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Abstract. The domains of generalized operators T: Φ_ ->Φ+ on rigged Hubert spaces
Φ _ C H C Φ + are investigated. We introduce an equivalence relation for operators with
different domains. Arguments are given for taking Φ+ to be the weak quasi-completion
of Φ_ and for Φ_ to be Mackey quasi-complete. For domains of closed symmetric Hubert
space operators we give a representation for Φ+ and provide certain elements in the
equivalence class of the corresponding operator.

In a previous paper [1] we gave an introduction to a new systematic
theory of sesquilinear forms on Hubert space. We were generally con-
cerned with forms that do not arise from associated operators with the
particular aim of constructing a unified structure theory of self adjoint
and symmetric operators and the formal Hamiltonians arising in
quantum mechanical systems with infinitely many degrees of freedom.
The heavy dose of extramathematical and physical reasoning in [1]
does not allow for a satisfactory mathematical presentation, yet enough
material was uncovered to begin the study of several purely mathematical
problems. We here address ourselves to a circle of problems connected
with the domains of definition of sesquilinear forms. For physical
application the choice of the domain should not make any difference.
Thus for a form given by a physical Hamiltonian in Fock space, it should
not matter if the n-particle vectors are chosen from 2 or from ίf provided
the form is defined on both. The forms are physically equivalent and we
must reflect this fact by defining an appropriate mathematical equivalence.
Furthermore, domain questions are related to regularity properties
of the forms and these properties must be studied as part of the abstract
theory.

This paper is self contained and no knowledge of [1] is necessary
though here we present no motivations.

We make heavy use of the theory of topological vector spaces, but
give references to all the results used. Our notations and conventions
are the following:

H is always a Hubert space and the inner product ( , •) is antilinear
in the first variable;
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Q) is the space of C00 functions of compact support;
£f is Schwartz's space of rapidly decreasing functions
For any given complex vector space £, we denote by £* the space

of all antilinear functionals on E. Note that since no notion of continuity
is yet defined, E* is the algebraic dual of E.

For any given vector space topology SΓ on E we write E\β~~\ for
the corresponding topological vector space;

The dual £[̂ ~]' is always the set of antilinear functionals on E[&~~\
continuous in the topology 2Γ\ this also applies to the distribution spaces.
In particular $)' and Sf' are the antilinear duals of S) and £f equipped
with their usual topologies.

The indices 5, fc, fc, and || || stand respectively for the weak, Mackey,
strong, and norm topology. (The notation follows [2]; note 5 is short
for schwach, not strong !)

If <£, F> is a duality then for the index α = s, fc, or b the corresponding
topology on E is denoted by ̂ , or &~a(F) depending on how much can
be understood from the context; likewise, we write Ea for E\βΓ^\ when
the duality is understood;

If A is a Hubert space operator, its Hubert space adjoint is denoted
b y Λ + .

By a rigged Hubert space we mean a triple of complex vector spaces
Φ_ C H C Φ+ where PI is a Hubert space, Φ_ is a dense subspace, and Φ+

is a space of antilinear functionals on Φ_ . We denote the pairing between
Φ_ and Φ+ by <•,•> or by < , >φ when we need to make the rigging
explicit.

By a generalized operator T we mean a linear map Γ : Φ _ - > Φ + .
T may be looked upon as a sesquilinear form on Φ _ ; /, g*~»</, T0>.
A sesquilinear form 5 : /, g~*S(f, g) on Φ_ is not necessarily a generalized
operator for if Φ+ is strictly smaller than Φ* some of the functionals
S( , g) may not belong to Φ+ . We may always interpret S as a linear map

S : Φ_ -»Φ* but requiring its range to lie in Φ+ is an imposition of a
regularity condition. _

Given a generalized operator T we define the form S(f, #) = <#,
If S is also a generalized operator we call it the dual of T and denote
it by T*. Thus when T* exists </, T*0> - <0, T/>. When T- T* we
say that T is symmetric. When we wish to refer to both T and T* without
specifying which we shall write T§.

We henceforth always assume Γ* exists: This is a regularity assump-
tion on T.

Theorem 1. The existence of T* is equivalent to the continuity of T
as a map T: Φ _ s — >Φ + S .

