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Abstract. As a first step in the generalisation of the Laplace transform to a non abelian
group, we examine the representations of the groups SO(n, 1) by means of transformations
of (not necessarily integrable) functions defined over the hyperboloids O(n, 1)/O(n). We
define a regularised version of the Gel'fand-Graev transformation from the n-dimensional
hyperboloid to its associated cone, which is valid (under certain restrictions) for polyno-
mially bounded functions. Upon the cone we then carry out a pair of classical Laplace
transforms parallel to a generator. We give inversion formulas for both these procedures,
and express the Laplace transform/inversion pair directly in terms of the function on the
hyperboloid.

For integrable functions our results reduce to those already known; in the non-
integrable case they are new. New features include the divergence of the transform for
certain discrete asymptotic behaviours; the existence of a finite dimensional kernel subspace
which is annihilated; good asymptotic behaviour of both Laplace projection and inversion
formulas; and the existence of discrete terms contributing to the inversion formula for
even dimension. Our results are valid for all dimensions and are completely independent
of the usual “Laplace transforms” involving projection by means of “second-kind represen-
tation functions”; in a final section of the paper we examine briefly the significance of that
approach in the light of our own.

I. Introduction

There has been recently [1,2] considerable interest in possible
generalisations of the Fourier transform on locally compact non-Abelian
groups, with the hope of deriving expansion theorems valid for non-
square-integrable functions over a non-compact group — typically one
of the Lorentz groups SO(n, 1). Two approaches to the problem can be
distinguished: the distribution-valued-transform methods, as exemplified
by (for instance) the work of Riithl [2]; and the special-function approach
[1] which is often called the Laplace transform but which we shall call
the Legendre transform. The former is the direct analogue of the classical
one-dimensional theory; but it has the disadvantage that the function
f(g) with which we are concerned has to be regarded as a distribution, and
although the Fourier transform is then certainly defined, there is no
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general way of evaluating it without a regularisation procedure involving
f(g) itself. We shall not consider this method further.

The second approach is more interesting, although the theory behind
it is somewhat ad hoc. Despite any claims made by its protagonists, it
still rests essentially upon the integral relation between Legendre
functions

[ Px) 0 dx=[(—j) (4] + 1]~ (1)
1

[valid for Re(/—j)>0 and Re(/+j)> —1], and its generalisations
whereby the P, become the representation functions (matrix elements)
of the group and the Q, the so-called “second-kind” functions [3]. There
are three limitations to this approach: one (the asymptotic behaviour)
we shall discuss shortly; a second is that the entire theory is cast in very
strongly basis-dependent language; and the third (and most significant)
is that it is restricted to SO(2, 1) and is incapable of generalisation [4]
to higher groups like SO(3, 1). The last point tells us at once that if there
exists a generalisation of the Laplace transform to non-Abelian groups,
then this is not it.

Nonetheless, because no other approach to this important problem
has so far been found, there is a considerable literature on the subject.
Several authors [S] have noticed indeed that in a non-compact basis the
representation functions themselves are of “second-kind” behaviour,
but unfortunately this tantalising discovery merely exchanges one
divergent integral for another, and we are no further advanced. Otherwise,
the complete reliance upon special-function theory in a particular basis
is in striking contrast to the basis-independent formalism [4, 6] developed
for Fourier transforms.

In this paper we make a start on the problem of defining a true
Laplace transform over a group, using the methods of group theory and
integral geometry. For the sake of clarity and intuitiveness, we discuss
first not the regular representation itself (that is, the “non-integrable
regular representation”) but rather the quasi-regular representation of
SO(n, 1) by means of transformations of functions defined over one sheet
of the hyperboloid O(n, 1)/0(n); we shall extend our results to the regular
representations themselves in a later paper. Let us summarise the
Legendre theory for SO(2, 1), in the especially simple case of a function
f(u) over the 2-dimensional hyperboloid u-u=1 which in a spherical
coordinate system has no angular dependence: f(u)= f(ch{). We have
the transform pair

ff(chéf i(ch{) d(ch(), (2a)

f(cht) = 2#§21+ () P(cho)dl, (2b)
C
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where C is a contour running from C —ioo to C +ioo; C=Rel is chosen
to the right of the least value for which (2a) converges. If indeed f is
integrable we can take instead

7= § fehd) Picht) dich). 3a)
flehd)= 5= [ QI 0oy (chDdl;  (3b)
C

but (3a) diverges for general f, whereas (2a) may converge. The pair (2)
is generally called the Laplace transform; only the pair (3) can be
extended [4] to higher groups.

This theory suffers however from an important defect. The classical
Laplace transform on the real line converges for all exponentially bounded
f(x); and it gains a large measure of its usefulness from the fact that when
the contour of integration in the inversion formula is pulled back to the
left half-plane, we can ultimately ignore its contribution to the integral
when compared with those of the singularities it has crossed. Such is not
the case in (2b): the Legendre P-functions are ill-behaved as Re/— + oo.
Certainly it is true that (3b) is satisfactory as Re/— — oo; but then (3a)
does not usually converge. Thus the Legendre transform pair for SO(2, 1)
can either be arranged to have a convergent projection formula or to
have an attractive inversion formula — but not both. We shall present a
theory of a Laplace transform where both these desirable features are
present.

