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Abstract. A definition is given of a plane gravitational wave in a curved background
space-time manifold. For a particular background metric, a dispersion relation for the
waves is derived analogous to that satisfied by plane electromagnetic waves in a dilute
plasma.

I. Introduction

Our purpose here is to discuss the dispersion of gravitational waves
in vacuo. We give a definition of a plane wave in a curved background
space-time manifold and for a particular background metric a dispersion
relation for these waves is derived. We formulate the results in a general
manner but because of certain ad hoc assumptions we are forced to
make, we can offer no reason to believe that they are valid for any
background metric other than that given as an example.

In comparison, we first give the electromagnetic case in Section II.
This is a test of the validity of the wave ansatz. There can be no dispersion
of electromagnetic radiation in the absence of charged matter.

II

In this section we shall discuss electromagnetic waves in a region of
space-time in which there is no charged matter present. If there is neutral
matter then we suppose that the dielectric constant and the permeability
are both equal to one.

An electromagnetic wave is described by a Maxwell tensor of the
form

Fμy = Fμv + εAμv, (2.1)

where Fμγ(xσ) describes an arbitrary given background electromagnetic
field, ε is a dimensionless constant characterizing the order of magnitude
of the amplitude of the wave and Λμv is given by

Aμv = dμAv-δvAμ, (2.2)
where

Aμ = Aμ(xσ,coφ), (2.3)
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the potential of the wave, is a function explicitly of the point in space-time
xσ as well as of a constant ω and a phase φ. φ is a function of xσ. ω has
the dimension of (length)"1 and φ has the dimension of length. For the
moment φ is arbitrary. We shall see that once an explicit functional
dependence of Aμ on ωφ is given then Maxwell's equations will place
restrictions on φ.

Define the normal to the family of hypersurfaces φ = const:

ξσ is a dimensionless vector field. The frequency of the wave as observed
by an observer \f with u2 = 1 is ωu ξ.

This factorization of the observed frequency ωu ξ into ω and u • ξ
is rather arbitrary. We can for example choose cφ as phase where c is an
arbitrary constant. Then the observed frequency would be factorized
as (ω/c) (u ξc). The problem is that frequency is an observer dependent
quantity.

In most situations of physical interest there will be a coordinate
system in which the explicit calculations will be carried out, for example
if the background metric is stationary. We shall fix ω sufficiently for our
purposes by demanding that when the observer is at rest in this coordinate
system, then u ξ is of the order of magnitude of one. This means then
that ω is of the order of magnitude of the frequency in a particular
adapted coordinate system.

Define the parameter r by the equations

dxx

dr
S e t dA

A M

Then
dλAμ = ωξλAμ + A^λ. (2.4)

We have therefore

The background electromagnetic field satisfies Maxwell's equations:

DvFμv = 0. (2.5)

We assume that ε is small enough that the electromagnetic wave does
not ionize the matter. We have then that the perturbed electromagnetic
field Fίn satisfies also Maxwell's equations:

DvFμv = 0. (2.6)
Set

A =(Γ) A \
rΎλ:μ \ - μ ^^/Jφ- c o n s t *
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We have from (2.5) and (2.6) the following equations for the potential
of the wave:

ω2A[vξμ] ξv + ω(ξ{μAv]:' + A[Y:μ] ξv + A[γζμ];) + A[v.μ]: = 0 . (2.7)

These equations may be simplified by imposing a gauge condition. If we
demand that the Lorentz gauge condition hold,

DXA
V = O, (2.8)

then Eq. (2.7) becomes

λ A

δr

Rμv is the Ricci tensor of the background metric. δ/δr = .2ξ*. We now
assume an explicit functional dependence of Aμ(xσ, ωφ) on ωφ. We
assume that in the Lorentz gauge (2.8) Aμ(xσ, ojφ) is given by

Aμ(x\ ωφ) = aμ{xσ) eiωφ, (2.10)

where aμ(xσ) is a real vector. Eqs. (2.8) and (2.9) then yield the following
equations for aμ\

(2.11)
ω ""

ξ^}eίωφ==a. (2.12)

The assumption (2.10) is very strong. The system of Eqs. (2.8), (2.9)
has always a solution for arbitrary phase φ and background metric.
The existence of a solution to the system (2.11), (2.12) imposes very
severe restrictions both on the phase and on the background metric.