Proof. By[2](§20.4.(l)). D
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Let now Φ_ C HC Φ + be a different rigging of PL Assume Φ_ D Φ _ ,
then we define the restriction map ρ : Φ+ ->Φ* by ρφ = φ\Φ__. If T is a
generalized operator in Φ and f a generalized operator in Φ, we say T
is an extension of T if and only if ρ ° T§ | Φ_ = T§.

Theorem 2. Suppose T has an extension T, ί/zen £/π's extension is
unique if and only if ρ is injective.

Proof. Suppose ρ is injective and T\ and T2 are two extensions, then
A = fί — T2 satisfies ρ ° J § | Φ _ = 0 . From the injectivity of ρ follows
J § | Φ _ = 0 . Hence for all # e Φ _ and / e Φ _ we have <#, z1§/>φ = 0
and passing to the duals we get </, ^§<?>φ = 0. Thus ρ ° zl§ = 0 and again
using injectivity Δ* = 0.

Suppose now ρ is not injective and T is an extension. Then there is a
nonzero element ψ e Φ+ such that ρψ = 0. If by |φ> <ιp| we denote the
generalized operator in Φ given by Iψ) (ψ\g = ψ(g,ψy then setting
S = T+ |φ> <ιp| we obtain a different extension of T. Π

Note that when T is symmetric and has a unique extension f then T
is also symmetric; for if it were not, T and T* would be different exten-
sions of T. If T is symmetric and ρ is not injective then even requiring
the extension to be symmetric cannot guarantee uniqueness for |φ> <ψ|
in the proof above is a symmetric form.

Let now Φ° C / / C Φ + be a rigging such that Φ0. C Φ _ . If ρ is the
restriction map Φ+-»Φ°.* and T a generalized operator in Φ such that
ρ°T § (Φ-)CΦ + , then setting T0 = ρ°7ΊΦ°^ we obtain a generalized
operator in Φ°. To show that T°* exists we take f , g E Φ ° _ and then we

have </,Γ° f lf>φo = </,ρΓ^>φo = </,Tff>φ = <^T*/>Φ=<flί,βT*/>Φθ.
Since ρ ° T*(Φ°_) C Φ+ we see that T°* = ρ ° T* | Φ0.. In case ρ is injective
T is the unique extension of T°.

By the rigging class of a generalized operator T we mean the set of all
generalized operators that can be obtained from T by a finite sequence
of extensions and/or restrictions as described above where in each step
the corresponding restriction map ρ is required to be injective. A rigging
class is clearly an equivalence class and it partly embodies the physical
equivalence referred to in the introduction. As an example, the generalized
operators of multiplication by the δ function f(x)+~+δ(x)f(Q) defined
either in 2 C L2 C & or in ̂  C L2 C ̂ ' belong to the same rigging class
for ρ: Sf*-*Q)' is injective: It is to be especially noted that the various
members of a rigging class generally have different riggings. In fact, it is
precisely the necessity of collecting sesquilinear forms with different
domains of definition into classes of equivalence that led to the notion
of a rigging class.

An interesting but seemingly very difficult open problem is wheather
two different generalized operators on a given rigged Hubert space can
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belong to the same rigging class. That is, if by a sequence of restrictions
and/or extensions we return to the initial rigged Hubert space, do we
also return to the same sesquilinear form? If we do, we can treat the form
as an object independently of its many possible domains of definition;
if not we are faced with very interesting structural questions. Even if one
restricts the possibilities for Φ_ and Φ+ as we do in the next part of the
paper, we still do not know the answer to this problem:

