can be gained through an understanding
of the corresponding classical problem.

Our formalism is essentially that of Simon [5] who considers the
corresponding short range case. (See also Refs. [6,7] where another point
of view is taken.) Thus we consider the time development of the system
directly in phase space and define a scattering state as one in which the
orbit in phase space is unbounded both as ί-»+oo and £-• — oo. In
Section II we prove existence and uniqueness of scattering solutions
parametrized by certain asymptotic data. These are the asymptotic
momentum and a three-vector describing how for apart the orbits are
asymptotically.

In Section III we introduce additional assumptions concerning the
behavior of the derivatives of the potential, V(x\ at infinity which enable
us to construct a certain quasi-free time evolution Ut

{0). The operator
Ut

{0) approximates the full dynamics, Uί9 well enough asymptotically so
that the transformations Ωt=U-tUt

{0) converge on phase space as
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t -• + oo. This defines the wave operators Ω± = lim Ωt. In contrast to
ί-*±oo

the short range case, t//0) is not an approximation to Ut which gives
UtΩ+ — Ut

(0)-^0 for ί-»±oo. We make a conjecture about how this
property will be mirrored in quantum mechanics.

With the iS-operator defined as S = Ω+1Ω_, in Section IV we con-
sider the large \a\ behavior of T(—a)ST(a\ where T(a) translates the
spatial coordinate of a point Q = (JC, p) in phase space by an amount
a : T(a) Q = (x + α, p). In the short range case, the expected result is that
for directions, α, away from the forward direction, p, T(—a) ST(a) Q ->Q.
These expectations are borne out as we show. In contrast, for the long
range case this result is characteristically false. We derive an explicit
formula for the limiting behavior for a large class of long range potentials
and discuss the probable consequences in the quantum mechanical case.

II. Existence and Uniqueness of Scattering Solutions

In the following we are interested in solutions of Newton's equation

i (t) = F(*(ί)) (II.1)

with forces satisfying the following conditions which we always will
assume hold:

F(x) = - (VV) (x) with lim V(x) = 0, (II.2)

F(x) ^fc(l + | x | ) " 1 " α , α > 0 , α - 1 Φinteger , (II.3)

If in Eq. (II.3), α > 1, results which are analogous to those for short
range forces in quantum mechanics (Q.M.) follow if ( l + x ) ~ 2 ~ α in
Eq. (II.4) is replaced by (1 + x ) " 2 " ε with ε > 0 [5]. This is essentially the
definition of short range force used in Ref. [5]. In the case α < 1 (which
we consider in this paper), the fact that a in Eq. (II.3) is the same as in
Eq. (II.4) entails no loss of generality but keeps the bookkeeping to a
minimum (note that (II.4) along with lim F(x) = 0 implies (II.3)). This is

χ-»oo

also the reason for demanding α - 1 φ integer, for here we avoid the
appearance of logarithms in estimates which follow. The prototype force
satisfying these conditions comes from the potential V(x) = (ί + x 2 ) ~ α / 2 .

Note that condition (II.4) certainly guarantees global existence and
uniqueness for the initial value problem [8].

We now define the subsets Σ+QR6 corresponding to initial data
which lead to scattering solutions of (II. 1).
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Thus let Ut be the time evolution operator for the system, i.e.

Ut(xo,Po) = (x(t),p(t)) (IL5)

where (JC(O),p(0)) = (xo,Po)>P(t) = x(t))9 and x(t) satisfies Eq. (II. 1). Then
we define

Σ+ = {(*<>, Po) e R 6 : V(x0) + i/>§ > 0; (x(t% p(t))
(11.6)

satisfies lim |jt(ί)| = oo}
t-* ± oo

Thus Σ+ contains initial data leading to orbits which are unbounded as
t -> ± oo, while the scattering states, Σs9 correspond to orbits unbounded
in both directions. (Note that conservation of energy implies that p(t)
is always bounded.) The lemma which follows partially characterizes the
asymptotic behavior of scattering solutions.

Lemma Π.l. Assume (II.2) through (II.4). Then (xo,po)eΣ+ if and
only if (x(t),p(ή) = Ut(xθ9 p0) satisfies:

lim p(t) exists and is non-zero .
i->±oo

Proof. Certainly if p(t) t^_oo> p + 0, then (x 0,p o)eΣ_. Conversely if

(JC0, p0) e Σ_, it is easy to show that for some t0 < 0 and all t ̂  t0

Since the proof of Eq. (II.8) in [5] needs only a slight modification to be
applicable here, we do not reproduce it. But given Eq. (II.8) we note that
the limit as t -> - oo of

ί

P(t) = Po+ $dsF{x(s))
o

exists and defines the asymptotic momentum, pim

P i n = Po+ fdsF(x(s)). (11.9)
0

In fact we have

P(t)-Ptn= ί dsF(x(s))=Θ(\tΓ). (11.10)
— oo

This proves the t -• — oo part of the lemma. The proof for t -• + oo is
exactly the same.

The parameter, pin, defines half of the asymptotic data at t= — oo.
A clue as to where to look for the rest comes from the next lemma, where
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we examine the difference, x2{t) — xί{t\ between orbits with the same
asymptotic momentum.