In addition to (2.10) we shall assume that the Eqs. (2.11) and (2.12)
are valid as complex equations. This means that the change in aμ(xσ)
and in the background metric gμv(xσ) can be neglected when the phase φ
changes by π/2ω. Let L and Π be the characteristic lengths in which the
change in respectively aμ and gμγ becomes significant. Then the above
assumption will be valid if the following inequality is satisfied:

ω> 1/L = max(l/L', 1/L"). (2.13)

In the important special case where the metric is stationary, the phase is of
the form
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If aμ does not depend on the preferred time coordinate x° then the change
in aμ and gμγ when the phase φ changes by π/2ω can be neglected for all
values of ω.

Setting the real and imaginary parts of Eqs. (2.11), (2.12) separately
equal to zero yields the following four equations:

aμξμ = 0, (2.14a)

aμ

; μ = 0, (2.14b)

ξ2aμ-~(aμ:

λ

;λ + Rμλa
λ) = 0, (2.14c)

2^+ξ\λaμ = 0. (2.14d)

An electromagnetic field described by a potential of the form (2.10) where
aμ is a solution to these four equations in the absence of sources, will be
called a wave. If also

\aμ,
λ,λ + Rμλa

λ\<ω2\aμ\, (2.15)

so that the second term on the left-hand side of Eq. (2.14 c) can be put
equal to zero, then we shall say that the wave is a plane wave. One sees
that (2.15) is an immediate consequence of (2.13).

Before giving two examples of plane waves, we draw some immediate
consequences from Eqs. (2.14), (2.15) [1,2]. From (2.14c), (2.15) we see
that the hypersurfaces of constant phase are null and the integral curves
of the vector field ξμ are null geodesies. If we set

then from Eq. (2.14d) we obtain the conservation equation

(« 2ζ") ; μ = °> (2 1 6 )

and the transport equation

δ ^ = 0 . (2.17)
δr

The simplest example of a plane wave is the classical example in flat
space. Let aμ be an arbitrary space-like parallel vector field satisfying
Eq. (2.14 a) with ξμ an arbitrary null parallel vector field. Eq. (2.15) is
satisfied for all ω.

An example of a plane wave can also be given in a space-time manifold
which is not flat. Consider IR4 with the coordinate system

(x^) = (t, y, x2, x 3 ) . (2.18)
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In the region y > 0 introduce the metric [6] whose components are

gμx = diag(e2v, - 1, - e2\ - e2λ), (2.19)

where λ, μ are functions of y alone. The two-dimensional surfaces
t = const, y = const are homogeneous and isotropic. The total isometry
group is the product of the group of motions of the euclidian plane by the
real line.

The vacuum field equations are

(2.20)

When these equations are satisfied, the non-vanishing components of the
Riemann tensor are

RΪ01=-(λ')2, Ri2i=-(λfe2λ

nθ _ pθ _ n l _ n l _ v^ ) O2λ (2.21)
^ 2 0 2 — ^ 3 0 3 — ^ 2 1 2 — ^ 3 1 3 — ~ e

Let a\, a% be two arbitrary constants. On one of the hypersurfaces
y = const introduce a vector field a°μ whose components in the system
of coordinates (2.18) are

0 ίf\ C\ 0 0\ / Ό /">'Λ\

aμ ~ (0, U, α 2 , #3). \Llλ)

Introduce a phase φ given by

φ = t-f{y). (2.23)

Extend a°μ to a vector field aμ in the region y > 0 using Eq. (2.14d). One
can show that for any OJ, the remaining Eq. (2.14) and Eq. (2.15) are then
satisfied if one chooses for / a solution to the equation

ξ2 = 0. (2.24)

The electromagnetic waves are therefore not dispersed by the background
metric.