To see how our results arise, consider the classical Laplace transform.
This is usually (incorrectly) stated to be an expansion in non-unitary
representations of the additive group of the reals; in fact, it derives its
entire usefulness from the fact that it is no such thing. Instead, it is a
transform over representations of a semigroup (the transform integral is
only from zero to infinity); the group property is possessed only by the
two-sided Laplace transform, whose domain of definition is small
indeed. If we want to recover the entire function f(x), — o0 < x < o0,
we need a pair of Laplace transforms — one for each half of the real axis.

This idea tells us how to proceed: the (generalised) Laplace transform
on a group G is to be identified with a projection over representations of
some semigroup contained in G. We shall elaborate these ideas in a later
paper; here we concern ourselves only with the “quasi-regular” represen-
tations of SO(n, 1), which we know how to treat. The general procedure
for decomposing an (integrable) function on the hyperboloid into its
irreducible components has been given by Gel'fand and Graev [7]; see
also Ref. [6], Chapters V, VI, and Refs. [8-10]. Its cardinal feature is the
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mapping by means of an integral transform known as the Gel'fand-
Graev transform from the space of functions f(u) over the hyperboloid
u-u=1 (Lorentz metric) to a space of functions f(k) over its associated
cone k - k=0; once on the cone, it is meaningful to expand f in homo-
geneous functions (i.e., carry out a Fourier transform parallel to a
generator), and this decomposes f into functions transforming under
a unitary irreducible representation of the associated group of motions.
Hence by moving to the cone, Fourier analysing, and transforming back
to the hyperboloid, we have a convenient method for Fourier analysing
over the group any function defined on its homogeneous space.

Our task is now clear. First, we must define a version of the Gel’'fand-
Graev transform which holds for non-integrable functions; second, once
on the cone we carry out a pair of Laplace transforms. These will define
a corresponding transform on the hyperboloid itself, which will be a
true Laplace transform on the group.

In Section II then we devote ourselves to defining the Gel'fand-Graev
transform for polynomially bounded functions. The result is a two-stage
regularisation process using the method of “analytic continuation in the
coordinates”, which reduces to the usual result for integrable functions
and (in general) converges satisfactorily. The caveat is because the trans-
form may indeed not exist for a (discrete) set of functions — we should
not expect it to. For consider the function f(u) = (ch{)"; this is analytic
in y, and under a natural transformation should remain so. Therefore
f(k) will have singularities in the complex p-plane; and these turn out
to lie at certain integers or half-integers, with an interesting difference
between the even and odd-dimensional cases. We also find that the
transform has a non-empty kernel: it annihilates all those functions
which transform under a finite-dimensional representation of the group.
Provided the transform exists, we derive an inversion formula (modulo
the kernel); this depends explicitly on the dimensionality of the space.

In Section I11 we carry out the Laplace transform on the cone and
express this in terms of the function on the hyperboloid. We obtain a
pair of formulas which have all the desirable properties of the classical
Laplace transform pair, with the single exception of diverging for the
special cases we mentioned above. The inversion formula we find to
depend critically on the dimensionality: if n=2m+ 1 is odd, only a
contour integral is required in the complex [-plane; while if n=2m is
even, we need also a sum of discrete contributions from the positive
integers. We note that the poles and zeros of the measures in the inversion
formulas dovetail exactly with the zeros and divergences of the transforms.

In Section IV we descend from our general n-dimensional basis-
independent formalism and look briefly at the quasi-regular representa-
tion of SO(2,1), in order to compare our results with the Legendre
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transform. We find that the essential difference springs from the fact
that the scalar product on the hyperboloid induces one on the cone which
has a two-point measure. In the case of the Fourier transform, the dif-
ference this makes turns out to be quite trivial; but for a Laplace or
Legendre transform the consequences are important, and lead to a
distinction between the two approaches.

1I.1. The Gel’Fand-Graev Transform

We parametrise the upper sheet H of the n-dimensional two-sheeted
hyperboloid O(n, 1)/0(n) by a vector u = (uy, u) withu-u=uj —u-u=1.
The associated cone we shall call K and parametrise by k with k- k=0.
Consider any f(u) which is C* and of compact support; then the
Gel'fand-Graev transform I is defined by [11]

r:f-f={rfwdo @

where the integration is over the horosphere w. Given any ke K, this
defines a horosphere by the points u satisfying u - k = 1; hence (4) becomes

T f@—f )= fwowu-k—1)du. (5)

The measure du is the usual invariant measure upon H. This converges
for all f(u) of compact support, and defines a function f (k) which is
indefinitely differentiable and which vanishes [11] both at infinity and
in a neighbourhood of the vertex of K. We wish to extend the definition
of the transform I to functions f which belong to the space P of poly-
nomially bounded C* functions on H. It is natural to attempt this by
taking

1

§ 1) u-k =112 dul,- (©6)
where the integral is evaluated at Reg < 0 and then analytically continued
to ¢ = —1; however, this fails because (a) at u - k = 1 we then obtain a large
divergence factor, and (b) we can have |u|* = u + u - u— co without also
u-k—oo.