Lemma II.2. Assume (11.2) through (II.4). Then if (jc^O^p^O)) and
(JC2(O), p2(0)) are in Σ±, and both satisfy

lim Pi{t)-p = O; ΐ = l , 2 (11.11)
t-> ±00

then as t -> ± oo
1-«) (11.12)

and there exists a three-vector a such that

\xi(t)-x2(ή-a\ = Θ(\tΓ). (11.13)

// a = 0, then xx(t) = x2(t).

Proof We prove the lemma for ( J C ^ O ) , ^ ) ) ^ , . Let A{t) = x2(t)

A-JCi(ί). Eqs. (11.10) and (11.11) tell us that \A(t)\ = Θ(\t\-a) and thus
Θ{l + \t\1-*). Note that

A(t)= ί ^ ( ^ - F ^ s ) ) ) (11.14)
— oo

and thus for t sufficiently negative

Here we have used Eqs. (II.4) and (II.8). We now reason by induction to
show \Λ(t)\ is bounded for ί < 0 : Assume \A(t)\ = Θ(\t\~n*) for ί ->-αo
with na < 1. (We already know this for n = 1.) Then \Λ(s)\ = Θ(i + \s\ι~na),
and Eq. (11.15) implies \A(t)\ = Θ(\t\'in + 1)oί). This immediately gives the
result that \Λ(t)\ is bounded for ί < 0 , and reference to Eq. (11.15) then
results in Eqs. (11.12) and (11.13). The last statement of the lemma can be
proved in the following way: Let | | J | | Γ = sup|J(ί)|. For T sufficiently

negative, and for t ̂  T Eq. (11.15) gives

1 ^ (Π.16)

and since by assumption A(t) ->0 as t -• — oo, integration gives

. (11.17)

Thus if \T\ is large enough, | | d | | Γ ^ ρ | | J | | Γ with ρ < 1 and thus Λ(t) = O
iϊt^T. The last statement of the lemma then follows from the uniqueness
of the initial value problem.

This lemma has the consequence that if we know one orbit, (xo(t\ po(ή),
with initial values in Σ_ and asymptotic momentum pin, then all other
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orbits with the same asymptotic momentum are uniquely specified by the
asymptotic difference, a= lim (x(t) — xo(t)). However if the force is

t - * - o o

short range, it is not neccesary to subtract from x(t) another solution to
Newton's equation with the same asymptotic momentum. It is well
known that an approximate solution, namely a solution to the free
equation, will do the job. Thus in this case, the limit

lim {x(t)-pinή
t-> - 0 0

exists and along with pin uniquely specifies the orbit [5]. Even though
the above limit characteristically fails to exist in the long range case,
a function z ~ (p, t\ analogous to the function pt can be found for which

lim (x(t)-z-(pinj))
ί-> - 0 0

does exist and which along with pin also uniquely specifies the orbit.
To find this function, it is enough to iterate Eq. (11.10). Thus let

JV = [l/α] (11.18)

and define for n= 1,2,..., N and p Φ 0

zUp,t) = P\ z*(p,0) = 0; z±(p,t) = p + } dsFtf-fas)), (11.19)
±00

z±(pj) = z^(pj). (11.20)

We now state the main results of this section.

Theorem ILL Assume (II.2) through (II.4). Then for each (a,p)eΣ
= {(α, p) e R6 : p =t= 0} there exists a unique

(x±,pϊ)eΣ± with Ut(x±,p5) = (x^p)(tl i£ p ) ( ί ) )

satisfying
limjx^p)(t)-p\ = θ, (11.21)

t\imJx^p)(t)-z±(p,t)-a\ = O. (11.22)

Conversely, if (x$,p$)eΣ±9 then Ut(x$9p$) = (xfctP){t)9xfctP)(ή) for
some (α, p) e Σ.

Proof. We prove only the t -» — oo part of the theorem, omitting the
superscript - for brevity. We first state without proof a property of the
last two members of the sequence zn, which we will need to prove the
theorem: If |p| ̂  ε > 0, then there exist c, δ, t0 all depending on ε, such that
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for t ̂  t0

\zN{j>,t)-zΉ_^i)\^c\t\'-N\ (11.23)

\zN{p,t)\^δ\t\. (11.24)

These estimates can easily be proved by induction and hold uniformly in
p for \p\ ^ ε. We now consider the integral equation

= ί dτ )
~°° ~°° (11.25)

and the set CT of continuous functions y:(— oo, T]-»fl3 satisfying
| | j | | Γ = sup | j ( ί ) | ^ l . We will show that for T sufficiently negative,

( Γ ]
p |

ίe(-oo,Γ]

ψ is a contraction mapping of Cτ into itself. Thus consider the integrand
ofEq. (11.25) for yeCτ:

I(y, s) = F{zN{p, s) + a + y) - F(zN + 1{p, s))

= [F(^(P, s) + a + y) - F(zN(p, s))] + \F(zΉ[p9 s) (11.26)

-F(zN_ί(p,s))'].