Ill

The calculations of the preceeding section may be formally carried
over to the case of gravitational waves in a straightforward manner.
However we shall see that it is not clear how one should formulate the
plane wave condition analogous to (2.15). Using as example the metric
introduced in Section II we can eliminate this ambiguity, but this is
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done in such an ad hoc manner that we can give no reason for believing
that the dispersion relation we find is valid for any other background
metric.

A gravitational wave is described by a metric tensor with components
of the form

where gμv are the components of an arbitrary given background metric,
ε is a dimensionless parameter characterizing the order of magnitude
of the wave and

hμv = hμv(xσ,ωφ), (3.2)

the potential of the wave is a function explicitly of the point in space-time
xσ as well as of a constant ω and a phase φ. ω and φ as well as r, ξμ and
the observed frequency are defined as in Section II.

Set

Mv pΰ ~ΠΓ ' μv,λ \Pλ "-μχ)φ = const '

Then

ΐ+hfn,λ. (3.3)

The most general coordinate transformation of the background
space-time manifold is of the form

To this we shall add a gauge transformation of the potential of the wave,
so that the most general admissible transformation of the components of
the perturbed metric is given by

dx'Q dx'σ

where x/μ(xx) is of the form

x'μ = Fu(xα) + — f'μ(x\ ωφ). (3.4)
ω

Define

f dF'λ g>λσf'°,

where g'λσ are the components of the background metric in the coordinate
system F'μ(xa). Define



The Dispersion of Gravitational Waves 297

Then one readily sees that the potential of the wave in the coordinate
system Fμ(xα) is h'μv given by

dF'Q dF'σ 1
h»v = K«-JjΓ "g^v" + /<μ£v,+ — /(μ v). (3-5)

Here and in what follows we have neglected powers of ε greater than one.
We shall discuss shortly what this means physically.

The components of the affine connection in the perturbed and
unperturbed metric are related by the equation

Γ;

μv = Γμ\ + -ψ- (ξiμhv)

λ - ξλhj + ~ (hfμ;γ) - hμv;

λ). (3.6)

The components of the Riemann tensor are related as follows:

^/iσv-^μσvH ~ ^ Juσv~' ΐ~ ^ μ σ v + T ^ μ σ v , (3-7)

where the quantities Λ{i)}

μσv are given by

A?,lσv = ξίλhμnσξv]9 (3.8a)

= ^σ^v][Λ;μ] + ^ U ^ ] I < r ; v ] ~ ^Λ; [σ ̂ v]μ + £μ; [σ ̂ v] Λ , (3 8b)

μax = "v[λ;μ];σ ~~ "σ[λ;μ]v + ^Aμ fv σ] (3.8 C)

The components of the Ricci tensor are related as follows:

where the

&

quantities Ad)
Λ μ σ

[σ

I

are

V)
A

given

+ £%*:

ι(2) , ε 0 )

[μσ + ^

by

(3.10a)

(3 10b)
ζ/i>;A]~ζ ;[ff"/]//t(5μ;[(r"λ] '

^ ;μ;σ-h\aίμ);λ + hβσ:\λ. (3.10c)

The expressions for A{

μ% may be simplified by imposing a gauge con-
dition on the potential of the wave. If we demand that the deDonder
condition hold:

W ^ J (3.11)
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then the expressions for A(ι

μ\ become

A^ = ξ2hμσ, (3.12 a)

2^-+ξ\λhμσ, (3.12b)

4 Kσ;\λ + h^Rμ)ΰ-2R7.μσβh°» . (3.12c)

The condition (3.11) may always be imposed by a transformation of the
form (3.4) with F μ (x α ) ΞΞ X".