To turn the potential convergence factor into an actual one we
therefore regularize this integral in its turn, by the method of “analytic
continuation in the coordinates” (see Ref. [6], Chapter V, Section 3.2).
Let  be any vector inside the positive cone: ie., 17> 0, 5,>0. Then
the functional (u -k +iu-n—1)? is readily shown to be analytic in the
coordinates of the set of all k + i in this “upper half-plane”, as well as
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analytic in g. Making use of the result

e M2 (x 4 i0)* + e M2 (x — i0)*

)' —_—
IxI 2 cosml/2 ’ 0

which is true for generalised functions of a single variable [12], we define
the generalised transform I to be

I f)= f00 = Lim [ f () J, (0,0, 0) dul= .} ®)
where

—ing/2 . A A 14 ing/2 i o — 1)e
Tt )= e w-k+iu-n—1°2+e"*u-k—iu-n—1)

4I(0) cosmo/2 ' ©)

The limits and integrations are to be performed in the following order:
first integrate, with Reg sufficiently negative to ensure convergence, and
n in the positive cone; then analytically continue to ¢ = — 1; finally let
n—0. Provided it exists, we shall call (8) too the Gel'fand-Graev trans-
form of f.

To investigate the convergence, we split f(u) into two parts. Let F,
be the subspace of P of all functions f;(u) of compact support; and let
F,, be the subspace of P of all functions f_ (u) which as |u| - co grow like
|u|* 7" or faster. We see that F,, is the subspace of functions which are not
integrable. Then upon F,; we can take the limits in (8) before integrating,
and we recover exactly the classical transform (5). Upon F,, however,
the generalised transform may have singularities — i.e., not exist. The
conditions for this are given in the following lemma.

Lemma 1. If n=2m is even, the Gel’fand-Graev transform (8), (9) does
not exist for functions f.(u)e F,, which contain components whose
behaviour is of the form

flul = o)~ Ju ™" =0,
if n=2m+ 1 is odd, it does not exist if

S (lul = 00) ~ Jul™™™ rz0,

where in both cases r is an integer. In either case, the kernel of the trans-
formation is the “polynomial subspace” Q whose |u|— dependence is
given in a spherical coordinate system by linear combinations of the
Junctions

(shO Ci2@"~2(ch()

where C,, is a Gegenbauer polynomial and 1, k are integers.
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Sketch of Proof. Fix k and choose a spherical coordinate system
with k as the polar axis. Then (8) is the regularization (if it exists) of the
integral (6), which can be written

1 _
2—F~(Q—)§ F((, 8) [ko(ch{ — sh{ cosf) — 1]¢ (sh{)"~ (10)
(sin@)" 2dodl|,. .,
F(, 0= f f0,2,.,)dQ,_,. (11)

[The label Q incorporates all the angular dependence of f upon $"~ 2,
which is irrelevant to (10).] For a given 0-independent asymptotic
behaviour of F, no remaining 0-dependence can worsen the behaviour
of f, and so to find the singularities of (10) it suffices to examine the case
when F((, 0) = F(ch{) alone.

In this case we find from (5) that we need to consider the regularisation
of the integral

n—3

[ F(ch{)(ch{—cho) * d(ch(), (12)
cha
where we have set k,=e”. Make the substitution ch{=y !, and set
Fi(y)=F(y™!). Because F(y) is polynomially bounded, we can write F, (y)
as a sum of terms of the form' y~?(Iny)' F,(y) where F,(y)=c(1 +0(y))
near y=0; then (12) becomes

secha n-3
[ F0)(ny) (A —ycha) > y 7 i 34y, (13)
0
This is just
secha n—3

[ EO)(ny)y (1 —ycha) 2 y*dy
0

evaluated for Re/>0 and analytically continued to A= —p—3n—3.
Since F, is finite and continuous at y =0, we can apply standard theory
[12] and conclude that the integral can have singularities only at
J= —r<0; that is, at p=r—in+ % with r>0.
With this knowledge, we can evaluate (12) with F(x)= x” to obtain
further details. We find that
c/h\PC(k):(Zn)%‘"'” e~ DA (cpyptinmD) L(%;(p ;)”/2) (14)

! The inclusion of more slowly varying functions, like (InIny)*, does not alter the
argument further: the position of the singularities remains what it would be if the factor
were just a logarithm.
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when we take into account all the factors involved. The analytic continua-
tion is to be applied to the parameter n; p is regarded as fixed, so that (14)
has a zero for positive integer p for all values of n. This becomes clearer
by working directly from (8).

If now we include logarithmic factors, then because we can no longer
expand y? Fi(y) in a Taylor series about y=0 we no longer obtain the
automatic zero at positive integer p. Together with the expression (14),
this proves the first part of the lemma. It is of interest to remark that the
insertion of a factor [In(ch{)]? worsens the behaviour at the integer
points by a pole of order g; notice the analogy with the classical Mellin
transform.