For s sufficiently negative, this can be estimated from Eqs. (Π.4), (11.23)
and (11.24) with the result

I{y,s)Scι\s\~1-(N+1)a. (11.27)

Thus for T sufficiently negative,

MjOllr^m1-^1^. (11.28)

Similarly for yί9 y2 e Cτ

(11.29)

Note that the estimates (11.28) and (11.29) are uniform in (α, p) for |p| ̂  ε,
\a\^a0. If \T\ is chosen large enough, then ψ:Cτ-*Cτ and is a con-
traction. Thus by the contraction mapping theorem xp has a unique fixed
point y eCτ. Defining

we note that

i(.,p)(ί) = P + ί dsF(x(a,p}(s)), (11.31)
— oo

and thus Eqs. (11.21) and (11.22) easily follow. Uniqueness follows from
Lemma II.2 since if x(ή — p^>0 and x(ή — zN(p, ί) —α->0, then
•^W-^(α,p)(0^0. Finally if (xo,po)eΣ_, then C/i(jco,Po) = (^(0Jp(0)
satisfies p(ί) ->p for some p φ 0, and in addition, according to Lemma II.2,
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for any a there exists b such that * ( α,P)(0 — x(t) + 6 ->0. Thus if c = a + b,
we easily see that

|*(ί) - x(c,P)(ί)l S \X(c,P)(t) ~ X(a,P)(t) ~ b\ + \xia,P)(t) - x(ή + b\ ->0

and thus again by Lemma II.2, jc(ί) = jc(c p)(ί). Hence the theorem is
proved.

In order to prepare for the construction of wave operators in the
next section, we want to discuss the content of Theorem II. 1 in more
formal terms: We have parametrized the orbits which are unbounded as
t -> + oo using the approximate dynamics E(

t°\

£<0)(α, β) = (α + z± (/*, t)9β)9 ± t > 0. (11.32)

Note that E{

t

0) is a measure preserving transformation on phase space
(it is a momentum dependent translation of the spatial coordinate) which
does not change the momentum. It also commutes with the free
dynamics S[°\

$0\*9β) = (* + βt,β). (11.33)

For any (α,p)eΣ, there is a unique (XQ ,PQ)GΣ± (this defines the maps
W±(a,p) = {x$,p$)) such that

lim ([/,(**, p±) - £ ί > , />)) = 0 (11.34)
ί->-±00

or in other words, on Σ

lim (l/f W± - £ί0 )) = 0. (11.35)
ί->±oo

The maps W± :Σ^Σ± are 1 — 1 and onto; it is also straightforward to
show that W+ intertwines Ut and 5j 0 ) :

In addition, with a further restriction on the derivatives of F(x) it can
be shown that the W+ preserve Lebesgue measure. (We do not give the
proof of this fact.)

We have introduced the transformations W± because if the forces
are short range, the wave operators also satisfy (11.35) and (11.36) (with
£ j 0 ) replaced by S(

t

0)) and also preserve Lebesgue measure. Thus one
might be tempted to call the W± generalized wave operators. We do not
follow this procedure for the following reasons. The operators E[°\
while they are measure preserving, are not in general canonical trans-
formations, i.e. they do not preserve Poisson brackets. This means that
there is in general no unitary analog of E{

t

0) in Q.M. The fact that E{

t

0)

is not in general a canonical transformation has the consequence that the
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W+ are also not canonical transformations and thus very likely have no
isometric analogs in Q.M.

In the next section we will construct wave operators which are
canonical transformations, and which do have isometric analogs in Q.M.
However, this will be accomplished only at the expense of additional
restrictive assumptions on the potential.

III. The Existence of Wave Operators

In analogy with Q.M. where for short range interactions the wave
operators Ω± are defined as the strong limits of e

iHte~iHot as t-*± oo,
we seek a "quasi-free" dynamics l/f

(0) which approximates the full
dynamics Ut well enough so that

Ωt = l/ f-
1 l/f<°> (ΠLl)

will converge as t -• ± oo:

Ω± = lim Ωt. (III.2)
t~* ±00

We impose two requirements on C/t

(0):

(i) Ut

{0) does not change the momentum.

(ii) Ut

{0) is a canonical transformation.

The first requirement is the simplest way of guaranteeing that the
parameter p in the expression Ω_{a,p) = (xo,po) is the asymptotic
momentum (as t-» — oo) associated with the orbit Ut(x0, p0) = (x(t\ p(ή).
The second requirement is a natural one which in Q.M. would guarantee
the unitarity of U}°\ Note that iff/' = Ho + U is the Hamiltonian associated
with C//0), then because of the first requirement U must be x independent.
Thus U = U(p, t). Hamilton's equations then become

j , = 0, x = p + VpU(p,t).