We shall suppose that there is no matter present. The background
metric and the perturbed metric both satisfy the vacuum field equations:

Rμv = 0, Rμv = 0. (3.13)

We have therefore the following equation for the potential of the wave:

ω2 A™ + coA$ + A$ = 0. (3.14)

Before proceeding let us consider the relation of ε to ω. Let L be the
characteristic length in which the change in the components of the back-
ground metric becomes significant:

Since haβ satisfies Eq. (3.14), L is also the characteristic length for the
amplitude of the potential.

Suppose that LΓ1 is less than ω. The left-hand side of Eq. (3.14) is the
sum of three terms of which the smallest is of the order of L~2. The
largest term which we have neglected by not including terms quadratic in
ε is of the order εω2. We have therefore supposed that

ε<l/L2ω2. (3.15)

This means in particular that we have supposed that the energy of the
wave (~ ε2 ω2) is negligeable compared with the energy of the background
field (~L~ 2).

We now assume an explicit functional dependence of hμγ(xa,ωφ)
on ωφ. We assume that in the deDonder gauge (3.11), hμv(xa,ωφ)
is given by

hμχ{x\ωφ) = aμx{xa)eiωφ, (3.16)

where aμx(xa) is a real tensor. One sees from the gauge transformation
(3.5) (that this ansatz is not gauge invariant. If aμv is real in one gauge,
it will be in general complex in another gauge.
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Eqs. (3.11) and (3.14) yield the following equations for aμv:

eίωφ = 0, (3.17)

^ * = 0. (3.18)
δr ^ ; A

We have set aλ

λ = a.
The assumption (3.16) is very strong. The system of Eqs. (3.11), (3.14)

has always a solution for arbitrary phase φ and background metric. The
existence of a solution to the system (3.17), (3.18) imposes very severe
restrictions both on the phase and on the background metric.

In addition to (3.16) we shall assume that (3.17) and (3.18) are valid as
complex equations. The conditions for this are the same as in Section II.
Setting the real and imaginary parts of Eqs. (3.17), (3.18) separately equal
to zero yields the following four equations:

a;ξv=~ξμ, (3.19a)

< ; v = — > (3.19 b)

ξ2auv= \{a",λ-2Roμvσa
Qσ), (3.19c)

χ + ί Λv = 0. (3.19d)

We rewrite Eq. (3.19 c) in the following form, to which it is obviously
equivalent:

ξ2aμv- ^(aμv:

λ

;λ-Rρβvσan= ~ ^RQμ,σa
Qσ . (3.19e)

A perturbation of a given background metric described by a potential
of the form (3.16) where aμv is a solution to Eqs. (3.19) in vacuo will be
called a wave.

If also
\aμxι

λ,λ-Rρμvσan<ω2\aμv\ (3.20)

so that the second term on the left-hand side of Eq. (3.19e) may be put
equal to zero, then we say that the wave is plane.

The reason why we have written Eq. (3.19 c) in the form (3.19e) and
imposed condition (3.20) as the condition that the wave be plane, will
become apparent when we consider an example of a wave in a curved
space-time manifold.
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In general Rρμvσa
ρσ will not be proportional to aμv. This means that

in general the dispersion we find will be a function of the polarization
state of the wave, a phenomenon which is very important in the dispersion
of electromagnetic waves if there is a background magnetic field present.
We do not wish to discuss the details of this dependence here and for
simplicity we shall suppose that for some function K

Rρμxσa^ = κaμv. (3.21)

If aμx is normal to a space-like vector field pμ and if it is traceless, then K
is the sectional curvature of the 2-form normal to pμ and ξμ.

Eq. (3.19e) under condition (3.20) may now be rewritten as

ξ2= + ^τ- (3.22)
ω

We have set ,—
]f\κ\ = ωc, (3.23)

the characteristic frequency, and the sign minus or plus is chosen accord-
ing to whether K is positive or negative. Formula (3.22) is analogous to
the classical formula for the dispersion of electromagnetic waves in a
dilute plasma [3]: . 0 _

ξ2 = ω2

p/ω2 .