To investigate the kernel of I" we start from the fact just proved, that
for trivial dependence of f on S"~! it consists of all polynomials in
(ch{). Consider the representation of O(n, 1) by T,: f(u)= f(ug), where
g€ O(n, 1). Under the transform I this becomes just

T,: f(k)=f(kg)

(since both H and K are homogeneous spaces of O(n, 1), this is meaning-
ful); see Ref. [6], Chapter VI, Section 3.2. Hence if f lies in the kernel of T,
then so does T, f. But the polynomials just found are merely the angular-
independent part of a function on H transforming under a finite-dimen-
sional representation of SO(n, 1); all such functions can be expressed as a
finite linear combination of functions of the form [13]

(sh Q) Cl"_“"‘(chC)

H (sin gyt CHI~ Dk gosg oo ()

‘k]+1

and these functions span a closed invariant subspace Q of P. This proves
the second part of the lemma.

11.2. The Inversion Formula

We must first examine the behaviour of f(e*k) as a— + 0. A simple
and obvious argument, which we do not give here, yields the following
result.

Lemma 2. Let f(u)e P be a function satisfying the conditions of
Lemma 1 (so that its Gel'Fand-Graev transform exists), with asymptotic
behaviour fW)~ [ul” (Inul)? as [u]— oo for all fixed u/|u|; then as a— oo,
f(e*k) has the behaviour

fletk)~ater
f"'(e—zz k) ~ OCqeaz(p+n— 1)
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to leading order in ¢ and o . Furthermore, f (k) is indefinitely differentiable
in the coordinates of k, except possibly at the vertex.

We now introduce some technical lemmas on the singularities of
certain linear functionals on spaces of polynomially bounded functions
over H and K.

Lemma 3.1. Let f€ P vanish in a neighbourhood of |u| =0. Consider
the linear functional @ which in a spherical coordinate system is given by

P = (sh{)* (ch{/2)* 7",

Then as a function of u, (b, f) is singular at u= —n only if, as |u| - oo, [
has asymptotic behaviour |u|" (In|u|)® where r is a positive integer or zero®.
When acting upon the entire space P, the kernel of @ is the “polynomial
subspace” Q of Lemma 1.

Lemma 3.2. Let g, (k) be a polynomially-bounded C* function over K
which vanishes in a neighbourhood of the vertex. Consider the linear
functional W :

l]/ = (a : k);’(!“")

where a-a=1; then as a function of u, (¥, g,,) is singular at u= —n only
if the asymptotic behaviour of g is g ~kp (Inky)® where r is a strictly
positive integer*.

Lemma 3.3. Let g,(k) be a function on K of compact support which is
indefinitely differentiable at all points except possibly the vertex. Consider
the linear functional X :

X=(a-k)y swtm

where a-a=1; then as a function of u, (X, g,) is singular at p= —n only
if, as ko—0, g, behaves like ki, " "(Ink,)* where r is a strictly positive
integer®.

The proofs of these lemmas are similar to that of Lemma 1. We
remark that the presence of logarithmic terms in the asymptotics worsens
the singularities but does not alter their positions.

We are now ready to derive the inversion formula for the transform I,
under certain restrictions. We shall henceforth always assume that fe P
has no components satisfying the conditions of Lemma 1 — i.e., that the
transform I f(k) exists; and we shall also require that f(u) has no com-
ponents of the asymptotic behaviour® |u|"(In|u|)* where r is a positive
integer or zero. We shall discuss this restriction later. Under these
assumptions, then, consider the following linear functional ¥ operating
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on the space of transforms f(k):
)= fk)la-k— 11" (a-k)~>0 dk (16)

where a lies on H and the measure dk is the usual invariant measure on
the cone. The regularisation of the integral is performed for fixed a by
setting

fo=foll)+ fr(k)+ £, (k) ,

where f, vanishes outside a compact set which contains the vertex of the
cone but none of the points a-k=1; f, vanishes outside a compact set
which contains these points but not the vertex; and f, vanishes within
a compact set containing both k=0 and a-k=1. Upon f, the integral
converges classically for Reu>0; on f, and f, it converges for Rey
sufficiently negative, as follows from the asymptotic behaviour of f
given in Lemma 2. The value of (16) is then found by analytic continuation
in p

Now if I exists, PI' = & defines a linear functional on P. By (5), this
functional is given explicitly by

du,a; )= [la-k—1/"(a-k)"*** " 5(u-k—1)du. 17
The integral can be performed [11], and gives

22U Pt p+ 4 sh*r
B, a; 1) = =
(1 a3 10 T'Gu+in ch**"=2y)2

(13)
where chr=a - u; so we find

(¥, f(k) (@)= | Du,a: p) f(w)du. (19)

The discussion now depends upon the parity of n. Suppose first that
n=2m+1 is odd; and consider Eq. (19). Then upon the space H, of
functions f'e P of compact support, ® has a simple pole at u= —n, with
residue

2n+1nn~1(_1)m
————d(u—a). 2
=11 o(u—a) (20)
By Lemma 3.1 the kernel of @ is the polynomial subspace Q; and if f(u)
has no behaviour® of the form |u|"(In|u|)*, where r is an integer and s =0,
then (20) are the only singularities of @ on the entire space P/Q. Under
these assumptions (19) becomes

1 2"+17Zn_1

O D= oD

(—=1)y" f'(a) + regular terms  (21)
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where f'e€ P/Q is just f modulo any components in Q. The remaining
terms above are regular at u= —n.