Thus
U}0)(a,p) = (a + x(p,t)9p) (ΠL3)

where
x(p9t) = pt+\dsVpU(p,s). (IΠ.4)

o

Perhaps the easiest way of finding an appropriate U(p, t) is to consider
the transformation Ω~1 which when applied to (xθ9 po)eΣ_ should give a
convergent result as ί-> — oo. The sequence of equalities

o, Po) = U^-1 Ut(x0, p0) = U^'ixiή, p(t))

= {x(t)-x(p(t),t),p(ή)
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tells us that we are interested in the convergence of the function

r(t) = x(t)-x(p{t),t)

as ί-> — oo. We have

or using Eq. (III.4)

fj(t)=-
dx δU

±(p,t)Fi(x(t))+—(p,t)
dPj = p(t)

(III.6)

(III.7)

and this has a reasonable chance of decreasing fast enough as t -> — oo
to make lim r(t) exist. Specifically if for |ί| large enough

If we had U(p, t) = V(x(p, ή) then Eq. (III.6) would become

rj(t) = \ψ- (P, ί) lFt{x(p, t)) - Ft(x{t))]\

dx{ \x(p,t)\^c2\

\r(ή\Sc\r(t)\\t\-

then Eq. (III.7) implies

which in turn means |r(ί)| = #(|ί | 1 α), and this is certainly enough to
guarantee the existence of lim r(t). Unfortunately Eq. (III.4) together

ί-> — oo

with U(p, t) = V(x(p, t)) imply we must solve the equation

t

Vp$dsV(x(p,s)) (III.8)

or in terms of U

U(p,t)=V(pt+$dsVpU(p,s)).
0

(III.9)

This is exactly the equation arrived at in Ref. [1] where the authors
treat the Q.M. case. Because we do not know under what circumstances
this equation has solutions, we follow the example of Ref. [1] and
iterate Eq. (III.9). Thus we define for p Φ 0,

Uk(p,t)=v[pt+
(III.10)
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where N = [1/α]. Also define

Xk(P,t) = Pt+]dsVpUk(p,s) /c = O,l,...,ΛΓ. (111.11)
o

We thus have

xk(pj) = pt + )dsVpV(xk-t(p,s))9 k=ί,...9N. (111.12)
o

Finally let

x(P, t) = %(p, ί); f ( Λ t) = £/*(/>, ί). (111.13)

Since the rcth partial, Dn Uk(p, t) involves {Dn+k V) (*), it is clear that for all
quantities to be well defined we need a condition like VeCN+i(R3).
In fact we find that if the sequence is to have the required properties,
much more is required. Thus we assume in all of the following,

VeCN+2{R3); \{DnV)(x)\ ^c | j c | " α " π , n = 0,1,...,ΛΓ + 2. (111.14)

We now list the properties of the Un and xn which we will need. These
follow from Eq. (III. 14) and can be proved by induction. (See also Ref. [1].)
For |/>|^

i + \t\r*<N+1); n = 0,1,2, (III. 15)

n = 0,l,2 \xN(p91)-pt\^c\t\"'\ (111.16)

The proof of the following theorem shows how the heuristic argument
based on Eq. (III.8) needs to be modified.

Theorem III. 1. Assume (111.14). Then the transformations lim Ω" 1 ,
ί-»±OO

exist and define 1 — 1 maps Ω^1 of Σ± onto Σ. Ω+ intertwines S{

t

0) and Ut

Ω±S\0)=UtΩ±. (III. 17)

In addition if (JC^O),/>i(0)) and (JC2(O), p2{0)) are in Σ+ and both satisfy
Eg. (11.11), then

ί2 ϊ 1 (x 1 (0),p 1 (0))-θ; 1 (x 2 (0),p 2 (0))= lim (x1(t)-x2{t)90). (IΠ.18)
ί^ ±oo

Remark. Eq. (III. 18) serves to give some meaning to the parameter a
which occurs in the expression Ω+ ί(x0, p0) = (α, p). Although we will not
demonstrate it, if V(x) is a central potential, the component of a perpen-
dicular to p, al9 is just the impact parameter, lim xλ{t). Of course the

ί->±oo

parameter p is always the asymptotic momentum.
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Proof. The proof of Theorem III.l is simple. We consider the behavior
of r(t) in the expression

ΩΓ1(xo,Po)=(r(t),p(t)).

Where as before r(t) = x(t) — x(p(t), t). Instead of Eq. (III.7) we have

fj(t) = \ψ- (p, t) (Ft(x(p, ή) - Ft(x(t)))
1 Pi (III. 19)

dPj

From Eq. (III. 15) we find for sufficiently large t

This means that \r(t)\ = Θ (|ί|~(JV+1)α) and thus r(t) converges as ί-> + oo.
Hence the limits lim Ω~i exist o n l + .

If (*i(0),/^(O)) and (JC2(0), p2{ty) are as stated in the theorem, then
Lemma (II.2) gives Ip^t)-p2(t)\ =G(\t\-1~a) and thus from Eq. (III. 16)

This gives Eq. (III. 18), which in combination with Lemma II.2 and
Theorem II.1 means that the maps Ω+ 1 are 1 — 1 and onto. To prove the
intertwining property, in Eq. (III. 18) let

and (*2(0),p2(0)) = (*(0

β; '(x(λ), p(λ)) = {a + lim (x(t + λ)- x(t% p).
f-» ±oo

But because of Eq. (11.10), x(t + λ) - x{t) -+pλ. Hence

Ω±

 1 Uλ(x{0), p(0)) = S^Ω+'ixiOl p(0))

giving Eq. (III. 17). This completes the proof of Theorem III.l.
It remains to show that lim Ωt = Ω+ and to prove that the wave

ί-> ±oo

operators are canonical transformations. This we do in the next theorem.