Before giving two examples of plane waves, we draw some immediate
consequences from Eqs. (3.19), (3.20), (3.22) [4, 5]. From Eq. (3.22) we see
that the hypersurfaces of constant phase are time-like or space-like
according to the sign of K. If

^ , (3.24)^ 0 ,
dr

then the integral curves of the vector field ξμ are geodesies. In the limit
of high frequency where the right-hand side of (3.22) may be neglected,
the hypersurfaces of constant phase are null.

If we set
aμv = anμv, nμvn

μv = 1,

then from Eq. (3.19 d), we obtain the conservation equation

{a2ξμ)iμ = 0, (3.25)

and the transport equation

The simplest example of a plane wave is the example in flat space. Let
ξμ be an arbitrary null parallel vector field and let aμv be an arbitrary
parallel tensor field satisfying Eq. (3.19 a). Eq. (3.20) is satisfied for all ω.
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An example of a gravitational wave can also be given in the non-flat
manifold described in Section II. Let a\ 2 and α°3 be two arbitrary con-
stants. On one of the hypersurfaces y = const, introduce a tensor field
whose components in the system of coordinates (2.18) are

(3.26)

Introduce a phase given by

Φ = t-f(y). (3.27)

Extend a°μv to a tensor field aμv in the region y > 0 using Eq. (3.19d). We
shall show that for ω sufficiently large hμγ given by (3.16) is the potential
of a plane wave. We must show that Eqs. (3.19), (3.20) are satisfied. All
of the following calculations will be carried out in the coordinate system
(2.18).

One easily sees that the components of the tensor field aμv will be of
the form (3.26). Therefore (3.19 b) is satisfied. From (3.27) and the defini-
tion of ξμi it is obvious that (3.19 a) is satisfied. Eq. (3.19d) is satisfied by
construction. We are left therefore with Eqs. (3.19e) and (3.20).

A straightforward calculation yields

Eq. (3.21) is
is given by

Rρμvσa
Qσ = (λ')2aμv. (3.28)

therefore satisfied and the characteristic frequency ωc

ωc = \λ'\. (3.29)

With Eq. (3.20) satisfied, (3.22) is an equation for the function / in
(3.27). This equation is satisfied if we choose for / any solution to the
equation

/ ' = l/~<Γ2v + ω 2 / ω 2 . (3.30)

There remains therefore to find the conditions on ω such that condition
(3.20) be satisfied.

A straightforward calculation yields the following expression for the
left-hand side of the inequality (3.20):

)aμγ. (3.31)

Using the field Eq. (2.20), this becomes

(3.32)
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One readily sees that Eq. (3.19d) is equivalent to the following
equation:

a'μx - λ'aμx + — ί — + v'j αμv = 0. (3.33)

Suppose the following conditions are satisfied:

- ^ ^ ω 2 , ω2<ω2. (3.34)

clr
Then if the wave is plane, that is, if (3.20) is satisfied, by (3.22) the norm
of ξμ differs very little from zero. To a first approximation we may then
suppose that it is equal to zero is the Eq. (3.33) for aμv. But if this is the
case then the last term on the right-hand side of (3.33) vanishes. If we
put the solution to the resulting equation in the right-hand side of (3.32)
we find that it also vanishes. Therefore (3.20) is satisfied. We see then
that a wave is plane if the frequency satisfies the inequalities (3.34).

We can in this example draw no conclusions concerning the signal
velocity of a wave pulse which is a superposition of the type of plane
waves considered. The phase velocity υp relative to a stationary observer
ua = (]/0°°, 0, 0, 0) is given by

Λ - i — ^ r - • + » • ) • , • • > • .
vP (w ξr

Therefore vp < 1. When the dispersion relation is of the form (3.22), the
group velocity is the inverse of the phase velocity. In this case it is
therefore greater than one and cannot be used as the signal velocity.

The author wishes to thank Prof. A. Papapetrou for his helpful comments.
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