Now consider ¥ acting by (16) upon the space of functions f, (k) of
compact support on K. The generalised function |t|* of a single variable
has a simple pole at u= —n if n=2m+ 1 is odd, with residue

2
(n—1)!

By Lemma 3.2, at the point u= —n, ¥ is regular upon fw (k) unless f;
has an asymptotic component of kj(Ink,)* with r an integer; and by
Lemma 3.3 ¥ is regular upon f, (k) unless f, has a component behaving
like k¢ ™" "(In ko) as ko—0. Hence by Lemma 2, the only smgularltles
of ¥ acting on f,, or fo arise from components of f(u) growing exactly !
as |u"(Infu])’. By our assumptions, there are no such components with
s=*0; and if s=0, then by Lemma 1, such components of f are in the
kernel of I' and hence cannot appear in f. Therefore if f(k)is the trans-
form of a function f(u)e P satisfying our assumptions, the only sin-
gularities of the functional ¥(a, k; — n) are those found when it acts upon
£, (k) and given by (22).

Equating the residues of the poles at y= —n of Egs. (21) and (16) with
the aid of (22), we find then

(=" 1)
202np2™

The integral converges because for fixed a this is a continuous closed
contour upon the cone.
We now turn our attention to the case of even n=_2m. (18) is now

5" 1(g) . (22)

fa)= m — [ f(k)8%m™(a k—1)dk. (23)

regular at u= —n; so too is the generalised function [t}* of a single
variable [12], so that arguing just as before we obtain the result
ny"@2m-—1)
f’(a)=—(-—+2(—57———jf —ll—zmdk. (24)

The function f'(a) is defined as before; and the regularisation of (24)
is to be understood in the sense described after (16). We now summarise
the results of this section in the form of a theorem.

Theorem 1. Let f(u) be a C*® polynomially-bounded function over
the upper sheet H of the hyperboloid O(n, 1)/O(n) whose Gel fand-Graev
transform f(k) exists [and is given by (8) and (9)]. Let f'(u) be just f(u)
modulo any polynomial terms (in the sense of Lemma ). Thenif n=2m+ 1
is odd, we have the inversion formula

(

7= ﬁé’l [ (k) 6™ (a -k —1) dk.
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If n=2m is even, the inversion formula is valid only for transforms of
Sfunctions f(u) with no components which behave asymptotically as
[u|"(In |u|)* where r is a positive integer '. If these conditions are met, we have
the result
—-H"2m—1)! A
f'(u)= (—lzgcw—)—Reg.jlwk— 1172m f(k) dk .

These results are formally just those of Ref. [6], Chapter V, Section
2.3; and indeed we should expect them to be, since our results must
reduce to the classical ones if f(u) is of compact support. What we have
done is to define a regularisation of the Gel'fand-Graev transform which
exists for a large class of polynomially bounded functions, and show
that the old inversion formulas hold in the sense of Theorem 1. The new
features are the non-existence of the transform for certain discrete
asymptotic behaviours; the precise definition of the regularisation
procedures to be adopted; and the annihilation of all functions on H
which transform under a finite-dimensional representation of O(n, 1).

The divergence of the inversion formula in the even-dimensional
case for certain discrete asymptotic behaviours is unpleasant but
apparently unavoidable; we should perhaps point out that the reason
this does not occur in the odd-dimensional case is that by Lemma I,
the transform itself does not exist for these asymptotic behaviours.
Finally, although we have assumed in all our work that the asymptotics
can be represented by powers of |u| and In|ul, it is clear that functions
growing more slowly at infinity (such as Inlinfu|) introduce no new
features.

I11.1. The Laplace Transform

The canonical method of decomposing the quasiregular representa-
tion of O(n, 1) into its irreducible components has been given by Gel’fand
and Graev [6, 7]. It consists of passing to the transform space of functions

f(k) defined by (5) and then carrying out a Fourier transform parallel
to the generator of the cone:

f, )= | f(e*kye *da. (25)
If however f(u) is not integrable, neither is f(k), and the Fourier

transform diverges. It is then natural to introduce the Laplace transform
on the cone by the pair of transforms

flky, = Ojof(e"‘k)e"“ da (26)
0

flk_, )= off(e_“k)e_“”_”“doc. 27)
0
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Because of Lemma 2, if the generalised transform I' f = f exists, these

integrals both converge for Rel sufficiently positive, and indeed define
analytic functions of I.