Theorem III.2. Assume (III. 14) and let DΩt be the matrix of derivatives

* (Q);. The limits Ωt^Ω± and DΩt-+DΩ± are achieved uniformly on

compact subsets of Σ. Since the transformations Ωt are canonical, the wave
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operators are (continuously differentiable) canonical transformations on Σ:

lΩ±(Q)i9 Ω±(Q)j] = [&, Qj] QeΣ (111.20)

where [ , ] is the Poisson bracket.

The proof will be given for Ω_ only.

Proof. It will prove useful in what follows to rewrite Eq. (III. 19) as an
integral equation. For that purpose, let a = lim r(t\ Q = (α, p). Then

ί-»-00

(111.21)t ( Q ) ((
Let

β(Q;t) = (x( ί)- *(p(ί), ί) - α , p(t) - p) = (p\(<2; t), /J2(β; ί)) (111.22)

and define for each α = (aι, α2) e Σ

Jjia, s) = - | ί L (α2, s) [F((x(«2> s)) - F ί(x(α2, s) + β l )

2 i

(111.23)

The reason for this long list of definitions is the concise equation satisfied

by β(Q;t):

β(Q;t)= } dsG(Q + β(Q;s),s). (111.24)
- o o

Suppose K Q Σ is compact, and all (α, p)eK satisfy \a\ ^ α0, \p\ ^ p0 > 0.
Let M τ ε be the set of all continuous functions y: (— oo, T] ->/?6 with
| | y | | Γ = sup \y(s)\ ^ ε where ε<p0.

se(-oo.Γ)

Then for Γ sufficiently negative, the operator φ Q

φβ(7)(ί)== { dsG(β + y(s),s) (111.25)
~ 00

maps M Γ ε into M Γ > e and for y, y' e M Γ > £

ll<PQ(y)-φβωilτ^elly'-7llr, e < i (πi.26)

for all 2 e X. These statements are easily proved from the estimates

(111.27)

(111.28)
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which hold for all α with | α 1 | ^ ( 5 ~ 1 , | α 2 | ^ ( 5 and δ arbitrary except δ > 0.
The fact that φQ is a contraction allows us to conclude that β{Q; t) e M Γ f β

because the contraction mapping theorem says that a solution γ(ή
exists with y e Mτ ε and Lemma II.2 tells us y and β(Q; •) must be equal.

Consider the function UsΩt(Q) = Us.t Ut

(0)(Q) = (x(ί)(s), p(t)(s)) and the
related function

β\Q\ s) = (x(t\s) - χ(pM(s), s) - a, p{t)(s) ~ p) (IΠ.29)

Note t h a t - ^ { Q ; s ) = G(Q + F(Q;s)9s);βt(Q;t) = 0. Thus

ls) = φ°-ψ(Q; •)) (s) = } dλ G(Q + /P(β; λ), A). (111.30)
ί

The operator φQ > ί also maps MTfE-+MT>E and satisfies (111.26) for the same
reasons as φQ, and in addition the estimate (111.27) implies

lim 1 1 ^ - ^ 1 ^ = 0 (111.31)
ί * 0

uniformly in Q for Q e K.

H e r e | | ^ - < p Q | | r = sup Wφ^^-φHϊ)^ Note that F(Q;s)eMT,E

yeMΎ,ε

because the contraction mapping theorem says that a fixed point ysMTtε

exists and by the uniqueness of the initial value problem for Newton's
equation y(s) = β*(Q s). Now

\\β(Q; )-β\Qi')\\τ=\\φQ(β(Q;'))-φQ't(βt(Qi'))\\τ

and thus

llΓ^ίi-βΓΊl^-^ ΊlΓ. (iπ.32)

Thus in particular β(Q; T) -β(Q; T)^0 uniformly in Q for Q eK and
therefore UτΩt(Q)-^UτΩ_(Q) as ί-> - oo uniformly in Q. Since C/_Γ is
continuous we have

Ωt{Q)^Ω_{Q) uniformly in Q for Q e K .

The convergence of DΩt(Q) is proved similarly: First note that
because F(x) is continuously differentiable, (x(ί)(s), p{t){s)) is continuously
differentiable in its "initial" value (jc(ί)(ί), p(t)(ή) [8]. Since the latter is in

gx(t) dp(f)
turn continuously differentiable in Q, ι (s) and (s) exist and are

3β δβ
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continuous. They also satisfy the linear D.E.

— ΨiJ(s)= Λi}(s)
ds

(11133)

I with ψij = - — , Atj = —

The propagation function L(

s° for this D.E.

(IIL34)

has the property that if {ψ{t)(T), Λm(T)) jzr^ {ψ(T), Λ(T% then

), Λ(T))

uniformly in Q for Q 6 K [8]. Here Ls results from Ii'J by replacing x(t)(s)
by its limit x(s). Note that L(

s° depends on Q through x(t)(s).
gait)

Now consider the corresponding quantities fc (s) which satisfy the

integral equation

(111.35)

Using similar methods as in the proof that \\βt — j8||Γ-*0 uniformly in Q

for Q e X we can show that ~ 7ki uniformly in Q for Q e X

where γki is the solution to

= ί ^ - ^ - ( β + /ί(λ),A)(^ + yJ£(λ)). (111.36)

Thus ykί(s) -• ~^~ (s) for s e ( - oo, T]. Hence in particular

dx(T) dp® dp(T)
1 ) * U ) ^

The properties of Ii? mentioned after Eq. (III. 14) then show the uniform

convergence oijfi-(Q)- τ h e Poisson brackets [β f (β) ί ,β f (β) i / ]=[β i ,β < / ]

thus also converge to [Ω_(Q)h Ω_(Q)j]. This proves Theorem III.2.
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Theorem IΠ.l and III.2 give the wave operators many of the familiar
properties they enjoy in Q.M. The isometric nature of the wave operators
in Q.M. has its analog in their being canonical transformations in
classical mechanics. The fact that they are not in general unitary in
Q.M. has its analog in the fact that the range of Ω± is missing just those
initial conditions corresponding to bound orbits (up to a set of Lebesgue
measure zero)1.