We now come to the problem of relating Φ_ and Φ+. In concrete
examples Φ+ is the topological dual of Φ_ in some topology. However,
for a general theory we must effect such a construction from the only
a priori material at hand which is the inner product in Φ _ . We are thus
faced with the problem of extending a given pre-Hilbert space (Φ, ( , •))
into a rigged Hubert space Φ = Φ_CHCΦ+. In such an extension
we must reproduce the usual known situations and likewise obtain
sufficiently many abstract properties for an effective theory. Starting
from the duality <Φ, Φ> given by the inner product we can choose for
Φ+ at least any of the following possible candidates: (1) the space Φ°
of equivalence classes of Cauchy sequences of Φs; (2) the sequential
completion Φ^ of Φs (3) the strong double dual of Φ, that is Φ&'; (4) the
quasi-completion Φf of Φs. Each one of these can be interpreted as a
space of anti-linear functionals on Φ. For Φb' this is so since Φ is in
duality with itself; for the others it is true since each one is contained in
the completion of Φs which by [2] (§20.9. (2)) is equal to Φ*. Any one
of these reproduces many of the familiar situations. However, for abstract
reasons, we choose the fourth possibility. For the others, at least one of
the following two theorems is either false or hasn't been established,
and furthermore for a space E\SΓ\ to be weakly quasi-complete is
equivalent to any of the following three very useful properties: (1) E[3Γ]
is semi-reflexive, that is JE'b' = E; (2) in £', 3~b = 3~k\ (3) in £s every bounded
subset is relatively compact. See [2] (§23.3) for reference.

Theorem3. Let Φ _ C Φ _ be two dense subspaces of the Hubert
space PI; set Φ+ = Φls, Φ+ = Φls. Then the restriction map ρ: Φ+ -»Φ*
maps all of Φ + into Φ+.

Proof, ρ is continuous in the weak topologies given by the dualities
< Φ _ , Φ + > and < Φ _ , Φ * > for its dual exists being the inclusion map of
Φ_ into Φ_ [2] (§20.4. (1)). Since Φ + S C Φ*s is a quasi-closed subspace
we have that Ψ = ρ~ί(Φ+) C Φ+s is a quasi-closed subspace; [2] (§ 23.1).
Since Φ+ s is quasi-complete, Ψ[3/~S(Φ_J] is likewise quasi complete.
On the other hand Ψ^ρ~ί(H)^H^Φ_, hence by definition of Φ +

we have Φ+ = Ψ. Hence ρ~ 1(Φ+) = Φ + but this means that ρΦ + C Φ + . D
If Φα is a family of rigged Hubert spaces we define the direct sum

Φ = 0Φα by taking for Φ_ that subspace of ΠΦα_ whose elements have



On the Domains of Generalized Operators 247

all but a finite number of components zero, and for Φ+ the space Π Φα +.
The pairing is </, φy = Σ</α, </>α>, thus the Hubert space in Φ_ C H C Φ+
is the Hubert space direct sum of the Ha. If (Φα, ( , )α) is a family of pre-
Hilbert spaces we define the direct sum (Φ, ( , )) by taking for Φ that
subspace of Π Φα whose elements have all but a finite number of com-
ponents zero and setting (/, g) = Σ(fΛ9 gj:

Theorem 4. Weak quasi-completίons commute with direct sums; that
is, the rigged Plilbert space associated to a direct sum of pre-Hilbert spaces

is the direct sum of the rigged Hilbert spaces associated to each summand.
In other words if (Φα, ( , )α) is a family of pre-Hilbert spaces and (Φ, ( , •))

is their direct sum, then Φls — J7Φ£_S.

Proof. The product topology in ΠΦ£_S is the topology induced by
the weak topology on Φ* [2] (§22.5. (3)). On the other hand since the
product of quasi-complete spaces is quasi-complete [2] (§23.1. (2)),
we have that Φ+ Cl7Φα + . Let F be a finite set of indices and set ΦF+

to be that subspace of ΠΦα+ whose components for indices not belonging
to F are zero. ΦF+ is the weak quasi-completion of the similarly defined
subspace Φ F _. This is clear since for each β e F, Φ{β] + is the weak quasi-
completion of Φ{β}- Now ΦF+=ΣβeFΦ{β}+ is quasi-complete [2]
(§23.1. (2)) and since the quasi-completion of ΦF_ must contain each
of the summands Φ{β} + , we see that ΦF+ is that quasi-completion. Hence
we have ΦF+ C Φ + . Let now φeΠΦ α + and define φFeΠΦa+ by (φF)Λ

being φΛ if α e F and zero if α φ F. Now {φF} is a bounded net for {φF}
C/7{(/>α,0}, and φF->φ in the weak topology of Φ* since for each
/e Φ_, </, φFy is eventually constant and equal to </, φy. Since each
φFeΦ+ and Φ+ is weakly quasi complete, φeΦ+ hence ΠΦa+cΦ+
proving the theorem. Π