Now (26) defines a linear functional upon the space P(u) itself. To find

an explicit expression for this, we combine (26) with (9) and consider the
integral

oM(p,pio )= Oj: J(u,n, e k)e™ " du (28)
where p=u-k, p=u-n; so that
Sl )= lim U f)y @ (p, pso. ) duly= -1} (29)
The integral (28) can be performed, and yields
& (p,p's0,)=[4I'(¢) cosmg/2] "

: e 1—ip
{e"”’2~—p F(—Q,I—Q;I—QH; lp)
(I—0) P

(30)

: ¢ L+ip
+e‘"‘”2—p—F<—Q.l—Q;I—Q+1; £ )}
(I=9) p

Now F(a, b; c; z) has a cut along the positive real z-axis from z=1 to oo,
but is analytic elsewhere in the complex z-plane. Hence it is clear that (29)
has vanishing contribution from the region p > 1; for p <1 however the
limit >0 (i.e, p'—0) in (29) takes the two hypergeometric functions to
opposite sides of the cut, and a non-zero limit exists. To determine this
limit, we transform [14] the first term in the braces above to

ing/21—1 __in\e _ 11 - p )
e =t —ip) F( o, —l;1—1, —ip

(31)
I(l—o (=)

I'(—o)

1

+eintmed P —ip)e

As we take the limits in (29) the contribution of the pair of terms like
the first one above vanishes; the second pair gives us

P (p,p's0,0)

—i ) A
= S P ip) T e =i 0 =p). (32)
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In the same way as (29), f(k_, l) is defined by a functional =), which
is given by

@ (p,p's0, )= %icosecmlp' "

. {e—ilrz(l + ip/)g+l+n—l 117[(1 )g+l+n 1} o(p_ 1) ‘33)

The transforms (26), (27), given in terms of f(u) by the linear func-
tionals (32), (33), we shall call the Laplace transforms? on H. Notice
that in (32) we can take the limit p— —1 before integrating, provided
that Rel is sufficiently large; in (33) however this is impossible. If f(u)
€ L'(u) we can indeed transfer both the limits from (29) to (32), (33), which
then become

D (p, )=p'O(1 —
(p,)=p 0(1—p) (34)
P (p, h=p' "0~ 1).
These results are more easily obtained from the “classical” transform,
which is valid for fe L'(u). In such a case, the Fourier transform (25)
exists, and is defined [8,9] by a functional

P(p, )= (p, )+ (p,1 —1—-n)=p".

1I1.2. The Laplace Inversion Formula

The inversion formulas for even and odd dimension show considerable
differences. We start by examining the case of even n=2m, assuming
initially that f(u) satisfies the conditions of Theorem 1.

Choose some (fixed) cross-section 4~ of the cone K, and write k= #£¢",
with £ € . The measure d# is then defined by

dk=e""V*dud4 .

From the classical Laplace inversion formula, we have
flhery=—— j Dedl  (x>0)
C

where C is the usual contour C —ico to C+ioo to the right of all sin-
gularities of f in [. Hence by (24) the contribution of f(£,,[) (that is, of

2 We notein passing that the generalised Paley-Wiener theorem will impose restrictions
upon these transforms, so they are not entirely independent.
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the part of the cone lying above #7) to f(u) is given by
(="2m—-1)!
(m)*m*ti (35)

fletu-£—1]72me2m= V2 dy dg | f(£,, e dl.
C
Interchange the orders of integration and look at the o-integral;
writing as before p=u- £ this is

filw) =

Reg. j ‘eap__1|—2mea(l+2m—])ddEA(p). (36)
0

The integral can be performed (in the sense of its regularisation) using
standard formulas [14]. For p> 1 we obtain

-2m

P

A(p>1)= =0

FQm, 1 —=12—1;p 1) (37)

while for p <1 we find

T =2 (u—Il—m+1) Y
1-Il-m—pu _ 2inu
{p Ir—pu—1—m) [1—e ] (38)

L —=m

A(p<1)= lim

(1_p)1‘211 -1 1 .
+—(=pu+m—-0)""F(1,2—pu—l—m;24+pu—1l—m;p~ " +i0); .
p

The first term above is finite; using [14] HTF 2.9.34 on the second, we
can write the whole of (38) as

r(i—1 o
A 1 — I-2m+1
<D= G hira—i—am P

(1 )~2m (39)

—p . . b

1 —2m—1) F(1,2m,l+2m, p—1>'
Hence (35) becomes
fiwy=B[dl| f(#, 1) Au-£1)d#4 (40)
C

where B is a numerical factor, and A(u - £, ) is given by (37) and (39). Now
f(#.,1)1s analytic in [ to the right of the contour C; so too is the second
term in (39), if ReC > 1 — 2m. Hence the contribution to (40) of this term
vanishes. Consider the contribution of (37). A(p>1) tends to zero at
infinity in the [-plane like |/| 7! in all directions except along the positive
real axis; where it has simple poles at the integers, with residue

—1 QCm+1-2)!
(-l  @2m-1D!

ploitam (1=1,2,3,..). (41)
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Hence the total contribution of f(#,,1) to the inversion formula (24)
becomes

(— 1y r-1 ) o
siome LU e =g O ] S D) dA

(=1 o (+2m—2)!
Qm?m 4 (I=1!

(42)
+

[ e D-£)r2mads,
>1

u- £

where the discrete summation runs over all positive or zero integers to the
right of the contour C. The contribution to f(u) of f(4_,1) is derived
similarly, and the resulting complete inversion formula we shall give in
Theorem 2.

Now consider the odd-dimensional case, when n=2m+ 1. By (16)
and (22), instead of (36) we now need to find

oo

Res. [ le*u-£—1]"(e*u-£)"x0Fmel =gy (43)
n==ng

By methods similar to those above, we can show that if u-#>1 this
vanishes; while if u- # < 1 it is proportional to

I'(I+2m) -
Y PP A L 44

X0 (u-£) (44)
We summarise these results in the form of a Theorem.