It is interesting to note that while Ω± = lim U_tUt

{0\ the equation
ί-+±oo

UtΩ± — [/t

(0)-*0 is characteristically false in the long range case. (This
is the exact opposite of the situation with W+ as Eq. (11.35) partially
verifies.) In fact the above limit is characteristically oo. This suggests the
question as to how these properties manifest themselves in Q.M. We
feel that many of the convergence statements in this paper will be true
in the sense of convergence of the appropriately transformed x or p in
Q.M. Thus for example we conjecture that for the quantum mechanical
operators Ωt constructed by Buslaev and Matveev [1]

Ω;\p)^ΩtPΩf^Ω±PΩ%

on a dense set of states in the range of Ω±. This is the analog of Theo-
rem III. 1. IndeedΩ txΩ* = eiHt{x - xN(p, ή) e~iHt = x(t) - xN(p(t\ t) where
x(t) and p(t) are Heisenberg operators and xN(p, t) is the function
introduced in Eq. (III. 13). Thus formally ΩtxΩ* is the same as the func-
tion r(t) introduced in the proof of Theorem III.l.

On the other hand the fact that UtΩ±- Ut

{O)-f>0 should manifest
itself in the following way: If ψ = Ω_ /, we know that [1] e~ίHtxp-^Ut

(0) /,
but we conjecture that characteristically

(ψ, x(ή ψ) - (l# 0 )/, x U}0)f)-h0 (IΠ.38)

(while of course the above always has limit zero for bounded functions
ofx).

Before going on to examine what kind of spatial cluster properties
a long range interaction has, we must define the S-operator. The definition

S = Ω+1Ω_ (111.39)

is conventional. It has the consequence that the domain and range of S
are respectively Ω l 1 ( Σ + n Σ _ ) and Ω+1(Σ+nΣ_). As a result of the
next theorem, the latter two sets differ from R6 by sets of measure zero.

1 For a justification of the measure theoretic part of this statement, see Theorem III.3
below.



208 I. W. Herbst

Theorem III.3 (Asymptotic Completeness). Assume (II.2) through
(II.4). Then Σ+=Σ_ up to a set of Lebesgue measure zero (i.e. Σ+ u l _
— Σ+nΣ_ has measure zero).

The proof of this result can be found in [7] or [9].

ΓV. Cluster Properties of the S-operator

Let T(a): R6 -+R6 be a translation of the JC coordinate of a point in
phase space:

T(a)(x,p) = {x + a,p). (IV.l)

We want to consider the behavior of T(—a)ST(a) for large \a\. This
behavior is very different for short range and for long range forces. We
will consider the short range case first. We define a short range force by
the following conditions, which are essentially those of Ref. [5]

F(χ) = - (V V) (x), lim V(x) = 0, (IV.2)
x—*• oo

FeCHR3) and

Then Ω+ = lim U_tS\0) exists and is a (canonical) transformation
t-* + oo

of Σ onto Σ± (see Ref. [5]). With the S-operator defined as in (111.39)
we then have the following theorem.

Theorem IV.l. Suppose V(x) satisfies (IV.2) through {IVA). Let KQΣ
be compact and suppose (JC,p)eK=>peΓ,Γ a closed cone with apex at
p = 0 and solid angle < 4π. For (x, p) e X, let

(x(α), p(a)) =T(-a)S T(a) (x, p). (IV.5)

Then as a-^co outside any open cone Γδ2Γ

lim (T(-a)ST(a)-I) = 0 (IV.6)
|α|-*oo

uniformly on K. In fact

|x(α)-x| = <P(|αΓ )

|j»(α)-p| = (P(|αΓ1- )

uniformly in (x, p) for (x, p)eK.

We defer the proof of this theorem (and Theorem IV.2 to follow) until
the end of this section.
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Because of Eq. (IV.7), Theorem IV. 1 says that the rate of approach of
T( — a)ST(a) — I to zero is a measure of just how short range the forces
are. For long range forces Theorem IV. 1 is false, but the corresponding
cluster property still gives a measure of the rate of decrease of F(x).

Theorem IV.2. Suppose V(x) satisfies (III. 14). Then with K,Γ,and
Γδ as in Theorem IV. 1 and

(x(a)9p(a))=T(-a)ST(a)(x,p)9

then as a —• oo outside Γδ

\P(a)-P\=Θ(\aΓ)

\x(a)-x\=Θ(\a\1-«)

uniformly in (x, p) for (x, p) e K.