For the remainder of the paper, unless otherwise stated, Φ+ will
always be taken to be the weak quasi-completion of Φ_. Such rigged
Hilbert spaces we will call regular, and when regularity is not assumed
we will call the rigged Hilbert space general. Some of the usual situations
which regularity covers are 2 C L2 C 2)', ^ C L2 C &"9 H C H C H, and the
nuclear rigged Hilbert spaces of Gelfand and Vilenkin [3]. In all of these
cases Φ_ is furnished with some original topology, and Φ+ is the dual
space. With this topology Φ_ is reflexive in all of the above cases and
hence Φ+ is weakly quasi-complete [2] (§23.5. (3)); furthermore, in all
of these cases every element of Φ+ is a ^(Φ_) limit point of a sequence
in H, hence Φ+ is precisely the weak quasi-completion of Φ _ . By Theo-
rem 4 all direct sums of spaces of these types are likewise regular.

Given a regular rigged Hilbert space Φ _ C # C Φ ± , we can ask for
which larger spaces Φ_ D Φ_ is the restriction map ρ : Φ+ ->Φ+ bijective.
That two different dense subspaces may have the same weak quasi-
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completion can be seen by taking for Φ_ a dense hyper plane of the second
category, then by applying the Banach-Steinhaus theorem one easily
shows that Φ + =H. Since likewise H+ =H, we have an example. Our
question is partially answered by the following theorem.

Theorem 5. Let Φ_ C / / C Φ+ be a regular rigged Hubert space, and
letΦ_ = Φ_kbe the completion of Φ_ k . ThenΦ^ C PI and if Φ- C Φ _ C Φ _
then the restriction map ρ: Φ+ ->Φ+ is bijective.

Proof. By the Grothendieck construction of the completion [2]
(§29.9. (2)) if /e Φ_ then / is weakly continuous on the Mackey equi-
continuous subsets of Φ+. Now Φ+ being semi-reflexive, every weakly
bounded subset is Mackey equicontinuous and weakly relatively com-
pact. Since the ^(Φ_) closure Bί of the unit ball B^ of H in Φ+ is weakly
bounded, it is weakly compact, and / being weakly continuous on B^
implies that / is bounded on B^ and a fortiori on B1. Hence /e H and
s o Φ _ C H .

Let us assume now that Φ _ C Φ _ . By [2] (§23.8. (1)) the spaces
Φ+ [^(Φ_)] and Φ+ [^(Φ-)] have the same bounded sets and these are
furthermore all relatively compact. A fortiori Φ+[^(Φ_)] has the same
bounded sets as the above two spaces and these likewise are all relatively
compact. In particular this means that Φ+[^~S(Φ_)] is quasi-complete
and so Φ+ C Φ+. Let now B be a ^(Φ_) closed and bounded subset of
Φ + , then B is likewise ^(Φ_) bounded and also a fortiori closed in Φ +

in this stronger topology. Hence B is ^"S(Φ_) compact and consequently
it is also compact and hence complete in the weaker topology «^(Φ_).
Thus Φ+ is 3ΓS(Φ-) quasi-complete which implies that Φ+ = Φ+. Π

We do not know if the converse of the theorem is true or not.
In the above theorem we can pick, in particular, Φ_ = Φlfc, the quasi-

completion of Φ_ k . That for the purposes of studying generalized
operators we can always choose Φ_ to be Mackey quasi-complete
follows from the next theorem.

Theorem 6. Let T be a generalized operator on a regular rigged
Plilbert space Φ. Let Φμ be obtained by taking Φ1 = Φlfc. Then T has a
unique extension Tμ to Φμ.

Proof. That the extension is unique, if it exists, follows from Theo-
rems 2 and 5.