Theorem 2. Suppose that [(u) satisfies the conditions of Theorem 1.
Then the Laplace transforms f(ky,1) of f are given by

Flles, =lim (] £ ) @k ks 0, ) dul, =}

where %) are defined by (32), (33). If the dimension of the Lobachevskii
space is odd, n=2m+ 1, the inversion formula is

(= i r'(+2m)
CQu)Pmti2io rq

{ [ JE Do 2mde+ | f(é_,l)(u%)ldé}
u-£<1 u-£>1

f'w

where # lies on any cross-section A" of the cone (that is, any “contour”
on K that intersects every generator once) such that the £-integrals
converge, and C is a contour from C—ioo to C+ioo to the right of all
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singularities of f(%i, I). If the dimension is even, n=2m, we have instead

J= 2(1(_271t;Zm idl r(zrill__l;m) Comlu‘!qf(fh1)(14%)1_“2"' £
S R R
L e
+ ((_2:[);,"1 2 (r”f’!_m S ky e

where the summations run over all positive (or zero) integers r to the right
of the contour C.

We remark that the measures appearing in the l-integrations here
are classical, as given for example by Vilenkin [8]. Our numerical factors
differ because we have not normalised to unity the measure of %"

Let us now discuss these results briefly. First notice the difference
between the even and the odd-dimensional cases: the former have a
discrete sum appearing in the inversion formula, whereas the latter do not.
This is very reminiscent of the appearance of a discrete series of represen-
tations in the Fourier inversion formula for the regular representation
of SO(2, 1), but not for SO(3, 1); but the precise relationship is unclear.
We know that the discrete series cannot be realised upon H because of
covariance constraints, while the polynomial representations Q are
annihilated by the Gel'fand-Graev transform. They may perhaps
correspond to the second set of finite-dimensional representations, which
are realised not on a polynomial subspace of P but rather upon a factor
space (see, e.g., Ref. [6], Chapter VII, Section 4.3; Chapter III, Section 5.3),
which we have not investigated.

Now consider the asymptotics of the inversion formula. Since u- #
appears with exponent (1 — [ — n) if it is less than unity, and with exponent
[ if it is greater, it is clear that we can indeed move our contour of
l-integration to the left, and eventually ignore its contribution compared
with those of the singularities it has crossed. This is a consequence of
our taking a Laplace transform in (26) instead of the usual Fourier
transform (25) (which in general is of course divergent); it is this highly
desirable feature which is absent from the Legendre transform approach
which is discussed in the introduction. Part of the price paid for this is the
existence of a pair of functions instead of just one; but this is true too
for the classical Laplace transform.

8 Commun math Phys, Vol 28
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It is possible to derive a much simpler inversion formula by taking the
lower limit of the o-integration in (36) and (43) down to —oc: the
properties of the Laplace transform will ensure that the contribution of
the extra range is annihilated by the l-integral. If we do this, we recover
exactly the classical inversion formulas for each of the f(4.,0): in
Theorem 2, the limits on the 4-integrals are removed, and the discrete
sums disappear. While the results are of course equivalent, the attractive
asymptotic behaviour of our formulas is completely obscured.

The cross-section #* of K apparently plays an important role in
Theorem 2. This is illusory: any contour on the cone will do, provided
only that the relevant integrals converge. In practice, unless f isintegrable
this will restrict 4 to be a closed contour; and if we make the usual
requirement that the coordinate system allow separation of the Laplace
operator, this in turn restricts our coordinates to be either spherical or
of ellipsoidal type. Such an ellipsoidal system has been briefly discussed
for SO(2, 1) in Appendix A4 of Ref. [15]; for SO(3, 1) see Olevskii [16].
Therefore the number of useful new special-function results derivable
from Theorem 2 is limited.

Finally, consider the measures of the [-integrations. Comparing them
with the results of Lemma [, we see that their zeroes lie exactly at the
positions corresponding to functions with such asymptotic behaviour
that their Gel'fand-Graev transforms do not exist (i.e., the Laplace
transform (29) diverges). The poles possessed by the measure in the even-
dimensional case correspond to those extra functions that we were
forced to exclude from Theorem 1 because the inversion formula did not
converge. We are now able to make use of the analyticity in [ to remove
these extra restrictions.

Lemma 4. [f n=2m is even, the Laplace inversion formula in Theo-
rem 2 converges to f'(u) even for functions with asymptotic behaviours
lul"(In|ul)® with integer r, which were excluded from the Gel fand-Graev
inversion formula in Theorem 1.

IV.1. Relation to the Legendre Transform. The Group O(2, 1)

Having derived a general theory of Laplace transforms, we shall
now show how the Legendre transforms fit into our scheme. We shall
in this section consider the two-dimensional hyperboloid, which has
the group of motions SO (2, 1); for it is this which has been most ex-
tensively investigated.