In order to get a feeling for the behavior of x(a) as defined above, we
specialize to the class of potentials for which α > \.

Theorem IV.3. Suppose V(x) satisfies (III. 14) with N = [1/α] = 1. Then
with K, Γ, and Γδ as above,

jc(α) = jc + Γ p J dt{V{pt + a)-V{pt))Λ-Θ{\a\1-2*) (IV.9)
— co

as α -• oo outside Γδ, uniformly in (JC, p)for (JC, p) e K.

We remark that x(a) — x characteristically diverges as α-»oo. Thus
in Q.M. we expect the following behavior for the amplitude

(T(a)f,ST(a)g).

As \a\ gets large, g(a) = T(—a)ST(a)g becomes a state with the same
momentum space probability distribution as g (Theorem IV.2), but in
x space g(a) has moved very far from g (and / ) . Thus the overlap of g(a)
with / in x-space is very small. Hence we expect that

lim {T(a)f,ST(a)g) = 0. (IV. 10)
|α|-*oo

Indeed this has been verified for the non-relativistic Coulomb S-operator
by Ross [12].

In an Appendix we discuss the spatial cluster property of the classical
5-operator for the Coulomb scattering problem and compare our results
with those of Ross.

Proof of Theorem IV. ί. Suppose QeΣ. We consider the quantity
β(Q; t) (compare Eq. (111.22)) given by
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Note that since Ωt = U~x Sί

(0) we have

β(Q; t) = (βΛQ; t\β2(Q; 0) = (χ(t)- tP(t)-QuP(t)-Q2) (iv.12)

where here
(x(t\p(t))=UtΩ_(Q), Q = (Q1,Q2). (IV.13)

Since Ω±1 = lim Ω~x (the analog of Theorem III.l)
ί"" ±00

lim β{Q;ή = O. (IV. 14)
t~+ - o o

Note also that for the same reason, if Q is in the domain of S

β(Q)= lim β(Q;t) = (S-I)(Q). (IV.15)
ί-> + oo

Using the fact that S(

Λ

0) commutes with S one easily derives the equality

β(Qi + λQ2, Q2) = β(Q) + (λβ2(Q\ 0) (IV.16)

valid also in the sense that {Q1 + λQ2, Q2) is in the domain of S if and
only if Q is.

If Q = (α, p) e Σ with a p = 0, we will derive the following estimates
which hold for |p| ^ p 0 > 0 and all t if \p\2 \a\1+ε is large enough:

2 | α Γ
IjMβ OI^ΦΓΊαΓ 1"'-

To see that this is enough to prove the theorem first note that

|*(ί)| ^ \pt + a\ - \tβ2(Q; t)\ - l ^ ^ β ; ί)l (IV. 18)

and thus if p2 a1 +ε > c the estimates (IV. 17) imply

lim |*(ί)|^ lϊm {\pt\(ί-c(p2a1+r1)-\β2(Q;t)\} = cG. (IV. 19)
ί-> + oo ί-> + oo

Hence if p 2 β 1 + ε is large enough Q is in the domain of S (Lemma II. 1).
Now consider (JC, p)eK and the expression

(T(-a)ST(a) -1) (x, p) = β(x + α, p) (IV.20)

where the last equality follows from the definitions of β(Q) and T(a).
We split up JC and a into

where x± and α ± are perpendicular to p. Note that because KQΣ and
compact, JCX and λx vary in compact sets. Note also that if a e Γδ, \aL\ ̂  γ\λa\
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with γ independent of p. Thus since

β(x + a,p) = β(x± + α±, p) + (λx + λa) (β2(χ± + a±9 p\ 0),

if \a\ is large enough (x + a,p) is in the domain of S for all (x,p)eK,
and the estimates (IV. 17) give

- 1 - 8 . (IV.21)

Thus the theorem is proved once we have derived the estimates (IV. 17)
under the stated conditions.

Consider the quantity

C(ί) = p2 aε iβM + pa1 +ε\β2(t)\ (IV.22)

where β(t) = β(Q;t\ Q = (a,p),a p = 0. We know that C(ί)-»0 as
ί -• — oo. We will show that there exists k0 such that for all (α, p) satisfying
p2a1+ε> const.

C(ί)<fc0 all t. (IV.23)

The proof proceeds in the following way. Suppose fc0>0, η> ί and
p2a1 + ε>]/2koη. Then if C(ή>k0 for some ί, the continuity of C(ί)
implies C(ί) < fc0 for te(—ao, T) and C(T) = k0 for some T. For certain
choices of k0 and η we will show that the conditions C(ί)<k 0 for
ί e ( - o o , T) and p2aι+ε>]/lk0η imply C(T)<fc0. This contradiction
will prove (IV.23). Thus we first note that

β1(t)=- ί dssF(x(s))
(IV.24)

/J2(0= ί dsF(x(s))
— OO

and that C(t) < k0 for ί e ( - oo, T) implies (see (IV. 18))

\x(s)\>(\a\ + \ps\)ξ, se(-oo,T) (IV.25)

where f = (l/j/2) (1 - γ2ko/p2€ί + ε) > 0.