Since T* exists T § :Φ_ S ->Φ + S is continuous and hence a fortiori
T § :Φ_ k ->Φ+ s is continuous. Since Φ+s is quasi-complete there exists
a continuous extension T § μ: Φ1 fc-+Φ+s; [2] (§23.1. (4)). We need only
show T*μ - Tμ*. Now for /e Φ_ we have on Φμ_, < , T*/> = </, Tμ( )>
since both are Mackey continuous extensions of the same Mackey
continuous functional on Φ_. Thus for all g e Φ Ί we have <0, Γ*/>
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= </, Tμg>. By the same reasoning we have again the following equality

of functionals on Φμ : <0, Γ*μ( )> = < , Tμ#>. This establishes Γ*μ

= Γμ*. Π
A rigged Hubert space in which Φ_ f c is quasi-complete we shall call

Mackey regular. The above theorem states that we can always assume
that a generalized operator is defined on a Mackey regular rigged Hubert
space provided we are only considering regular spaces. Combining [2]
(§22.5. (4)) with [2] (§ 23.1. (2)) we see that a direct sum of Mackey regular
spaces is likewise Mackey regular. This covers the usual riggings of
Fock space.

We say that a generalized operator T on a general rigged Hubert
space is bona fide if the range ^?(T§)CH. Thus T is a densely defined
operator in Hubert space the domain of whose Hubert space adjoint
contains Φ _ _ . Not every member in the rigging class of a bona fide
operator is necessarily bona fide. For example let F be any C°° real
function on R and consider in the two rigged Hubert spaces 3) C L2 C 2'
and £f C L2 C &" the generalized operator of multiplication by the

ίx \ d (x \
function T(x) = F(x} cos [ F(y) d y ) . Since T(x) = — sin [ F(y) dy is a

Vo / dx \Ό /
derivative of a bounded C°° function, it is a tempered distribution and
thus the multiplication is defined in both riggings giving rise to two
symmetric operators in the same rigging class. For any such F we have
T&C&CPI, hence T is always bona fide in 2, however if F grows
sufficiently fast at infinity, for example F(x) = eχ2, then T<$f([H and so
on £f, T is not bona fide.

The following theorem gives a characterization of being bona fide.

Theorem 7. Let T be a generalized operator on a general rigged
Hίlbert space, then T is bona fide if and only if T§ is continuous as a map
from Φ_ equipped with the || || topology to Φ+s.

Proof. T: Φ_ ||.|| -»Φ+S is continuous if and only if for every g e Φ_
there is a constant Cg such that for all / e Φ _ , |<0, T/>|^CJ/||, but
this is equivalent, with the same quantifications, to |<T*0,/>| ̂  C0 | |/||,
and this is equivalent to T* g e H for all g. Hence the continuity of T
is equivalent to ^(T*)CH and interchanging T and T* we complete
the proof. Π

Theorem 8. Let T be a bona fide generalized operator on a regular
rigged Hilbert space, then Tμ is likewise bona fide.

Proof. Since T is bona fide, T §: Φ_j | . | | ->Φ + s is continuous. If B^
is the unit ball in H then the ̂ (Φ_) closure of T^ n Φ_) is &~s bounded
and compact. By the Grothendieck completion construction and the
quasi-completness of Φ+s, every element of Φ^ is weakly continuous
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on the bounded subsets of Φ+s. Hence for /e Φ(L, </, T§0> is bounded
as g varies in B^nΦ.. Hence we have |<ρTμ§/,0>! ̂  Cf \\g\\ for /e Φμ ,
0 e Φ _ . But this means that ρ° Tμ^(ΦμL)cH but since ρ is injective this
means that Tμ is bona fide. Π

We now pass to the study of symmetric bona fide operators.

Theorem 9. Let A be a closed symmetric Hilbert space operator with
domain @(A\ then @(A)+ consists of all antilinear functionals φ on &(A)
representable as </, </>> = ((A + z)/, (A + i) I) where I e 2 (A).

Proof. We first show that the space ^ of all such functionals is
weakly quasi-complete. Let φΛ be a weak bounded Cauchy net of such
functionals. Then for all /e 3t(A) we have </, φα> = ((A -f z)/, kα) where
kα e ^(A + z). Now kα is therefore a 3~s(έ%(A + i)) bounded Cauchy net
in &(A + z), but since 3^(A -f i) is closed and since a Hilbert space is
weakly quasi-complete kα converges weakly to an element (A + z) /
e&(A + i). Hence </,φα>-»((,4 + 0/,(<4 + z)/) establishing the quasi-
completeness of «^.