To clarify the relationship of the transforms we shall need some
theorems of the Plancherel or inner-product type. Suppose that f and g
are integrable over H. Let

(fs9u= jm g(u)du .
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Then we know that [8] also
(f9)u=(/.9)
izi fdl.lcotnl | f(k, —T—1)g(k, 1) dk

Cc

(45)

On the cone, however, we can only derive an inner product which has a
two-point measure. By inserting (25) (with n=2) into (45) we obtain in
the integrable situation

(/- Du ='f Ik

=- 6 —— jf ke*) gk ) cosechz(ﬁ2 )e dodp dk . (46)
Similar theorems (subject to the provisos of Theorem 1) can be obtained
when fg is integrable while f is not. We shall not need them here.

We are now ready to study the Legendre transform. Choose a
spherical coordinate system and for simplicity suppose that the de-
pendence of f and g upon the azimuthal angle ¢ is trivial. We can
therefore write f(u)= f(ch{) and f(k)=f(x). Let the cross-section ¥’
of K be x,=1; then for f(4. 1) we shall write f(l

Now consider the Fourier projection formula (3a); we ask what this
becomes on the cone. It is simple to verify using (5) that P(ch{) is trans-
formed into

tanml
I': Pfch = -

(72 PAchE @)= 5
and indeed we can show by (8) that this is true for all values of [ (we
exclude the case | =n+ 3, when the transform diverges). Now in (46) set
g(£ef)=e'?; the equation becomes

{ezl+e—1(l+l)} , (47)

(f,d)x= —— ff do ? e'? cosech? (—ﬂ;—y) dp. (48)

The f-integral can be performed (in the sense of the regularisation) and
yields
—4ml-cotml- e (49)

so that from (46)—49) we find

§ J(ch) Pi(ch{) d(ch()
— _ (50)
— l la l 1 a(l+ 1) ad .
20 [f[le”+(+1)e Te* do
Therefore the result (49) has the very important consequence that the
projection formula on the cone, (50), is of simple Fourier form, so that the

g*
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usual projection formula (3a) does indeed have the significance we
ascribed to it. (We do not enter here into a discussion of the simultaneous
appearance of terms in [ and — [ — 1; the equivalence of these representa-
tions is a consequence of the Paley-Wiener theorem for the Gel'fand-
Graev transform, which has its roots in the fact that upon H the hyper-
bolic angle { takes only positive values.)

Now turn to the Legendre transform (2a). We find that

27 e 0
Qi+ € r=
LI Quch )] ()= (51)
ﬁe—a(lﬁ-l) O(>0.

At first sight then we might expect (2a) to be just the sum of our two
Laplace transforms f (I,) and f(/_); but this is not so. For our Laplace
transforms are exactly the classical Laplace transforms on the cone,
whereas (51) has to be used in conjunction with a two-point measure;
and unlike the Fourier transform just treated, we no longer obtain an
integral over the cone whose integrand is essentially the product of
f(2) and (51).

The principal distinction between the Laplace and Legendre trans-
forms therefore lies in the two-point measure on the cone * given by (46).
Our “Laplace” transform takes a genuine Laplace transform on the cone,
which corresponds to projection with some more complicated function
on the hyperboloid; the Legendre transform chooses a simple function
on H, but this corresponds to a more complicated one on K. The advan-
tage of our approach is that it enables us to derive new formulas with
“good” asymptotics; its disadvantage is its non-convergence at “integer-
points” and the existence of the kernel subspace Q.

IV.2. The Groups SO(n, 1)

The existence of the two-dimensional Legendre transform discussed
above rests on a cancellation of singularities. Near { =0, the projection
function behaves like

O (chl)~ (sh/2)~ ™

so that in general it is neither continuous nor locally integrable on the
hyperboloid. (On the cone this manifests itself by a discontinuity in the
analogue of (51) at «=0.) By virtue of the inversion theorem (2b),

3 For f¢L'(u) the distinction between the Laplace and Legendre transforms is
much greater; for the latter may converge (or be non-zero) where the former diverges
(or vanishes).
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however, the covariant part f,, of f(u) itself behaves near this point like
P (chQ) ~ (sh) ™™ (52)

so that the product of f,,(u) and Q}*(ch{) is indeed both continuous and
locally integrable, and the transform (2a) exists.

Similar cancellations occur for the quasi-regular representations of
the higher groups SO(n, 1); but not for their regular representations [4].
Only the group SO(2, 1) has a Legendre transform similar to (2a) over
the group itself: for SO(3, 1) and higher groups we can use Egs. (3) but
not Egs. (2).

Finally, we mention another related approach to the definition of
a Laplace transform on SO(2,1). In a recent paper (ICTP preprent
1C/72/41) Cronstrom has acheived a truly Laplacian asymptotic
behavious by retaining the projection formula (2a) but altering the
inversion formula (2b) so that the kernel functions are no longer just the
Pi(ch{), but are instead given by

R/(chl)= — %tannl Q_ ., (ch])

1
2

M8

- (I+n+3710Q,-,(chl).

el

n=

These functions arise by considering an integral representation of the
Legendre function, but with the “wrong limits”, and are closely related
to those which arise from our theory when we specialise to a spherical
coordinate system. We shall consider them further in a subsequent
paper, when we shall show how our formalism can be extended to all
the Lorentz groups.
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