Using (IV.24) and (IV.3) we can estimate C(T) with the result

C(T) < 2/c(l + 2ε) (ε(l + ε) £ 2 + ε ) ~ 1 (IV.26)

where k is the constant appearing in (IV.3). Since as p2 a1 +ε -> oo ξ -• l/j/2,
for any /co>2fc(l +2ε)(ε(l + ε ) ) - 1 2 1 + ε / 2 we can find η such that if
p2a1+ε>}/2ηkOf (IV.26) implies C(T)</c0. This completes the proof
of Theorem IV. 1.
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Proof of Theorem IV.2. Because the proof is very similar to that of
Theorem IV. 1 we only sketch it. With Q = (α, p) e Σ and a p = 0, define
β{t) as in Eq. (IV. 11). Then β satisfies (111.24). With

an argument similar to the preceding one gives C(t)<ε for any ε>0
and all t if a > a(ε). Using this information and Eq. (111.24) one can again
estimate β(t) with the result given in the theorem.

We do not give the proof of Theorem IV.3 for it involves only
straightforward but tedious estimates.

V. Concluding Remarks

We have shown in Section II that a very reasonable classical
scattering theory exists for slowly decreasing potentials with only mild
restrictions on the forces. However canonical wave operators (and thus a
canonical S-operator) were constructed (in Section III) only after a
considerable strengthening of the assumptions on the forces. It remains
to be seen whether canonical ^-operators in classical mechanics (and
thus presumably unitary S-operators in quantum potential scattering)
can be constructed without these restrictive assumptions on the forces.
We remark that for central potentials the operators W± of Section II
can be shown to be canonical transformations (under further mild
restrictions on the potential), but we have not tried the analogous con-
struction in Q.M.

Acknowledgements. I would like to thank G. W. Ford, B. Simon, and V. Wong for
helpful discussions. It is a pleasure to thank D. N. Williams for his critical reading of the
manuscript and constructive suggestions.

Appendix: Cluster Property for the Coulomb Potential

Because the Coulomb potential, V(x) = λ\x\~1, has a singularity
at x = 0, the results of this paper are not directly applicable. The main
difficulty is the fact that the quasi-free time evolution, U}°\ as defined in
(III.3), (III.4), and (III. 13) (with N= [1/α] = 1) does not exist. However,
this is easily remedied by taking for example

H0 + V(pt)θ(\ηt\-i) (A.I)

as the Hamiltonian associated with U}0) instead of H0+V{pt). The
^-function cutoff removes the singularity at t = 0 and thus U}0) exists.
Although the kind of cutoff used is essentially arbitrary, Eq. (A.I) with
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η = 4H0 = 2p2 is the one which in Q.M. gives the standard result for the
Coulomb S-matrix [2] and is therefore the one we will use. With this
prescription, for 2p2\t\ > 1

U}0)(a,p) = {a + x(p9t),p) (A.2)
where

x(p, t) = pt + Vp j ds Θ(4HO \s\ - 1) V(ps)

= pt- ε(t) λp \p\ ~3 log(4H0 \t\/e2). ( A ' 3 )

Here ε(ί) = + 1 if + 1 > 0 and e is the base of natural logarithms.
With this choice of [7f

(0), and Ωt= U'1 (7f

(0),Theorems III. 1 and III.2
remain true if Σ+ and Σ are redefined to exclude points with zero angular
momentum.

The integral (IV.9) of Theorem IV.3 must be replaced by

00

f dt{V(pt + a)-V(pt)θ(4H0\t\~ί)} (A.4)
— oo

and thus the cluster property for the Coulomb potential takes the
following form (with Σ = {(α, p) e R6 : a x p φ 0}):.

Proposition. Suppose V(x) = λ/\x\ and Uί

(0) is defined as in (A.2) and
(A.3). Let K g I1 be compact and suppose (x,p)eK=>peΓ, Γ a closed
cone with apex at p = 0 and solid angle < 4π. For (x, p) e K, let

(*(α), p(a)) =T(-a) ST(a) (x, p). (A.5)

Then as α -^ oo outside any open cone Γδ 2 Γ

\p(a)-p\=Θ(\a\-ί)
1log\axp\2} + Θ(\aΓ1\og\a\)

uniformly in (x, p) for (x, p)eK.
To compare this result with that of Ross [12], we rewrite his result

(after correcting a sign error) in the form

T{-a) ST{a) - V ' I P Γ 1 ^ \«*PI2 = W{a, p). (A.7)

Eq. (A.7) is true in the sense that the difference between the right and left
sides converges strongly to zero as |α|->oo. Thus in the limit α->oo,
T( — a)ST(a)f^W(a,p)f has the same momentum spectrum as /
but in jc-space has been shifted. Specifically

(W(a,p)f,xW(a,p)f)

= (/,{*+Fp[ - λ IpΓ1 log lαx/H2]}/)

in agreement with (A.6).
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We remark that the asymptotic difference in the "in" and "out"
impact parameters is very different from the formula (A.6). If sx and s2

are respectively the in and out impact parameters we have

s2 = x{a) + a - (x(a) + a) p(a) p(a)

and from any textbook on classical mechanics it follows that

lim (s2-s1)=-2λ\p\-3p. (A.10)
\a xp|-»oo

Note that we have used the remark made after Theorem III.l to write
down (A.9).
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