Let now J5 = (/I -f z)+ (A + z); £ is a self adjoint operator and B ̂  /.
Hence J = B~V exists and is bounded. Furthermore JH = $}(B)C@(A)
and Q)(B} is a core for A. Let Λ e /ί then we have the functional in 3F
given by </, φ> = p + ί)/, (A + i)Jh) = (/, B Jft) - (/, h). Hence H C &.

Since ^(B) is a core for A there exists for any / e 3>(A) a sequence
kne@(B) such that in the norm fcπ->/, Akn-+AL Hence given </, φ>

= (04 + i)/, W + 0 0 we have </><£> = lim(μ + O/, W + 0 U - lim(/, Bkn\
Thus every element of 3? is a weak limit point of a sequence of elements
in H which finally establishes & = ί&(A)+. Π

In the above theorem the number z can be replaced by any point in
the regular set of A.

Theorem 10. Let A be a closed symmetric Hilbert space operator,
then Aμ = A; that is, 2 (A) is Mackey regular.

Proof. Suppose Aμ Φ A, then Aμ is a bona fide symmetric extension
of A. Let V be the Cayley transform of Aμ; hence V = (Aμ- i) (Aμ + ΐ)~ \
Aμ = z(l + V) (1 - VΓ\ Furthermore, 2(V) = &(A + i)@F where
FLSt(A + 0, @(Aμ) - (1 - V) (dt(A + i)®F\ and 2)(A] = (1 - V) 3t(A + z).

If/ = (i _ V) h e S(,4μ) then an easy computation reveals h = - ~ (Aμ + z)/.

Now pick any keF, kΦO, and define the functional φ on ^(^μ) by

</,ψ>= -y(μμ-hz)/,k). We have that <(1 - F)k,φ> - ||k||2 hence

φ φ 0, but (/> I ® (A) = 0. Since ̂ (^lμ) is dense we have a sequence gn G ̂ (^μ)

such that gn-+k in the norm. Set </, 0Π> - - ~ ((Aμ 4- i)/, )̂
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— — -y (/? (Aμ — i)gn). Hence φn e H and φn-*φ weakly which means that

φ e &(Aμ)+. However φ \ 2(A) = 0 contradicts the bijectivity of ρ : £)(Aμ) +

-+@(A) + demonstrating that Aμ = A. Π

Theorem 11. Let A be a symmetric Hilbert space operator, then its
closure A is in the same rigging class.

Proof. It is enough to show that ρ : 2(A)+ -*2(A)+ is injective. Let
φ e &(Ά)+ then by Theorem 9 there is a k e @(A + ΐ) such that for /e ®(A\
</, 0> ̂  ((,4 + ϊ)f, fe). Since St(A 4- ί) is dense in 3l(A + i) this functional
cannot vanish on 2 (A) unless fc = 0, that is φ = Q. Π

Theorem 12. Le£ A be a self adjoint Hilbert space operator, and α its
corresponding sesquilinear form, then α is in the rigging class of A.

Proof. We first show that ρ:@((x)+-+@!(A)+ is injective. Now
&(a) = @(\A\*) hence by the representation Theorem 9 we get for /e ®(α),
φ e ®(α)+ that </,<£> = ((Ml1 + 0 /, (|A|* + 0 0 for some / e 0(α). Suppose
this vanished on all /e®(^4), then we have Q = ((\A\^+ i)f, (1X^ + 00
= ((\A\ + i) /, /) but this implies that / = 0 since B = \A\ +1 is a self adjoint
operator, B ̂  / and 3)(B) = ®(A), hence B®(4) = jtf. Thus ρ is injective.
To complete the proof we must show that α viewed as a linear trans-
formation maps ®(α) into ®(α)+. In other words, given ^^^(α) we
must find an h e £#(α) such that for all / e 3)(a) we have α(/, gf)
= ((|.4|i + 0/,(Mli-M')^) % Λe spectral representation for α this
means that α(/, ^) = j (1 -f |λ|) d(f, Eλh) where £ is the spectral measure

of A. Let now h — I f -——- dEλ\g, then fe e ̂ (α) since g e @I(QL) and the
\ 1 + μ| /

spectral integrand is bounded. And now h satisfies the needed condi-
tion. Π

Note that α is not bona fide if A is unbounded, for if it were it would
be a proper symmetric extension of a self adjoint operator.
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